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Abstract—In general, Multimodal optimization is hard problems 
even for Evolutionary Algorithm. Using a Genetic Algorithm 
(GA) to solve these problems, the algorithm cannot converge to 
solutions easily. This work presents a study of Coincidence 
Algorithm (COIN) to solve these problems. COIN has an ability 
to retain multiple solutions in its model; hence it is suitable for 
Multimodal optimization problems. The experiment is carried 
out to illustrate this capability. The benchmarks are designed for 
comparing the problem solving behavior of COIN against a 
Genetic Algorithm.  
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I.  INTRODUCTION 
Coincidence Algorithm (COIN) is an evolutionary 

algorithm that was designed recently [1]. The algorithm 
belongs to a class of so called Competent Genetic Algorithm or 
Estimation of Distribution Algorithm (EDA) [2] which is 
different from Genetic Algorithm (GA) in a way that a model 
of solution is used. COIN is suitable for solving combinatorial 
problems. It composes of a probabilistic model for generating 
the solutions and a learning method to learn patterns from 
solutions that are used to update the model. A distinct 
characteristic of COIN is that its selection method that provides 
both good and bad solutions for updating the probabilistic 
model.  

COIN is powerful  for a wide range of applications. Many 
multi-objective problems [1] can be solved by COIN. One of 
the key difficulties of multi-objective problems is that they 
contain multimodality [3]. This work is set out to illustrate how 
COIN solves multimodal problems [4]. The problems used in 
the experiment are Traveling Salesman Problems with multiple 
satisfactory solutions called Multimodal Traveling Salesman 
Problem. It is one of the interesting problems that represent the 
class of multimodal problems.  

To understand the behavior of COIN, a Genetic Algorithm 
with a greedy crossover [5] is used for comparison. This class 
of problems is difficult for permutation-based GA to solve 
because there may be conflicting building blocks in which GA 

cannot possibly do a good job of composing them. However, it 
is suitable for COIN which can provide multiple solutions. 

Generally, multimodal combinatorial problems are difficult 
to design. Traveling Salesman Problems are used as a basis to 
design the benchmark problems. All of the benchmark 
problems have many solutions sharing either a few or a lot of 
building blocks. Even though GA can identify  good solutions, 
it does not know which building blocks in the solutions are 
suitable for generating the new solutions. In addition, the 
permutation representation constraints the recombination such 
that building blocks of the two distinct solutions are unlikely to 
co-exist, therefore the probability that GA can recombine 
building blocks to form good solutions is low [6]. 

In many multimodal problems, building blocks are in 
conflict to each others. The mechanism for composing a 
solution in COIN exploits the knowledge of building blocks, 
therefore it has high probability to compose multiple and good 
solutions. In addition, besides using the good solutions to learn 
the model, COIN also uses negative correlation learning [7] 
where the bad solutions are also take part in guiding the search. 
This provides additional exploratory power for solving 
multimodal problems. 

II. COINCIDENCE ALGORITHM 
In many ways COIN is similar to EDAs. The procedures 

are: using a probabilistic model, sampling a population, 
evaluating the population, and selecting the good solutions and 
updating the model. A specific characteristic of COIN is that 
COIN uses bad solutions to avoid unnecessary search into 
unpromising solution space. Both good solutions and bad 
solutions are provided to update the model. Steps of the 
algorithm are presented in the flowchart shown in Fig. 1. Each 
candidate generated by COIN represents adjacent pairs of 
nodes. For Traveling Salesman Problems, the candidate refers 
to a string of the number. Each element of the string refers to a 
city in the tour. For example, assuming that the string is 01234, 
and a city 𝑖 is the city such that 𝑖 denotes the city number. This 
string can be read as 𝐶𝑖𝑡𝑦0 connects to 𝐶𝑖𝑡𝑦1, 𝐶𝑖𝑡𝑦1  connects 
to 𝐶𝑖𝑡𝑦2, and 𝐶𝑖𝑡𝑦2connect to 𝐶𝑖𝑡𝑦3, and so on. 
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Figure 1.  A flowchart of Coincidence Algorithm 

TABLE I.  AN EXAMPLE OF THE JOINT PROBABILITY MATRIX  

 0 1 2 3 4 
0 0.00 0.25 0.25 0.25 0.25 
1 0.25 0.00 0.25 0.25 0.25 
2 0.25 0.25 0.00 0.25 0.25 
3 0.25 0.25 0.25 0.00 0.25 
4 0.25 0.25 0.25 0.25 0.00 

The problem size = 5.  

The probabilistic model in COIN is known as a joint 
probability matrix, denoted by 𝐻 . 𝐻  is used to generate the 
candidate solutions. The population is evaluated for the fitness 
of each candidate. In the update step, the matrix is adjusted 
according the evidence extracted from selected candidates. For 
example, the matrix in Table I illustrates an initial state of the 
joint probability matrix which size of the problem is 5. 

Each element of the matrix is denoted by 𝐻𝑥𝑦  . 𝑥 is a row 
index number, and 𝑦 is a column index number; that is, x and y 
refer to a position in the matrix. In an initial state, all elements 
of the matrix except 𝐻𝑥𝑥  equals to 1/(n-1) where n is the 
problem size. 𝐻𝑥𝑥  (The diagonal) equals 0. This represents a 
state where solutions are all equally likely (uniform 
distribution). The summation of each row equals to 1.0. For 
instance, if the problem size is 5, then in the initial state, all the 
elements of H are 0.25 except for the 𝐻𝑥𝑥  which are 0.0. 

The population is sampling from this matrix. After all 
candidates are evaluated for their fitness values, they are 
selected into two groups: better and worse. The size of the 
group is controlled by a parameter C as a percentage of the 
population size.  

These two groups are used to update the matrix. The 
coincidence found in these candidates is used to adjust the 

weight of the matrix. For the better group, this weight is used 
to adjust the value in the matrix upward (more probability) 
according to (1). 

 𝐻𝑥𝑦(𝑡 + 1) =  𝐻𝑥𝑦(𝑡) + 𝑘
(𝑛−1)

�𝑟𝑥𝑦� −
𝑘

(𝑛−1)2
(∑ 𝑟𝑥𝑖)𝑛

𝑖=1  (1)           

Where 𝑟𝑥𝑦  is the number of time the concidence 𝑥𝑦 is found 
in the candidate in the better group. 𝑘 denotes the step size and 
𝑛 denotes the problem size. 𝑡  denotes the current time step. 
𝑡 + 1 denotes the next time step. Because the summation of the 
probability in each row is kept to be 1.0, the weight of the 
others in the same row must be decreased by 𝑘

(𝑛−1)2
(∑ 𝑟𝑥𝑖)𝑛

𝑖=1 . 
The worse group is used similarly to adjust the weight in the 
matrix downward according to (2). 

 𝐻𝑥𝑦(𝑡 + 1) =  𝐻𝑥𝑦(𝑡)− 𝑘
(𝑛−1)

�𝑝𝑥𝑦�+ 𝑘
(𝑛−1)2

(∑ 𝑝𝑥𝑖)𝑛
𝑖=1  (2)           

Two equations can be recombined into (3). 

 𝐻𝑥𝑦(𝑡 + 1) =  𝐻𝑥𝑦(𝑡) + 𝑘
(𝑛−1)

�𝑟𝑥𝑦 − 𝑝𝑥𝑦�            

 − 𝑘
(𝑛−1)2

(∑ 𝑟𝑥𝑖 − ∑ 𝑝𝑥𝑖𝑛
𝑖=1 )𝑛

𝑖=1  (3)           

To prevent a zero probability to occur in 𝐻𝑥𝑦  where 𝑥 ≠ 𝑦, 
(this is equivalent to an absolute decision not to use this path), 
the value is limited to be higher than 1

10
 of the initial value.  

III. EXPERIMENT 
Coincidence algorithm is implemented in C++, and a tool 

to visualize the algorithm is implemented based on OpenGL. 
The Genetic Algorithm with greedy crossover is implemented 
in C# and is visualized based on GDI. The parameters setting 
for the experiments are as follows. For GA, the population size 
is 400; the maximum generation is 10000000; the mutation 
probability is 10%. For COIN, the population size is 400; the 
maximum generation is 10000000; the selection size is 5%; k is 
0.1. Each experiment is run 10 times and the reported data is 
averaged from all runs. 

TABLE II.  COMPARISION OF THE NUMBER OF UNIQUE SOLUTIONS FOUND 
AND THE AVERAGE NUMBER OF GENERATION BETWEEN GA AND COIN. 

PROBLEM PSIZE OPSOL 
AVG GEN AVG SOL 

GA COIN GA COIN 

I 9 8 55 2 8 8 

II 13 24 440 9 5 24 

III 13 96 430 5 76 96 

IV 17 8 496642 39 4 8 

V 24 10 968397 46 1 8 

Population Size = 400, Maximum Generation Number = 10000000 

GA: Mutation Probability = 10 %, COIN: k = 0.1, C = 5%  
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Figure 2.  The benhmarks representing the example of Multimodal Traveling 

Salesman Problem 

To compare COIN with GA, the performance 
measurements are the number of unique solutions found and 

the average generation. The experiment is run 10 times and the 
average of data is reported. Table II shows the results from the 
experiment. PROBLEM denotes the problem number of 
Multimodal Traveling Salesman Problem; PSIZE denotes the 
size of the problem, OPSOL denotes the number of possible 
solution for each of the problems, AVG GEN denotes the last 
generation number the solution is found, and AVG SOL 
denotes the number of unique solutions found. Five 
benchmarks are used for the experiment. Each benchmark is 
designed to be different from the others. In benchmark I, the 
problem size is 9, the number of optimized solutions is 8, and a 
lot of sharing building blocks. In benchmark II, the problem 
size is 13, and the number of optimized solutions is 24. This 
problem has a moderate number of sharing building blocks. In 
benchmark III, the problem size is 13, the number of optimized 
solutions is 96, and there are a lot of sharing building blocks. In 
benchmark IV, the problem size is 13, and the number of 
optimized solutions is 8. In benchmark V, the problem size is 
larger than the other problems, 24, the number of optimized 
solutions is 10, and it has different patterns of building blocks. 

 
Figure 3.  The benchmarks represneting the example of Multimodal 

Traveling Salesman Problem (Cont.) 
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For the discussion of the results, the problems are divided 
into two groups: easy and difficult problems. Benchmark I, II 
and III are easy because the solutions share a number of 
building blocks. Benchmark IV and V are hard (by design). 
According to Table II, GA can solve the problem in benchmark 
I, II, and III. Comparing to COIN, COIN found more unique 
solutions and was faster in finding the solutions. Fig. 4 shows 
examples of the solutions which have a lot of sharing building 
blocks. In Benchmark IV, the building blocks are designed to 
be conflicting with each others. GA performs badly on this 
problem. The example of two solutions which have a different 
pattern of building blocks is shown in Fig. 5. In the Difficult 
problems, COIN still performs quite well and finds almost all 
of the solutions. In the Benchmark V, some of unique solutions 
cannot be found by COIN, since the solutions have too many 
conflicting and too few sharing building blocks (Fig. 6). 

 
Figure 4.  The examples of the best two solutions  

with a lot of sharing building blocks. 

 
Figure 5.  The examples of the best two solutions  

without sharing building blocks. 

 
Figure 6.  The examples of the two solutions  

that have very conflicting and few sharing building block 

IV. CONCLUSION 
Coincidence algorithm has capability to retain multiple 

models of solution. The central idea of its model, the matrix, 
provides not only the efficient search that avoids unpromising 
solutions, but also the ability to find multiple (even conflicting) 
solutions. The experiments in this work are designed to bring 
out this behavior. In comparing with Genetic Algorithm, GA 
struggles with multimodal problems while COIN finds almost 
all the solutions. 
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