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Abstract 

Many complex engineering problems have multi-objectives where 
each objective is conflicting with others. However, a lot research 



Jiradej Ponsawat et al. 2 

works in optimization by Competent Genetic Algorithm are focused 
on single objective methods. These algorithms work very well for 
single objective problems but stumble when trying to discover a large 
number of solutions naturally occurred in multi-objective problems. 
There are many multi-objective problems where solutions share 
common characteristic, for example decomposable multi-objective 
problems. This characteristic can be exploited to identify and compose 
these common structures. This work proposes to apply the concept of 
Building Blocks to improve evolutionary algorithms to tackle such 
problems. Building Block Identification algorithm is used to guide the 
crossover operator in order to maintain good Building Blocks and mix 
them effectively. The proposed method is evaluated by using Building 
Block Identification guided crossover in a well-known Genetic 
Algorithm to solve multiple-objective problems. The result shows that 
the proposed method is effective. Moreover, it obtains a good spread 
of solutions even when the Building Blocks are loosely encoded. 

1. Introduction 

In [1], Goldberg gives description that Building Blocks (BBs) are short, 
low order and highly fit schemata and that these BBs play important role in 
action of GA because they are sampled, recombined, and resampled to form 
strings of potentially high fitness. The class of problems called GA-deceptive 
are designed to mislead a Simple Genetic Algorithm or any hill-climber 
algorithm. For this class of problems, Building Block Identification [2] is 
shown to be a good solver. 

There are many algorithms for identifying and composing Building 
Blocks in single objective problems where the target is to learn the structure 
of solution which has one global optima [3]. For many real world problems 
there are many conflicting objectives and there are many solutions. Therefore 
algorithms which work well for single objective problems usually fail to 
obtain the structure of solution for all solutions. There are some classes of 
problems in which solutions have common characteristic such as 
decomposable multi-objective problems where the objectives compete in 
different partitions of the problem decomposition. This work employs Chi-
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square matrix to identify Building Blocks. It is found that incorporating this 
method into evolutionary process improved solutions faster than a standard 
Genetic Algorithm, especially for large problems. 

For multiple-objective deceptive problems, applying Genetic Algorithm 
with single point crossover has limited success due to the disruptive effect of 
the crossover operator on the Building Blocks. Building Block Identification 
algorithm as its name implied partitions bit-positions into groups. These 
groups are regarded as Building Blocks (BBs). The knowledge of BBs can be 
used to prevent disruption of highly fit solutions from crossover operators 
[4]. When performing crossover, group of bits in the same BB should not be 
divided in order to preserve them. 

This work proposed the application of Building Block Identification 
algorithm to solve multiple-objective problems. We focus on finding good 
Building Blocks in the context of multiple-objective problems. The multiple-
objective problems are solved with evolutionary algorithms. The Building 
Block Identification algorithm is used to guide the crossover operator which 
will mix Building Blocks. The aim of this work is to find out whether the 
claim that Building Blocks are important to multiple-objective problems can 
be substantiated [5, 6]. 

The approach taken in this work is to modify a standard MOEA to use 
Building Block Identification in place of its original crossover operator. 
NSGA-II is chosen to be the evolutionary algorithm in our work. For the test 
problems, we employ three different deceptive problems [7, 8], which are 
problems with clearly defined BBs (see Section 4). There exist many works 
that use the trap function as the test problem, e.g., [9-13]. 

The structure of this paper is as follows: The next section gives the 
background on NSGA-II algorithm. Section 3 explained the proposed 
algorithm in details. The description of Building Block Identification 
algorithm and its application to modify the crossover operator are given. 
Section 4 gives description details of the test problems, the multiple-
objective deceptive function. Section 5 gives the detail of the experiments 
and discusses the results. Finally, the conclusion is offered in Section 6. 
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2. Background 

Evolutionary algorithms are popular methods to solve multiple-objective 
problems. There are two approaches to Building Blocks finding: either it is 
explicit method or implicit [5]. Messy Genetic Algorithm (mGA) and 
Linkage Learning GA (LLGA) [14] are some examples of works that are 
explicit BBs finding. In these algorithms, each bit is tagged with the position 
numbers so that they can be moved around without losing the meaning. The 
messy GA is later developed to Fast Messy Genetic Algorithm (FMGA) [15] 
and GEne Messy Genetic Algorithm (GEMGA) [16]. The latter is an early 
work that can find the optimal solution for km ×  trap function. Bayesian 
Optimization Algorithm (BOA) using Bayesian network to model a 
population proposed by Pelikan et al. [17] is another one of explicit BBs 
finding. In a later version of BOA called hierarchical BOA (hBOA) [18], the 
l-vertex network is represented by l decision trees/graphs in order to avoid 
the exponentially growth of the number of conditional probabilities in the 
network. As the result, the latter models are more compact and applicable for 
problems having higher order of variable interaction. 

In the context of multiple-objective problems, the Multiple-objective 
Bayesian Optimization Algorithm (mBOA) [19] is identical to BOA, except 
that the selection procedure which is replaced by the non-dominated sorting 
and selection mechanism of NSGA-II [20]. The NSGA-II is well known in 
Multiple-objective Evolutionary Algorithm (MOEA) group and there have 
been much interest in improving its quality, for example, in [21] and [22]. 
NSGA-II is considered to be a leader of MOEA. NSGA-II is an implicit BB 
builder rather than an explicit one. Non-dominated Sorting Genetic 
Algorithm II (NSGA-II), the extended NSGA [23], is one of the most popular 
Genetic Algorithms. In NSGA-II, the population is sorted according to the 
level of non-domination. The diversity among non-dominated solutions is 
maintained using a measure of density of solutions in the neighbourhood. 
NSGA-II is able to find much better widespread solutions and better 
convergence near the true Pareto-optimal front in most problems. 
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3. Algorithm 

Building Blocks can be identified by computing Chi-square matrix then 
perform partitioning of bit positions using Partition Algorithm proposed in 
[24]. Each element of Chi-square matrix represents the degree of relation 
between each bit of selected population. Partition Algorithm groups bits 
which are highly related into BBs. This knowledge of BBs is used in the 
design of crossover operator. When performing crossover, all bits in the same 
partition will be moved together. 

3.1. Chi-square matrix 

To identify highly-related-group of bits, it is noted that their quantities 
are inversely related to randomness. The Chi-square matrix [24] is chosen for 
measuring randomness because computing the matrix is simple and fast. 

3.2. Partitioning Algorithm 

Partitioning Algorithm [2] will partition each bit into suitable blocks. 
When performing crossover, bits in the same partition must not be separated. 
The motivation is to put bit i and bit j into the same partition subset if Chi-
square ( )ji,  is high. 

3.3. Crossover method 

In the experiment, the crossover step is replaced by BB-wise crossover, 
shown in Figure 1. The original crossover operator is a two-point crossover 
method. 

The selected solutions will go through crossover and mutation operations 
to become the new population. The crossover operator can exploit the 
knowledge of BBs by choosing appropriate cut points. The cut point should 
not separate bits in the same BB. To achieve this, a crossover mask is created 
for each partition. When parents exchange bits to create offspring, all bits in 
the same partition will be moved together. 
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Figure 1. The steps of BB-NSGA-II. 

The mask bit is generated for each partition. All bits in each partition can 
be either exchanged (with other individual) or remained the same. Flip coin 
method is used to choose whether a partition will be moved or remain 
unchanged. For instance, if the partition number 1 is assigned to be 
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exchanged (mask value 0), all bit-positions in that partition will be assigned 0 
in the mask. After all partitions have been assigned, the partitions which are 
assigned to 0 will be swapped with their mates. Otherwise, they remain the 
same. The following example illustrates the operation: 

If the Chi-square matrix be partitioned like this one, {{1, 5, 9, 13, 17}, 
{2, 6, 10, 14, 18}, {3, 7, 11, 15, 19}, {4, 8, 12, 16, 20}} and the partitions 1 
and 2 are selected to be exchanged then all bits in the partitions 1 and 2 are 
exchanged between two parents. Here is the situation. 

Partition    <1234 1234 1234 1234 1234> 

Mask Bits <0011 0011 0011 0011 0011> 

x x x x x x x x … x x x x

Parent 1 

y y y y y y y y … y y y y

Parent 2 

After crossover, the two parents produce two children. 

y y x x y y x x … y y x x

Child 1 

x x y y x x y y … x x y y

Child 2 

4. Multi-objective Deceptive Problems 

The experiment is set to find out the effectiveness of the application of 
Building Block Identification to the multiple-objective trap problems. This 
class of functions usually leads the GA away from the global optimum. 
NSGA-II is used as the evolutionary algorithm. Its crossover operator is 
replaced by the crossover operator with Building Block Identification. The 
experiment is set to compare the result of the proposed method (named BB-
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NSGA-II) with the original NSGA-II. Any difference in the results should 
arise mainly from the use of Building Block Identification. 

4.1. Deceptive functions 

The algorithm is tested on six test functions: 

• T1-Multiple interleaved minimal deceptive problem 

• T2-Complement of T1 

• T3-Multiple interleaved 5-bit trap 

• T4-Complement of T3 

• T5-Multiple interleaved symmetric 5-bit trap 

• T6-Complement of T5 

Each of the function is described in the remainder of this section. The 
test functions are difficult in four aspects: deception [25], loose linkage, 
multimodality [26], [27] and combinatorial with large search space. These 
test functions were combined together to make three multi-objective 
problems: 

(1) MOP1 (T1 and T2) 

(2) MOP2 (T3 and T4) 

(3) MOP3 (T5 and T6) 

The multi-objective problems are listed in Table 1. 

Table 1. Listing multi-objective problems 
Problems Description Problem 

size 
#Distinct points in

Pareto optimal front
#Distinct 

solutions in 
Pareto optimal 

front 
30 16 215 
60 31 230 MOP1 

T1 & T2 
(MDP) 

90 46 245 
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30 7 26 
60 13 212 MOP2 

T3 & T4 
(Trap 5) 

90 19 218 
30 7 26 
60 13 212 MOP3 

T5 & T6 
(Symmetric-

Trap 5) 
90 19 218 

4.2. MOP1 - Interleaved minimal deceptive problem (T1 & T2) 

The interleaved minimal deceptive problems are designed to test an 
algorithm’s ability to discover loosely linked bits by dividing the string in to 
two halves and coupling one bit from each half. Figure 2 illustrates how the 
bits are correlated. Bits having the same pattern are rewarded, while 
alternating couplets are not. Additionally, equations (1) and (2) indicate the 
bit couplet fitness for T1 and T2, 
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where u is the number of 1s in the input string of two bits. 

 

Figure 2. The linkage in T1 and T2 in problem MOP1. 
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Figure 3. The example of identified linkage in MOP1. 
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Figure 4. Objective space of MOP1 (30 bits). 

4.3. MOP2 - Interleaved deceptive problem (T3 & T4) 

The interleaved 5-bit trap function is devised to test an algorithm’s 
ability to find loose linkages having non-consecutive bits. Bits in problems 
T3 and T4 both have correlated bits with a distance of l/5 from one another. 
Figure 5 illustrates how the bits in groups of five are coupled. Additionally, 
Figure 6 graphically illustrates how the fitness behavior varies according to 
the number of bits that are set in the described 5-bit linkage pattern. 
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Figure 5. Coupling of the bits in MOP2 of T3 and T4. 
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Figure 6. The fitness of deceptive problems T3 and T4. 
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Figure 7. Objective space of MOP2 (30 bits). 

4.4. MOP3 - Interleaved deceptive problem (T5 & T6) 

Trap functions are difficult problems for Genetic Algorithms. Moreover, 
they are problems which Building Blocks are obviously defined. The 
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deceptive trap functions are modified to be multiple-objective style in [8]. A 
modified version called Shuffle trap function is also created. This function 
creates non-compact Building Blocks (bit positions are not contiguous) 
which renders a simple crossover operator ineffective. These problems are 
defined in this section. 

This problem has 2 objectives: km ×  deceptive trap, and km ×  
deceptive inverse trap. String positions are first divided into disjoint subsets 
or partitions of k bits each. The k-bit trap and inverse trap are defined as 
follows: 
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where u is the number of 1s in the input string of k bits, and d is the signal 
difference. Here, we use ,5=k  and .1=d  The km × -trap conflicts with 
the inverse trap by its objective. A solution that sets the bits in its partition 

either to 0s or 1s is Pareto optimal and there are a total of m2  solutions in the 
Pareto-optimal front. 
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Figure 8. The fitness of deceptive problems T5 and T6. 
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km × -trap function is defined as follows: 
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where kF  is ktrap  or kinvtrap  function. The m and k are varied to produce 

many test functions. These functions are often referred to as Additively 
Decomposable Functions (ADFs). In this experiment, this function is 
modified to be multi-objective. 

The shuffle trap function is constructed by separating the bit position of 
the same Building Blocks in order to deceive the algorithm. For instance, 
normal 54 × -trap function has Building Blocks as shown. 

11111 ***** ***** ***** 

In shuffle trap, the modulo method is used to construct one Building Block. 
The same Building Block is repeated in every m bit. 

1*** 1*** 1*** 1*** 1*** 
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Figure 9. Objective space of MOP3 (30 bits). 
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5. Result and Discussion 

The data in the experiments are the average from 30 independent runs. 
Table 2 shows the experiment settings for both NSGA-II and BB-NSGA-II. 
They are compared at the same effort. 

Table 2. The experimental setting for both algorithms 
Problem Problem size Population 

size 
Number of 
generation 

Number of 
evaluations 

30 300 40 12000 
60 500 60 30000 

MOP1 

90 700 80 56000 
30 1300 40 52000 
60 3300 60 198000 

MOP2 

90 5200 80 416000 
30 1300 40 52000 
60 3300 80 264000 

MOP3 

90 6000 120 720000 

The parameters for GA in all problems are: crossover rate 0.9, mutation 
rate 0.01, the value “alpha” of PAR algorithm 0.95. All problems employ 
same set of parameters without any further tuning. 

5.1. Result of MOP1 (T1 & T2) 

Table 3. Results of the experiment on MOP1 
Algorithms Evaluation MOP1’s 

size NSGA-II BB-NSGA-II
30 10.20 9.00 
60 12.53 17.57 

Unique strings
found 

90 15.93 19.97 
30 7.00 6.57 
60 6.17 8.60 

Pareto front 
points found 

90 6.40 10.03 

From Table 3, for the problem of size 30 bits, NSGA-II performed better 
than the proposed method. However, when the problem is larger, the length 
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of Building Blocks is wider; Building Block Identification becomes more 
prominent. For the large problems such 60 and 90 bits, the 2-point crossover 
employed in NSGA-II is outperformed by BB-wise crossover in the proposed 
method. 

These test functions, MOP1, are the minimum deceptive problems. They 
are the easiest problems in the experiment. The 2-point crossover performed 
moderately well in the small problems. When the distance between the bits in 
the same Building Block is increased, the problem becomes harder. In this 
situation, the BB-wise crossover performed better than the 2-point crossover. 

The half lower row of Table 3 shows the average number of solutions 
found in the Pareto front. This number indicates how well a method 
discovered solutions in the Pareto front. For NSGA-II, as the problem size 
grows larger, the number of solutions is reduced. This is in contrast to the 
proposed method in which more solutions are found in the larger problems. 

5.2. Result of MOP2 (T3 & T4) 

Table 4. Results of the experiment on MOP2 
Algorithms Evaluation MOP2’s 

size NSGA-II BB-NSGA-II 
30 1.80 2.80 
60 1.03 3.20 

Unique strings 
found 

90 1.00 2.80 
30 1.77 2.50 
60 1.03 2.50 

Pareto front 
points found 

90 1.00 2.43 

These problems are harder than MOP1. NSGA-II is outperformed by 
BB-wise-NSGA-II in all problems. For these problems, the solutions in the 
Pareto front have good spread over the objective space (Figure 7). This 
makes it hard for NSGA-II which collected all good solutions from the 
Pareto front before considering their distribution. NSGA-II employs a 
measure of distribution using crowding distance to select solutions so that 
they have good distribution in the objective space. However, for the discrete 
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domain, this measure cannot maintain the diversity of the solutions due to the 
limited number of solutions that can be stored. 

The results of this experiment show that BB-wise crossover is better in 
maintaining the diverse solutions. 

5.3. Result of MOP3 (T5 & T6) 

These problems have similar Building Blocks to the problems in MOP2. 
The difference is in the symmetry of the solutions in the objective space. The 
distribution of solutions in the objective space is also different (compare 
Figure 7 to Figure 9). The distribution of solutions in the Pareto front of 
MOP3 is smaller in the beginning. This fact allows NSGA-II to perform well 
compared to the results from the previous experiments. Table 5 shows the 
results of the experiment of MOP3. 

The results show similar trend to MOP1. That is, for the small problems 
NSGA-II performed better than BB-wise-NSGA-II. For the large problems 
the proposed method is better. This is because when the length of Building 
Blocks increased, the BB-wise crossover has a better chance in avoiding 
disruption of Building Blocks than the 2-point crossover. The problems are 
set up such that whenever one objective pulls the solutions towards all 1s 
then other objective pulls the solutions towards all 0s. In this situation, the      
2-point crossover will exchange the Building Blocks 0 with the Building 
Blocks 1, whereas the BB-wise crossover will exchange the Building Blocks 
of the same type. 

Table 5. Results of the experiment on MOP3 
Algorithms Evaluation MOP3’s 

size NSGA-II BB-NSGA-II
30 4.83 2.70 
60 2.67 3.53 

Unique strings
found 

90 2.73 5.17 
30 3.67 2.37 
60 2.67 3.00 

Pareto front 
points found 

90 2.70 4.00 



Using Chi-square Matrix to Strengthen Multi-objective … 17 

Relying on Building Block composition alone required that there must be 
sufficient amount of Building Blocks in the population [28]. For the small 
problems, the size of population is also small. Therefore, there is a possibility 
that there is not enough Building Blocks existed in the population to allow 
convergent to the solutions. 

6. Conclusion 

This paper discussed the effect of using Building Block Identification 
(BBI) in solving decomposable multi-objective problems where the 
objectives compete in different partitions of the problem decomposition. The 
Building Block Identification composed of the calculation of Chi-square 
matrix and the partitioning. The partitions are used to guide the crossover 
operation to mix Building Blocks properly that will lead to good solutions. 
Compare the original NSGA-II to BB-NSGA-II which incorporated Building 
Block Identification, the result shows BBI method is effective in solving the 
multi-objective trap functions which appear to have high epistasis. From the 
experiment, the proposed method performs more effectively than NSGA-II, 
even though NSGA-II is designed for multi-objective problems. The 
experiment with the shuffle trap function demonstrates clearly that 
composing Building Blocks is highly effective. 

Several interesting topics regarding the Building Block Identification 
require further exploration. We would apply our algorithm to other multi-
objective problems such as some interesting problems multi-objective 
travelling salesperson problems [29] and another real-world problems, e.g., 
in [30, 31]. 
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