
 Abstract – Order acceptance with capacity balance problems

require trading off between over- and under capacity

utilization in order to gain more profits. This research

proposes a new over- and under capacity tradeoff order

acceptance model and propose adaptations of node based

estimation of distribution algorithm to solve the order

acceptance decisions in multi-process environments. The

results show that node based coincidence algorithm is a

potential algorithm which can maximize both profit and can

maximize the capacity used at the same time.

Keywords – order acceptance, capacity balancing,

combinatorial optimization, estimation of distribution

algorithm, genetic algorithm, node based coincidence

algorithm, node histogram based sampling algorithm

I. INTRODUCTION

 The order acceptance and rejection decision problems

have gained increasing attention over the past few decades.

Manufacturers favor among the orders that they accept for

processing for a variety of reasons including market

focuses, competitive advantages and capacity limitations.

While surplus of orders might be hailed by a manufacturing

or service facility, demand that exceeds capacity brings

with it some hard choices. There is an important trade-off

between the profit-enhancing revenue of an order, and the

costs of capacity that it may distract with the other jobs. In

addition, late delivery of some orders may result in

penalties such as reduction of revenues and long-term

losses of trust and market share. In a competitive market,

the importance of on-time delivery may make it cost- and

profit-effective to reject some orders [1][2].

 Order acceptance and scheduling (OAS) problem is

classified as a multi-dimensional knapsack problem which

is a well-known NP hard problem. Additionally, there also

exists the necessity of order sequencing which makes it

much more difficult than the general knapsack problems.

For example, the difference of order sequencing can result

in difference profit level[3][4]. This problem is divided into

two research group, which are order acceptance (OA) and

order rejection (OR). Whether acceptance or rejection, both

group of research have one similar key issue which is for

solving the selecting and sequencing order problem to meet

the production capacity constraint with the best profit

result. From the order rejection perspective, the main

objective is to minimize penalty of rejection such as

minimizing make span, completion time, machine capacity

cost, etc. On the other hand, from order acceptance

perspectives, the main objective is rather on the

maximization of profits, such as maximize profit, capacity

utilization, etc. [1]

The penalties of rejection in OR problems indirectly

reflect the profit in the OA problems. For example, the

make span minimizing in OR can result in increasing of the

capacity utilization in OA. Accordingly, when the capacity

cost is fixed, it is not necessary to calculate both penalty

and profit at the same time. However, in many situations,

manufacturers could not raise the capacity level to support

more orders in order to gain higher profits, they need to

work overtime (OT) which inevitably require higher

production cost. Nevertheless, it is not necessary for the

manufactures to utilize all of the OT capacity that they have

in order to get the best profits, especially in multi-product

with multi-process production lines, which is not easy to

re-balance the production lines. Consequently, it is

necessary to choose the series of orders that are not only

profitable but also balance in capacity utilization.

Trading off between underutilization and

overutilization is not a new concept in OAS problem, it was

used in the upstream of order acceptance process by

microeconomic theories for pricing, making decision in

capacity reallocation and selecting the profitable orders

under the time constraint [2]. However, there is no existing

research that downstream applies about trading off between

under capacity and over capacity utilization. This is the

first research that use two conflicting capacity constraint as

the objectives in OAS problem to select and sequence the

orders to maximize the profits while maintaining the

balance of the production capacities at the same time.

 This article introduces the application of node-based

estimation of distribution algorithms (EDA) [5][6] for

solving the order acceptance with capacity balancing

problem. The contribution of this work is to demonstrate

new approaches to the order acceptance problem that

compete successfully with previously purposed genetic

algorithm especially in larger problems.

 The remaining sections of this paper are organized as

follows. The problem model and the procedures are

introduced in Section II. The results are discussed in

Section III. Finally, Section IV concludes this work.

Application of Node Based Estimation of Distribution Algorithms

for Solving Order Acceptance with Capacity Balancing Problems

by Trading Off between Over Capacity and Under Capacity Utilization

II. METHODOLOGY

A. Order Acceptance Model

 In practice, most production lines are balanced such

that they are suitable with standard products that have

higher demand. Each process utilize the balanced capacity

such that similar kind of product can be produce smoothly.

Unfortunately, these production lines usually lose their

strength when facing unusual products that are not

frequently ordered, it results in inefficacy use of working

capacity. Therefore, the prices of lower demand products

become higher in order to compensate the unusual

production times and materials in the stocks. The unused

leftover capacities become inevitable costs that the

manufacturers have to spend. However, the manufactures

can choose to use the OT capacities in some processes to

accept more profitable orders and to avoid the under

capacities penalty.

The order acceptance model in this research consider

not only the under capacity utilizations but also allow the

over capacity utilizations in multi-process environment.

This model is on an assumption that the employees can

work totally 8 hours per day and can have extra 2 hours

OT. In addition, there is no waiting time involved in the

model. Figure 1 illustrates the under and over capacity

utilization of orders. Each order needs to be manufactured

in 5 difference processes which required difference time

capacities. The total capacity for each process is 8 hours

plus addition 2 extra hours. The capacity plan accumulate

the working capacities of each order and its processes.

Form figure 1, the order A, B and C utilize up to 9 hours in

the process 3, 4 and 5, while in process 3, the capacity is 1

hour wasted, yet the order D should be rejected as it

overuse the total capacity for the process 3 and 4. It can be

clearly seen that without the order C and D, the utilization

of this plan would be worse as it wastes totally 10 hours

capacity in five processes. The capacity plan could be

better if order C is rejected as there is no leftover capacity

and the capacities are not over used.

Fig. 1. The under and over capacity utilization of orders.

The order of set i = (1,2,…,i), where i is one of the k

product type and profit per unit is Pik . Each order will be

processed through set N = (1,2,…,n), production unit. An

order i is said to be early if finish period t is equal or less

than due date d, t-Di ≤ 0 and overdue if more than the due

date t-Di > 0. Product k utilizes capacity 𝐶𝑇𝑃𝑛𝑡 as 𝑒𝑖𝑗𝑘𝑛𝑡

per unit, so the orders will occupy total production capacity

∑ 𝑒𝑘𝑞𝑖𝑘𝑡𝑖 for ∀𝑡. Each order for an item consist of several

processes. 𝑅𝑇𝑛 and 𝑂𝑇𝑛 is the regular working time and

overtime allowed in a day. The model can be defined as

follow:

Capacity Constraint

𝑅𝑇𝑛 Total capacity of workstation n

𝑂𝑇𝑛 Total overtime capacity of workstation n

𝐶𝑇𝑃𝑛𝑡 Unassigned capacity of workstation n at period t

(t=1,…,T)

𝑒𝑖𝑗𝑘𝑛𝑡 Consumption of 𝐶𝑇𝑃𝑡 for Product k in Order i by

Job j

𝑓𝑖𝑗𝑘𝑛𝑡 Time unit that workstation n consume 𝐶𝑇𝑃𝑡 for

Product k in Order i by Job j at period t

𝑔𝑛 Cost of Unassigned capacity of workstation n

𝐶𝑇𝑃𝑛 per time unit

α1n Cost rate of stretching the production capacity at

Workstation n

𝛼𝑛 Cost Rate of not using the whole capacity at

Workstation n

dnt
+ Amount of over capacity production at

workstation n in period t

dnt
− Amount of under capacity production at

workstation n in period t

Order Constraint

𝑝𝑖𝑘 Profit of order i

𝑞𝑖𝑘𝑡 Demand quantity of product k in order i due at

period t

Decision Constraint

𝑅𝑖𝑘 = 1, if the order i for product k is accepted

 = 0, otherwise

𝐹𝑖𝑗𝑘𝑡𝑛 = 1, if the order i for product k is produced

 at workstation n by job j in time period t

 = 0, otherwise

Maximize Z = ∑ ∑ ∑ 𝑝𝑖𝑘𝑞𝑖𝑘𝑡𝑅𝑖𝑘 𝑘𝑖𝑡

 −(∑ ∑ α1ndnt
+ + α2ndnt

−
nt)𝑔𝑛

 Profit − Minimizing the capacity variation (1)

Subject to

Workstation-level activities Constraint

∑ ∑ ∑ 𝑒𝑘𝑖𝑗𝑞𝑖𝑘𝑡 ×𝑡𝑖𝑘 𝑅𝑖𝑘𝑡𝑛 ≤ ∑ 𝐶𝑇𝑃𝑛𝑡𝑡 ∀𝑛 (2)

𝑑𝑛𝑡
− = 𝑅𝑇𝑛 − (𝑂𝑇𝑛 − 𝐶𝑇𝑃𝑛𝑡) − ∑ ∑ 𝑒𝑖𝑗𝑘𝑞𝑖𝑘𝑡𝑓𝑖𝑘𝑡𝑛𝑛𝑡

 ∀𝑛 (3)

dnt
+ = ∑ ∑ 𝑒𝑖𝑗𝑘𝑞𝑖𝑘𝑡𝑓𝑖𝑘𝑡𝑛 − 𝑅𝑇𝑛𝑛𝑡 ∀𝑛 (4)

Proces
s 1

Proces
s 2

Proces
s 3

Proces
s 4

Proces
s 5

Order D 2 2 2 2 1

Order C 2 2 3 2 3

Order B 2 2 3 4 3

Order A 4 3 3 3 3

4 3 3 3 3

2
2 3 4 3

2
2

3 2 3

2
2

2 2 1

0

2

4

6

8

10

12

C
ap

ac
it

y
(H

o
u

rs
)

Order-level activities Constraint

𝑓𝑘𝑖𝑗𝑞𝑖𝑘𝑡 ≥ 𝐹𝑖𝑘𝑡𝑛 ∀𝑖, 𝑗, 𝑘, 𝑛, 𝑡 (5)

𝑓𝑘𝑖𝑗𝑞𝑖𝑘𝑡 ≤ 𝑒𝑘𝑖𝑗𝑞𝑖𝑘𝑡𝐹𝑖𝑘𝑡𝑛 ∀𝑖, 𝑗, 𝑘, 𝑛, 𝑡 (6)

∑ 𝑡𝐹𝑖|𝑗|𝑘𝑛𝑡𝑛 ≤ 𝐷𝑖𝑅𝑖𝑘 ∀𝑖, 𝑘, 𝑡 (7)

∑ ∑ 𝑓𝑘𝑗(𝑖−1)𝑞𝑖𝑘𝑡´𝑡𝑛 + ∑ 𝑓𝑖𝑘𝑡𝑞𝑖𝑘𝑡𝑛 ≥ ∑ 𝑒𝑘𝑗(𝑖−1)𝑞𝑖𝑘𝑡𝑛 𝐹𝑖𝑘𝑡𝑛

 ∀𝑖/{1}, 𝑘, 𝑡 (8)

Binary and non-negativity Constraint

𝑅𝑖𝑘 = 0𝑜𝑟1 ∀𝑖, 𝑘 (9)

𝐹𝑖𝑗𝑘𝑛𝑡 = 0𝑜𝑟1 ∀𝑖, 𝑗, 𝑘, 𝑛, 𝑡 (10)

𝑓𝑖𝑗𝑘𝑛𝑡 ≥ 0 ∀𝑖, 𝑗, 𝑘, 𝑛, 𝑡 (11)

The key objective is to maximize the overall profit.

The model helps to unify two decisions: which orders to

accept and how much capacity is required of each resource

in order to complete an accepted order. The secondary

research objective is to balance the usage of capacity in

production lines by tradeoff the wage penalty between over

and under capacity utilization, thus this problem is

considered to be a three objectives optimization problem.

However, the three objectives are bind into one single

objective. The objective function consists of three parts; (i)

to maximize the total profit (ii) to minimize the residual

working capacity and (iii) to minimize the OT capacity.

Generally speaking, the objective is to choose the set and

sequence of the profitable orders using as much working

capacity as well as less OT as possible. According to this

term the leftover available capacities have some certain

penalty cost while the OT usages also cause extra cost. The

first set of constraints is established to ensure that the

whole capacity of plant is not violated. Constraint (3) and

(4) were set to calculate the penalty of not using the whole

capacity and stretching the production capacity.

Constraints (5) and (6) set the Fijkrt decision variables to

either 1 or 0. The Fijkrt variables are the indicator variable;

they take a value of 1 when fijkrt > 0 indicating that job j of

item i is being processed on resource k in time period t,

otherwise they take a value of 0. The Fijkrt variables are

used to ensure the precedence relationship. The constraint

set (7) ensures that when an order for an item is accepted,

the completion time of the last job of that order does not

exceed the order due date. The constraint sets (8) impose

precedence restrictions, to ensure that job j of item i can be

processed in period t only after completing job j of item i-

1. The constraints (9) and (10) are the binary constraints

and constraints (11) to negativity constraints.

B. Solution Procedures

 This work compares the result of GA with two node

based EDAs including NHBSA, NB-COIN. From

preliminarily study, the results of the EDAs for solving OA

in single machine are too far better than GA and its

benchmarks [6], therefore this paper only compare the

results with GA.

1. Genetic Algorithm

 The first procedure is an ordering GA with Position-

based crossover (PBX) [7] which preserve not only

absolute order substructures but also preserve relative

order substructures from two parents. Figure 2 illustrates

the steps and the example of PBX. The proto offspring 1

mimics the absolute order substructures from the parent 1

and then imitates the relative sequence order of the

remaining substructures from the parent 2 and vice versa.

For this problem, the chromosomes are sample

solutions, that is, sequenced subsets of jobs. The diversity

is maintained by ancestor replacement. If new candidate is

better than its ancestors it is used to replace one of its own

parents. In this study, the local search is also applied to the

new candidates with improvement. The swapping and

insertion operations are randomly applied to the candidates

until the candidates are no longer improved. The pseudo

code of GA are as follows:-

Step 1. Randomly generate the population.

Step 2. Evaluate the population.

Step 3. Perform crossover and mutation. If the newly

generated candidate is better than its ancestors, then

perform the local search until the candidate is no

longer improved.

Step 4. Repeat Step 3 until the maximum number of

generation is reached.

Fig. 2. Position-based crossover (PBX).

 Although, the encoded solution of GA is a full set of

the jobs in the pool. However, the evaluation process

considers only the accepted jobs. The evaluation process

does not only evaluate the jobs sequence, but also re-sorts

the jobs sequences to separate the accepted and rejected

jobs as illustrated in the figure 3. The sequence of the

accepted jobs are kept in the accepted pool while the

remaining jobs are kept in the rejected pool. The candidate

solution is re-sorted by concatenating the accepted pool

with the rejected pool.

Fig. 3. Evaluation with cutting off.

2. Estimation of Distribution Algorithms

 The EDAs used in this research are Node Histogram

Based Sampling Algorithm (NHBSA) and Node Based

Coincidence Algorithm (NB-COIN). They generate

solution strings in sequences, ensuring that only valid

permutations are sampled. The differences of these two

node based EDAs are the learning methods. NHBSA

belongs to the ad hoc learning methods, while NB-COIN

belongs to the incremental learning methods. The pseudo

code of EDAs are simplified as follows:-

Step 1. Initialize the model

Step 2. Sample the population

Step 3. Evaluate the population

Step 4. Select candidates

Step 5. Update the model

Step 6. Repeat steps 2 to 5 until terminated.

 Although, GA and EDAs are in the same group of

evolutionary algorithms, however, the evaluation process

and the updating process of EDAs for the order acceptance

are slightly different. GA needs to maintain the genetic

materials, therefore the whole set of jobs need to be

maintained. However, EDAs can reproduce the missing

sequences by themselves, in addition, the sequences of the

rejected pool are considered to be the useless information,

therefore, EDAs only update the models from the accepted

sequences of jobs. Consequently the evaluation process

doesn’t need to concatenate the rejected pool with the

accepted pool. The evaluation processes in the figure 2

simply use the accepted pool as the candidate for the EDAs.

2.1. Node Histogram Based Sampling Algorithm

NHBSA was proposed by Tsutsui in 2006.[9] It

utilizes Node Histogram Matrix (NHM) to learn the mutual

information of absolute position. Matrix 𝑁𝐻𝑀 = [ℎ𝑖𝑗],

where ℎ𝑖𝑗 = 𝑃(𝜎𝑖 = 𝑗) and 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} . Hence,

ℎ𝑖𝑗 represents the probability of the index 𝑗 to be in the i-th

position in the selected individuals. ℎ𝑖𝑗 is added to a ε value

denoted as

 𝜀 =
𝑁

𝑛
𝐵𝑟𝑎𝑡𝑖𝑜 (12)

to control the pressure in sampling and to avoid individuals

with probability 0.

2.4. Node Based Coincidence Algorithm

NB-COIN [5] is a variation of coincidence algorithm

(COIN) [8] proposed by Wattanapornprom and

Chongstitvatana in 2013. It learns substructures from

absolute positions, similar to NHBSA. The matrix Hxy

represents the probability of y found in the absolute

position x. The update equation is

𝐻𝑥𝑦(𝑡 + 1) = 𝐻𝑥𝑦(𝑡) +
𝑘

(𝑛)
(𝑟𝑥𝑦(𝑡 + 1) − 𝑝𝑥𝑦(𝑡 + 1))

+
𝑘

(𝑛)2 (∑ 𝑝𝑥𝑗(𝑡 + 1)𝑛
𝑗=1 − ∑ 𝑟𝑥𝑗(𝑡 + 1)𝑛

𝑗=1) , (13)

where k denotes the learning step, n is the problem size, rxy

is the number of xy found in the better-group, and pxy is the

number of xy found in the worse-group. The incremental

and detrimental step is
𝑘

(𝑛−1)
, and the term

𝑘

(𝑛−1)2 (∑ 𝑝𝑥𝑗(𝑡 + 1)𝑛
𝑗=1 − ∑ 𝑟𝑥𝑗(𝑡 + 1)𝑛

𝑗=1) represents the

adjustment of all other Hxj, where 𝑗 ≠ 𝑥 and 𝑗 ≠ 𝑦.

 NB-COIN has a special characteristic, that is, it not only

learns from the better candidates but also learns from the

poorer candidates as well. After each population was

evaluated and ranked, two groups of candidates are

selected according to their fitness values: better-group and

worse-group. The better-group is selected from the top c%

of the rank and is used as a reward, and Hxy is increased for

every pair of xy found in this group. The punishment is a

decrease in Hxy for every pair of xy found in the worse

group of the bottom c% of the population rank.

C. Test Problems and Experimental Design

The list of products and their profit per piece were

randomly generated. The generated profits are ranged

between 5 to 15 currency units per piece. Then these profit

attributes were used to generate the capacity used for each

product such that producing the least profitable product

would utilize the most balance capacity in each working

process, while the random time were added according to

their profits. The capacities used by each processes are

ranged between 0.1 to 1 pieces per minute.

The ten problems of size 50, 75 and 100 orders were also

randomly generated according to the product and their

profits such that the less profitable products have more

chance to be ordered. Each order was generated from a log-

normal distribution with an underlying normal distribution

with mean 0 and standard deviation 1. The quantities for

each order were randomly generated using the range

between 1×1000 pieces and 12×1000 pieces. Each product

has to be processed through 5 parallel production units

which means that there are totally 5 processes × 5 parallel

machines for each processes. The maximum capacity were

set to two weeks. Each working day has eight working

hours plus extra two OT hours. The due dates of each order

were generated from a uniform distribution plus calculated

lead-time for each of the order. These parameters were

imitated from the existent manufactures from Thailand.

Therefore, the wage penalty for this problem was set to 300

baht and OT cost was set to 450 baht per worker per one

production unit per day.

To compare the results, each algorithm was given the

same population sizes and maximum number of

generations which are equal to the problem size × 2. The

probabilities of crossover and mutation of GA are equal to

0.8 and 0.2 respectively. The learning steps, k, of NB-

COIN is 0.05. The bias ratio, 𝐵𝑟𝑎𝑡𝑖𝑜, of NHBSA is 0.005.

The selection pressure of GA and NHBSA is 50% of the

whole population, while NB-COIN uses 25% of the top

ranks for rewards and 25% of the bottom ranks for

punishment. Test programs were coded in Lazarus and ran

on Mac OS 10.4 on Intel Pentium Core i5 2.50 GHz

processor with 4 GB of RAM.

The performances of GA and EDAs are compared in

terms of average of the best actual profits and percentage

of over and under capacity utilization.

III. RESULTS

 Table I compares the performance of the benchmark

algorithms. The capacity utilization is the wage penalty

already deducted from the actual profit. Figure 4 and 5

compare the gained profit and wage penalty in a problem

with 50 orders. Since the solutions of NB-COIN and

NHBSA were generated from generation to generation,

without keeping the elitists, the best solution in each

generation does not necessary increasing.

From the table I, it can be clearly seen that the node

based EDAs yield better results compared to GA with local

search. NB-COIN can find the best solution in every

benchmark as it can seek for sequences of subset order

which gain the best profits. In addition, NB-COIN can

utilize the full capacity of the working hours. It can also

find the set of profitable orders which could utilize more

OT capacity. However, from figure 4, NHBSA can find

better solutions than NB-COIN in the very beginning

generation. It can find competitive solutions with less

number of function evaluation. Unfortunately, NHBSA

was trapped in some pitfalls whereas it cannot combine the

solutions with higher profits such that satisfy the orders due

dates and capacity utilizations. The generated test problems

were design such that the lowest profitable product utilize

the most balanced capacity. On the other hand, the most

Fig. 4. Performance of NB-COIN, NHBSA and GA in maximizing the

profit in the order acceptance with capacity balancing problems.

Fig. 5. Performance of NB-COIN, NHBSA and GA in minimizing the
wage penalty in the order acceptance with capacity balancing problems.

profitable product leave more capacity leftover. The

greedier profit maximization would results in the worse

capacity utilization.

The unique characteristic of NB-COIN is that it not

only learn from the good solutions, but also learn from the

poor solutions. This characteristic enables NB-COIN to

75000

95000

115000

135000

155000

175000

195000

1 51 101 151 201 251 301 351

p
ro

fi
t

generation

NB-COIN NHBSA GA

0

1000

2000

3000

4000

5000

6000

1 51 101 151 201 251 301 351

w
ag

e
p

en
al

ty

generation

NB-COIN NHBSA GA

find not only the good quality solutions, but also the diverse

of solutions [9], which is the fundamental characteristic to

solve multimodal and multi-objective problems. The

incremental learning method enables NB-COIN to

maintain the high potential substructure to be composed.

NB-COIN simply estimated the sequence of the accepted

orders in which the good sequences of orders may be

conflict with each other.

IV. CONCLUSION

 Node based EDAs have proved themselves as the

competitive procedure in solving the combinatorial

problems. This article propose an innovative adaptation of

node based EDAs to solve the order acceptance problem in

which the solution string are sub-sequences of the all given

jobs. From the empirical study, NB-COIN, which is a node

based incremental learning method, is a competitive

algorithm to solve this problem.

TABLE I

PERFORMANCE OF GA, NHBSA AND NB-COIN IN ORDER ACCEPTANCE WITH CAPACITY BALANCING PROBLEMS

problem

size

GA+LS NHBSA NB-COIN

profit

(baht)

% under

capacity

% over

capacity

profit

(baht)

% under

capacity

% over

capacity

profit

(baht)

% under

capacity

% over

capacity

50 orders 143303 12.8 0 154378 9.56 0 188586 0 3.49

75 orders 153556 12.2 0 163649 8.43 0 195075 0 5.67

100 orders 164657 11.4 0 178939 7.34 0 213732 0 6.78

REFERENCES

[1] S.A. Slotnick ,2011. “Order acceptance and scheduling: A

taxonomy and review”, European Journal of Operational

Research 210(3), pp.527-536,2011

[2] F.H. de B. Harris ,J.P. Pinder “A revenue management

approach to demand management and order booking in

assemble-to-order manufacturing” , European Journal of

Operations Management 13(4), pp. 299–309, 1995

[3] A.J. Kleywegt, J.D.Papastavrou, 2001. “The dynamic and

stochastic knapsack problem with random sized items.”

Operations Research 49 (1), pp.26–41.,2001

[4] X.L. Zhong, J.W. Ou, G.Q. Wang “Order acceptance and

scheduling with machine availability constraints” European

Journal of Operational Research 232, pp.435–441,2014

[5] K. Waiyapara, W. Wattanapornprom, P. Chongstitvatana,

“Solving Sudoku Puzzles with Node Based Coincidence

Algorithm” in Proc. of International Joint Conference on

Computer Science and Software Engineering (JCSSE 2013),

2013.

[6] W .Wattanapornprom, T.K. Li, W.Wattanapornprom

,P.Chongstitvatana “Application of Estimation of

Distribution Algorithms for Solving Order Acceptance with

Weighted Tardiness Problems ” Industrial Engineering and

Engineering Management (IEEM), 2011 IEEE International

Conference on. IEEE, 2011.

[7] G. Syswerda, “Schedule Optimization Using Genetic

Algorithms” in A Handbook of Genetic Algorithms, 1991.

[8] W. Wattanapornprom, P. Olanviwitchai, P. Chutima, and P.

Chongstitvatana, “Multiobjective combinatorial optimisation

with coincidence algorithm,” in Proc. of IEEE Congress on

Evolutionary Computation (IEEE CEC 2009), pp. 1675-82,

2009.

 [9] K Waiyapara, P Chongstitvatana, "Solving Multimodal

Problems by Coincidence Algorithm." in Proc. of

International Joint Conference on Computer Science and

Software Engineering (JCSSE 2012), 2012.

http://www.sciencedirect.com/science/article/pii/0272696395000291
http://www.sciencedirect.com/science/article/pii/0272696395000291
http://www.sciencedirect.com/science/journal/02726963/13/4

