
IEICE Electronics Express, Vol.*, No.*, 1–6

3DFTL: A Three-Level Demand-
Based Translation Strategy for
MLC Flash Device

Peera Thontirawong1a), ChundongWang2, Weng-Fai Wong3,
Mongkol Ekpanyapong4, and Prabhas Chongstitvatana1b)

1 Faculty of Engineering, Chulalongkorn University

Phaya Thai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
2 Data Storage Institute, Agency for Science, Technology & Research

5 Engineering Drive 1, Singapore 117608, Singapore
3 School of Computing, National University of Singapore

13 Computing Drive, Singapore 117417, Singapore
4 School of Engineering and Technology, Asian Institute of Technology

Km. 42, Paholyothin Highway, Klong Luang, Pathumthani 12120, Thailand

a) peera.t@student.chula.ac.th

b) prabhas@chula.ac.th

Abstract: 3DFTL is a demand-based flash translation layer (demand-

based FTL) that can withstand caching data loss due to unexpected

events such as power-loss. Its mapping table in the flash memory is

designed with the capabilities of being instantaneously updated with

zero additional write operations. Moreover, the average cache miss

penalty of 3DFTL is also lower than previous demand-based FTLs. As

a result, not only the mapping table of 3DFTL guarantees data consis-

tency, but 3DFTL also shows 14.33% decrease in terms of the average

system response time comparing with the DFTL.

Keywords: flash memory, MLC, FTL, cache, three-level, compression

Classification: Storage technology

References

[1] D. Ma, J. Feng and G. Li: ACM Comput. Surv. 46 (2014) 36.

[2] A. Gupta, Y. Kim and B. Urgaonkar: ASPLOS (2009) 229.

[3] Micron Technology: MT29F64G08CBAA datasheet (2009)

http://www.micron.com.

[4] Storage Performance Council: Traces (2007)

http://www.storageperformance.org.

[5] D. Narayanan, A. Donnelly and A. Rowstron: Trans. Storage 4 (2008) 10.

[6] Z. Qin, Y. Wang, D. Liu and Z. Shao: RTAS (2011) 157.

[7] P. Thontirawong, M. Ekpanyapong, and P. Chongstitvatana: ICSEC

(2014) 108.

1 Introduction

As flash memory outperforms ferromagnetic materials on access latency,

shock resistance, and power consumption, it is more preferred for data stor-

1



IEICE Electronics Express, Vol.*, No.*, 1–6

age of computer systems. It can be utilized in many devices, for instance,

USB drives, solid-state drives, or even the embedded storage of smartphones.

However, the NAND flash memory has several limitations [1]. E.g., a page,

the smallest operable unit, has to be erased before reprograming. Since the

smallest erasable unit is a block of pages, an out-of-place update is more

feasible than an in-place update. The lifespan of a flash memory is limited

by program/erase (P/E) cycles, and this limit is lowered with the MLC tech-

nique or a smaller fabrication process. As a consequence, a flash translation

layer (FTL) is required for handling these limitations. An FTL enables out-

of-place update by deploying address translation. It converts a logical page

number (LPN), which is referred to by the file system, to a physical page

number (PPN) of a flash memory. Since a page is hundreds times smaller

than a block, performing address translation at the page-level is necessary

for lowering P/E cycles.

An FTL that offers the page-level address translation is called a page-level

FTL [1]. A page-level FTL is found on a page-level mapping table (PMT).

However, PMT is huge and takes spacious SRAM capacity. In order to save

the SRAM space, a demand-based FTL was proposed [2]. A demand-based

FTL swaps the enormous PMT between SRAM and flash pages. These pages

are called translation pages and can be located by a smaller mapping table

that resides in SRAM. An address translation is done by a two-level process.

The first level is getting the translation page number from the small table

in SRAM, and the second level retrieves the PPN from the read translation

page. The retrieved PPN is cached in SRAM for quick reference. The cache is

managed by the write-back policy in order to lower program operations, but

the delay of the translation page update makes the whole update become

a non-atomic operation. Consequently, an inconsistency problem between

data pages and translation pages is arisen. This problem is very important

for an FTL because the flash memory is vastly employed in mobile devices

that have many unexpected events, for example, power-loss. The FTL has

to tolerate such and ensures correctness of data locations.

In this paper, we propose a novel demand-based FTL named 3DFTL.

Without translation pages, updating data does not require additional page

programing; hence, it is inconsistency-free. The cache miss ratio of 3DFTL

is kept low by spatial locality exploitation. In addition, omitting translation

page programing also decreases the maximum cache miss penalty, which in

turn improves the average system response time.

2 Demand-Based Three-Level Address Translation

3DFTL is a page-level FTL with a cache for the mapping table. Typically,

demand-based FTLs reduce the spatial requirement of SRAM by moving

PMT to data areas of flash memory pages, which in turn causes the inconsis-

tency problem. To overcome this obstacle, 3DFTL places the PMT entries in

the spare area of the pages that store their corresponding data instead. As

both data and mapping information are stored in the same page, updating

2



IEICE Electronics Express, Vol.*, No.*, 1–6

is considered as an atomic operation.

Since the spare area is much smaller than the data area, PMT demands

more pages for storing. Adopting the two-level address translation, as same as

typical demand-based FTL, will result in large global mapping table (GMT),

which resides in SRAM. In order to save precious SRAM capacity, 3DFTL

decreases the number of GMT entries by inserting an intermediate mapping

table (IMT) between GMT and PMT. In other words, 3DFTL employs three-

level address translation via GMT, IMT, and PMT. IMT entries are also

placed in the spare area of pages along with PMT entries.

In the first level of address translation, GMT maps an LPN to the PPN

of the corresponding IMT entry, and then the IMT entry points to the PMT

entry in the second level. Consequently, the PPN of the data, which is kept

in PMT, can be retrieved in the third level. Since two read operations are

involved, one for an IMT entry and another for a PMT entry, the address

translation could take longer time. However, the second read operation can

be omitted if the required PMT entry is in the same page as the retrieved

IMT entry. In other words, packing more PMT entries in one page can

decrease the number of read operations. Due to the spatial locality of data

write requests, the most significant bits (MSBs) of PPNs of nearby LPNs are

having high likelihood of repetition. 3DFTL takes advantage of this property

by employing a compression technique in order to make room for more PMT

entries. A PPN, which is the content of IMT and PMT entry, is split into

two parts: index (MSBs) and offset. A duplicated index is omitted from the

spare area; hence, extra PPNs can be stored.

As illustrated in Fig. 1, every spare area has a compression flag for indi-

cating the format of its metadata. In this example, PPN9 is uncompressed

while PPN6 and PPN11 are compressed. Both formats contain an LPN, IMT

entries, and PMT entries; however, a compressed format can have more PMT

entries. An uncompressed format keeps its contents unaltered since it is used

in case of very low compressibility to ensure mapping integrity, while a com-

pressed format stores them as a collection of distinct indices and several pairs

of index position and offset. The creation of a compressed metadata begins

with splitting every PMT entry that associated with the same GMT entry

into index and offset. Then, a PMT entry is replaced with the related IMT

entry until every distinct index can be packed into the compressed format.

Since the PPN of a page has to be known before accessing, keeping it in the

spare area is unnecessary. Therefore, the PPN of the compressing metadata

will be replaced by its LPN, which is indispensable for garbage collection

and recovery, in the next step. The LPN is also split into an index and an

offset, but the index is the least significant bits (LSBs). After substituting

the PPN with the LPN, the last step is sorting the indices in chronological

order so that IMT entries, which always equal to their latest PMT entries,

can be identified. Furthermore, the index of the LPN always holds at the

first position. Combining with the fact that offsets are ordered by the LSBs

of LPN, the LPN of the compressed metadata can be recomposed.

Another important component of 3DFTL is a cache of PMT called CMT.

3



IEICE Electronics Express, Vol.*, No.*, 1–6

1 7 1 4

Valid

Flag

25 30

IMT Position

0

IMT0 IMT1

1 6 6 536 910
6 20

1 6 11 536 911

WRITE

Data = “C”, LPN = 145

(GMT36, IMT0, PMT1)

36 9

GMT
1 16 0 (0,2) (1,2) (0,1) (1,0)

IMT0 IMT1
Index

Compression Flag

0 6 5 9147

1 17 1 (1,2) (0,2) (1,1) (0,1)

“A”

“B”

“C”

ECC

ECC

ECC

Flash Memory

Data Area Spare Area

PPN6

PPN9

PPN11

11

CMT

1

2

3

4

5

6

7
8

9

LPN=144

LPN=145

PMT0 PMT0PMT1 PMT1

PMT0IMTLPN PMT1

PMT0 PMT1GMT

Fig. 1. The example of 3DFTL address translation.

The objective of CMT is to accelerate the address translation by exploiting

temporal and spatial locality. A cache lines resembles an extracted com-

pressed metadata, except that IMT entries are pointers to their latest PMT

entries. Hence, each cache line has sufficient information for generating either

a compressed or uncompressed metadata without accessing the flash memory.

An example of address translation is illustrated in Fig. 1. We assume

that, firstly, both LPN and PPN are 8-bit. Secondly, an LPN can be broken

into addresses of 6-bit GMT, 1-bit IMT, and 1-bit of PMT. In other words,

each GMT entry has two IMT entries, and each IMT entry has two PMT

entries. Lastly, each compressed metadata is limited to only two distinct

indices. In the beginning of a request for writing C at LPN145 (GMT36,

IMT0, and PMT1), 3DFTL searches for GMT36 in CMT and the lookup

results in a cache miss. GMT25 is selected as a victim by LRU policy and

can be evicted immediately because of write-through policy. Since the PPN

of LPN145 has not been cached, a three-level address translation is required.

The IMT entries of GMT36 are located to be in the spare area of PPN9

according to GMT in step 2. PPN9 is read in step 3 and will be cached in

step 4. However, the PPN9 metadata is uncompressed; it does not contain

all PMT entries associated with GMT36. CMT will store the IMT value in

place of the missing PMT entries. As the LPN of this page is 147 (GMT36,

IMT1, PMT1), two PMT entries in PPN9 belong to IMT1. In other words,

the PPN of IMT1 is 9, and the PPN6 in the IMT field belongs to IMT0.

Since the PMT entries of IMT0 is in another page, only the second level of

the address translation, accessing IMT, can be done. Next, PPN6 is read

for the PMT entries of IMT0 in step 5. The PPN6 metadata is compressed.

This page is PMT0 in IMT0 according to the first index, which is LSBs of

the LPN. Hence, the LPN is 144 and the PMT entries are 6, 2, 5, and 0 after

substituting the first index and the offset of PMT0 in IMT0 by the index and

offset of the current PPN6. In this step, the PPN of LPN145 is known to be

2. The PMT entries of IMT0 will be merged to the cache line of GMT36 in

step 6. In order to update LPN145, PPN2 will be invalidated and replaced

by PPN11, an empty page, in step 7. In step 8, the updated cache line of

GMT36 is compressed and written along with data C to PPN11. Finally,

the record 36 of GMT is updated according to the modification.

4



IEICE Electronics Express, Vol.*, No.*, 1–6

3 Evaluation

The experiments were conducted by simulating an 8GB MLC NAND flash

memory [3] with following parameters. It has 4096 blocks of 256 pages. The

data area of a page is 8192B while the spare area is 448B. However, only 112B

are usable because of ECC. A page read, a page program, and a block erase

operations take 75µs, 1300µs, and 3800µs, respectively. The data transfer

rate is limited to 50MB/s. Benchmarks from SPC [4] and MSRC [5] were

used for performance evaluation. 3DFTL will be compared against DFTL [2],

CDFTL [6], and SCFTL [7]. DFTL is the baseline of demand-based FTLs

while CDFTL added the second-level cache in order to exploit spatial locality.

SCFTL is a high performance FTL that optimized for spatial locality and

large page size. The SRAM sizes of 3DFTL, DFTL, CDFTL, and SCFTL

were configured to 96.02KB, 101.00KB, 99.16KB and 101.19KB, respectively.

The GMT of 3DFTL takes 64KB because few IMT and PMT entries can be

packed into a spare area, and only 32KB is left for the CMT. In other FTLs,

their GMTs are only about 2KB, and their CMTs are over 96KB.

3.89 

1 

1.25 

1.5 

1.75 

2 

N
o

rm
al

iz
e

d
 A

ve
ra

ge
 S

ys
te

m
 R

e
sp

o
n

se
 T

im
e

 DFTL CDFTL SCFTL 3DFTL 

Fig. 2. The normalized average system response times.

As shown in Fig. 2, the average system response time of 3DFTL is the

best comparing with other techniques even though its cache size is about

one third of the others. The average system response time of 3DFTL is

14.33%, 23.67%, and 2.25% lower than DFTL, CDFTL, and SCFTL, respec-

tively. Besides the low cache miss rate, which is caused by the spatial locality

exploitation, the low cache miss penalty is also a major contributor for en-

hancing the performance. The maximum cache miss penalty of 3DFTL is

only two read operations in the worst case. Owing to the compression, the

worst case rarely occurs as shown in Fig. 3. On the contrary, the cache miss

penalty of other FTLs may include updating a translation page. Since a page

programing itself is over ten times slower than reading, the cache miss penalty

is considerably high. Furthermore, it may trigger a garbage collection that

requires even longer time.

An impact of cache miss penalty is clearly shown in Financial1 bench-

5



IEICE Electronics Express, Vol.*, No.*, 1–6

0.17% 0.08% 

50% 

60% 

70% 

80% 

90% 

100% 

DFTL CDFTL SCFTL 3DFTL 

P
e

rc
e

n
ta

ge
 o

f 
A

cc
e

ss
e

s Cache Miss 
(Penalty = READ & WRITE) 

Cache Miss 
(Penalty = READ x 2) 

Cache Miss 
(Penalty = READ) 

Cache Hit 
(No Penalty) 

Fig. 3. The percentage of address translation cost.

mark that contains write-intensive requests. CDFTL, which has few large

cache lines, exhibits very high overall cache miss penalty since 46.04% of its

cache misses needs to update translation pages. As a result, CDFTL is dras-

tically slow even though its cache miss ratio is very low. Moreover, DFTL

and SCFTL are also subject to high miss penalty during very stressing cache

accesses. However, our proposed FTL, 3DFTL, maintains low cache miss

penalty. Regardless of smaller cache size, 3DFTL outperforms other FTLs

and even surpasses, the high performance, SCFTL.

As previously stated, 3DFTL not only solves the inconsistency problem,

but also enhances the performance. In addition, 3DFTL provides better flash

space utilization since it does not occupy special pages for the mapping table.

For this reason, 3DFTL shows slight improvement in terms of P/E cycles,

which also means prolonging flash memory lifetime.

4 Conclusion

In this paper, a novel demand-based FTL named 3DFTL is proposed. It does

address translation at the page-level and employs a cache of the mapping ta-

ble like other demand-based FTLs. Differently, 3DFTL gets rid of translation

pages by utilizing the spare areas of flash memory pages. Since the mapping

information and data are simultaneously stored, the inconsistency problem

is creased to exist; hence, fault tolerance is improved. However, keeping the

locations of the page-level mapping table that stored in many little spare

areas demands large SRAM. Thus, the three-level address translation is re-

quired for controlling SRAM size. The compression and caching techniques

have been applied in order to exploit the spatial locality. The average cache

miss penalty is very low owing to zero explicit cache write-back operations.

To sum up, 3DFTL is an economical inconsistency-free high-performance

demand-based FTL. 3DFTL is more suitable for managing the flash memory

in a high performance mobile device than other demand-based FTLs.

Acknowledgments

Peera Thontirawong is in RGJ Ph.D. program by TRF (PHD/0273/2549).

6


