
Solving Multimodal Problems by Coincidence
Algorithm

Kiatsopon Waiyapara
Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University,
Bangkok, Thailand

kiatsopon.w@gmail.com

Prabhas Chongstitvatana
Department of Computer Engineering,

Faculty of Engineering, Chulalongkorn University,
Bangkok, Thailand

Prabhas.C@chula.ac.th

Abstract—In general, Multimodal optimization is hard problems
even for Evolutionary Algorithm. Using a Genetic Algorithm
(GA) to solve these problems, the algorithm cannot converge to
solutions easily. This work presents a study of Coincidence
Algorithm (COIN) to solve these problems. COIN has an ability
to retain multiple solutions in its model; hence it is suitable for
Multimodal optimization problems. The experiment is carried
out to illustrate this capability. The benchmarks are designed for
comparing the problem solving behavior of COIN against a
Genetic Algorithm.

Keywords-component; Coincidence Algorithm; Multimodal
Problem; Genetic Algorithm

I. INTRODUCTION
Coincidence Algorithm (COIN) is an evolutionary

algorithm that was designed recently [1]. The algorithm
belongs to a class of so called Competent Genetic Algorithm or
Estimation of Distribution Algorithm (EDA) [2] which is
different from Genetic Algorithm (GA) in a way that a model
of solution is used. COIN is suitable for solving combinatorial
problems. It composes of a probabilistic model for generating
the solutions and a learning method to learn patterns from
solutions that are used to update the model. A distinct
characteristic of COIN is that its selection method that provides
both good and bad solutions for updating the probabilistic
model.

COIN is powerful for a wide range of applications. Many
multi-objective problems [1] can be solved by COIN. One of
the key difficulties of multi-objective problems is that they
contain multimodality [3]. This work is set out to illustrate how
COIN solves multimodal problems [4]. The problems used in
the experiment are Traveling Salesman Problems with multiple
satisfactory solutions called Multimodal Traveling Salesman
Problem. It is one of the interesting problems that represent the
class of multimodal problems.

To understand the behavior of COIN, a Genetic Algorithm
with a greedy crossover [5] is used for comparison. This class
of problems is difficult for permutation-based GA to solve
because there may be conflicting building blocks in which GA

cannot possibly do a good job of composing them. However, it
is suitable for COIN which can provide multiple solutions.

Generally, multimodal combinatorial problems are difficult
to design. Traveling Salesman Problems are used as a basis to
design the benchmark problems. All of the benchmark
problems have many solutions sharing either a few or a lot of
building blocks. Even though GA can identify good solutions,
it does not know which building blocks in the solutions are
suitable for generating the new solutions. In addition, the
permutation representation constraints the recombination such
that building blocks of the two distinct solutions are unlikely to
co-exist, therefore the probability that GA can recombine
building blocks to form good solutions is low [6].

In many multimodal problems, building blocks are in
conflict to each others. The mechanism for composing a
solution in COIN exploits the knowledge of building blocks,
therefore it has high probability to compose multiple and good
solutions. In addition, besides using the good solutions to learn
the model, COIN also uses negative correlation learning [7]
where the bad solutions are also take part in guiding the search.
This provides additional exploratory power for solving
multimodal problems.

II. COINCIDENCE ALGORITHM
In many ways COIN is similar to EDAs. The procedures

are: using a probabilistic model, sampling a population,
evaluating the population, and selecting the good solutions and
updating the model. A specific characteristic of COIN is that
COIN uses bad solutions to avoid unnecessary search into
unpromising solution space. Both good solutions and bad
solutions are provided to update the model. Steps of the
algorithm are presented in the flowchart shown in Fig. 1. Each
candidate generated by COIN represents adjacent pairs of
nodes. For Traveling Salesman Problems, the candidate refers
to a string of the number. Each element of the string refers to a
city in the tour. For example, assuming that the string is 01234,
and a city 𝑖 is the city such that 𝑖 denotes the city number. This
string can be read as 𝐶𝑖𝑡𝑦0 connects to 𝐶𝑖𝑡𝑦1, 𝐶𝑖𝑡𝑦1 connects
to 𝐶𝑖𝑡𝑦2, and 𝐶𝑖𝑡𝑦2connect to 𝐶𝑖𝑡𝑦3, and so on.

45

USER UTCC
Text Box
978-1-4673-1921-8/12/$31.00 ©2012 IEEE

USER UTCC
Text Box
2012 Ninth International Joint Conference on Computer Science and Software Engineering (JCSSE)

Figure 1. A flowchart of Coincidence Algorithm

TABLE I. AN EXAMPLE OF THE JOINT PROBABILITY MATRIX

 0 1 2 3 4
0 0.00 0.25 0.25 0.25 0.25
1 0.25 0.00 0.25 0.25 0.25
2 0.25 0.25 0.00 0.25 0.25
3 0.25 0.25 0.25 0.00 0.25
4 0.25 0.25 0.25 0.25 0.00

The problem size = 5.

The probabilistic model in COIN is known as a joint
probability matrix, denoted by 𝐻 . 𝐻 is used to generate the
candidate solutions. The population is evaluated for the fitness
of each candidate. In the update step, the matrix is adjusted
according the evidence extracted from selected candidates. For
example, the matrix in Table I illustrates an initial state of the
joint probability matrix which size of the problem is 5.

Each element of the matrix is denoted by 𝐻𝑥𝑦 . 𝑥 is a row
index number, and 𝑦 is a column index number; that is, x and y
refer to a position in the matrix. In an initial state, all elements
of the matrix except 𝐻𝑥𝑥 equals to 1/(n-1) where n is the
problem size. 𝐻𝑥𝑥 (The diagonal) equals 0. This represents a
state where solutions are all equally likely (uniform
distribution). The summation of each row equals to 1.0. For
instance, if the problem size is 5, then in the initial state, all the
elements of H are 0.25 except for the 𝐻𝑥𝑥 which are 0.0.

The population is sampling from this matrix. After all
candidates are evaluated for their fitness values, they are
selected into two groups: better and worse. The size of the
group is controlled by a parameter C as a percentage of the
population size.

These two groups are used to update the matrix. The
coincidence found in these candidates is used to adjust the

weight of the matrix. For the better group, this weight is used
to adjust the value in the matrix upward (more probability)
according to (1).

 𝐻𝑥𝑦(𝑡 + 1) = 𝐻𝑥𝑦(𝑡) + 𝑘
(𝑛−1)

�𝑟𝑥𝑦� −
𝑘

(𝑛−1)2
(∑ 𝑟𝑥𝑖)𝑛

𝑖=1 (1)

Where 𝑟𝑥𝑦 is the number of time the concidence 𝑥𝑦 is found
in the candidate in the better group. 𝑘 denotes the step size and
𝑛 denotes the problem size. 𝑡 denotes the current time step.
𝑡 + 1 denotes the next time step. Because the summation of the
probability in each row is kept to be 1.0, the weight of the
others in the same row must be decreased by 𝑘

(𝑛−1)2
(∑ 𝑟𝑥𝑖)𝑛

𝑖=1 .
The worse group is used similarly to adjust the weight in the
matrix downward according to (2).

 𝐻𝑥𝑦(𝑡 + 1) = 𝐻𝑥𝑦(𝑡)− 𝑘
(𝑛−1)

�𝑝𝑥𝑦�+ 𝑘
(𝑛−1)2

(∑ 𝑝𝑥𝑖)𝑛
𝑖=1 (2)

Two equations can be recombined into (3).

 𝐻𝑥𝑦(𝑡 + 1) = 𝐻𝑥𝑦(𝑡) + 𝑘
(𝑛−1)

�𝑟𝑥𝑦 − 𝑝𝑥𝑦�

 − 𝑘
(𝑛−1)2

(∑ 𝑟𝑥𝑖 − ∑ 𝑝𝑥𝑖𝑛
𝑖=1)𝑛

𝑖=1 (3)

To prevent a zero probability to occur in 𝐻𝑥𝑦 where 𝑥 ≠ 𝑦,
(this is equivalent to an absolute decision not to use this path),
the value is limited to be higher than 1

10
 of the initial value.

III. EXPERIMENT
Coincidence algorithm is implemented in C++, and a tool

to visualize the algorithm is implemented based on OpenGL.
The Genetic Algorithm with greedy crossover is implemented
in C# and is visualized based on GDI. The parameters setting
for the experiments are as follows. For GA, the population size
is 400; the maximum generation is 10000000; the mutation
probability is 10%. For COIN, the population size is 400; the
maximum generation is 10000000; the selection size is 5%; k is
0.1. Each experiment is run 10 times and the reported data is
averaged from all runs.

TABLE II. COMPARISION OF THE NUMBER OF UNIQUE SOLUTIONS FOUND
AND THE AVERAGE NUMBER OF GENERATION BETWEEN GA AND COIN.

PROBLEM PSIZE OPSOL
AVG GEN AVG SOL

GA COIN GA COIN

I 9 8 55 2 8 8

II 13 24 440 9 5 24

III 13 96 430 5 76 96

IV 17 8 496642 39 4 8

V 24 10 968397 46 1 8

Population Size = 400, Maximum Generation Number = 10000000

GA: Mutation Probability = 10 %, COIN: k = 0.1, C = 5%

46

Figure 2. The benhmarks representing the example of Multimodal Traveling

Salesman Problem

To compare COIN with GA, the performance
measurements are the number of unique solutions found and

the average generation. The experiment is run 10 times and the
average of data is reported. Table II shows the results from the
experiment. PROBLEM denotes the problem number of
Multimodal Traveling Salesman Problem; PSIZE denotes the
size of the problem, OPSOL denotes the number of possible
solution for each of the problems, AVG GEN denotes the last
generation number the solution is found, and AVG SOL
denotes the number of unique solutions found. Five
benchmarks are used for the experiment. Each benchmark is
designed to be different from the others. In benchmark I, the
problem size is 9, the number of optimized solutions is 8, and a
lot of sharing building blocks. In benchmark II, the problem
size is 13, and the number of optimized solutions is 24. This
problem has a moderate number of sharing building blocks. In
benchmark III, the problem size is 13, the number of optimized
solutions is 96, and there are a lot of sharing building blocks. In
benchmark IV, the problem size is 13, and the number of
optimized solutions is 8. In benchmark V, the problem size is
larger than the other problems, 24, the number of optimized
solutions is 10, and it has different patterns of building blocks.

Figure 3. The benchmarks represneting the example of Multimodal

Traveling Salesman Problem (Cont.)

47

For the discussion of the results, the problems are divided
into two groups: easy and difficult problems. Benchmark I, II
and III are easy because the solutions share a number of
building blocks. Benchmark IV and V are hard (by design).
According to Table II, GA can solve the problem in benchmark
I, II, and III. Comparing to COIN, COIN found more unique
solutions and was faster in finding the solutions. Fig. 4 shows
examples of the solutions which have a lot of sharing building
blocks. In Benchmark IV, the building blocks are designed to
be conflicting with each others. GA performs badly on this
problem. The example of two solutions which have a different
pattern of building blocks is shown in Fig. 5. In the Difficult
problems, COIN still performs quite well and finds almost all
of the solutions. In the Benchmark V, some of unique solutions
cannot be found by COIN, since the solutions have too many
conflicting and too few sharing building blocks (Fig. 6).

Figure 4. The examples of the best two solutions

with a lot of sharing building blocks.

Figure 5. The examples of the best two solutions

without sharing building blocks.

Figure 6. The examples of the two solutions

that have very conflicting and few sharing building block

IV. CONCLUSION
Coincidence algorithm has capability to retain multiple

models of solution. The central idea of its model, the matrix,
provides not only the efficient search that avoids unpromising
solutions, but also the ability to find multiple (even conflicting)
solutions. The experiments in this work are designed to bring
out this behavior. In comparing with Genetic Algorithm, GA
struggles with multimodal problems while COIN finds almost
all the solutions.

ACKNOWLEDGMENT
We would like to express our gratitude to Warin

Wattanapornprom who initiates us to the special characteristic
of COIN.

REFERENCES
[1] Wattanapornprom, W., and Chongstitvatana, P., "Multi-objective

Combinatorial Optimisation with Coincidence Algorithm," IEEE
Congress on Evolutionary Computation, Norway, May 18-21, 2009.

[2] Larrañaga, P., and Lozano, J. A., (Eds.), “Estimation of distribution
algorithms: A new tool for evolutionary computation,” Kluwer
Academic Publishers, Boston, 2002.

[3] Deb, K., “Multi-objective genetic algorithms: Problem difficulties and
construction of test problems,” Evolutionary Computation, vol. 7, no. 3,
pp. 205-30, 1999.

[4] Wattanapornprom, W., and Chongstitvatana, P., “Solving Multimodal
Combinatorial Puzzles with Edge-Based Estimation of Distribution
Algorithm,” Genetic and Evolutionary Computation Conference
(GECCO), July 12-16, 2011, Ireland.

[5] Lalena, M., TSP solver. Online link : http://www.lalena.com/ai/tsp
[6] Watson, R.A., and Pollack, J.B., “Recombination Without Respect:

Schema Combination and Disruption in Genetic Algorithm Crossover,”
in Proc. Genetic Evol. Comput. Conf., 2000 , pp. 112-119.

[7] Sirovetnukul, R., Chutima, P., Wattanapornprom, W., and
Chongstitvatana, P., “The Effectiveness of Hybrid Negative Correlation
Learning in Evolutionary Algorithm for Combinatorial Optimization
Problems,” IEEE Int. Conf. on Industrial Engineering and Engineering
Management, Singapore, 6-9 Dec 2011.

48

