EL@C[VOI’ZiCS IEICE Electronics Express, Vol.*, No.*, 1-6

EXp 3DFTL: A Three-Level Demand-
Based Translation Strategy for
MLC Flash Device

Peera Thontirawong'®, Chundong Wang?, Weng-Fai Wong?,
Mongkol Ekpanyapong?, and Prabhas Chongstitvatana'®
L Faculty of Engineering, Chulalongkorn University

Phaya Thai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand

2 Data Storage Institute, Agency for Science, Technology & Research

5 Engineering Drive 1, Singapore 117608, Singapore

3 School of Computing, National University of Singapore

18 Computing Drive, Singapore 117417, Singapore

4 School of Engineering and Technology, Asian Institute of Technology

Km. 42, Paholyothin Highway, Klong Luang, Pathumthani 12120, Thailand
a) peera.t@student.chula.ac.th

b) prabhas@chula.ac.th

Abstract: 3DFTL is a demand-based flash translation layer (demand-
based FTL) that can withstand caching data loss due to unexpected
events such as power-loss. Its mapping table in the flash memory is
designed with the capabilities of being instantaneously updated with
zero additional write operations. Moreover, the average cache miss
penalty of 3DFTL is also lower than previous demand-based FTLs. As
a result, not only the mapping table of 3DFTL guarantees data consis-
tency, but 3DFTL also shows 14.33% decrease in terms of the average
system response time comparing with the DFTL.

Keywords: flash memory, MLC, FTL, cache, three-level, compression
Classification: Storage technology

References

[1] D. Ma, J. Feng and G. Li: ACM Comput. Surv. 46 (2014) 36.
[2] A. Gupta, Y. Kim and B. Urgaonkar: ASPLOS (2009) 229.

[3] Micron Technology: MT29F64GO8CBAA datasheet (2009)
http://www.micron.com.
[4] Storage Performance Council: Traces (2007)

http://www.storageperformance.org.
[5] D. Narayanan, A. Donnelly and A. Rowstron: Trans. Storage 4 (2008) 10.
[6] Z. Qin, Y. Wang, D. Liu and Z. Shao: RTAS (2011) 157.
[7] P. Thontirawong, M. Ekpanyapong, and P. Chongstitvatana: ICSEC
(2014) 108.

1 Introduction

As flash memory outperforms ferromagnetic materials on access latency,

shock resistance, and power consumption, it is more preferred for data stor-

E Lectronics

IEICE Electronics Express, Vol.*, No.*, 1-6

age of computer systems. It can be utilized in many devices, for instance,
USB drives, solid-state drives, or even the embedded storage of smartphones.
However, the NAND flash memory has several limitations [1]. E.g., a page,
the smallest operable unit, has to be erased before reprograming. Since the
smallest erasable unit is a block of pages, an out-of-place update is more
feasible than an in-place update. The lifespan of a flash memory is limited
by program/erase (P/E) cycles, and this limit is lowered with the MLC tech-
nique or a smaller fabrication process. As a consequence, a flash translation
layer (FTL) is required for handling these limitations. An FTL enables out-
of-place update by deploying address translation. It converts a logical page
number (LPN), which is referred to by the file system, to a physical page
number (PPN) of a flash memory. Since a page is hundreds times smaller
than a block, performing address translation at the page-level is necessary
for lowering P/E cycles.

An FTL that offers the page-level address translation is called a page-level
FTL [1]. A page-level FTL is found on a page-level mapping table (PMT).
However, PMT is huge and takes spacious SRAM capacity. In order to save
the SRAM space, a demand-based FTL was proposed [2]. A demand-based
FTL swaps the enormous PMT between SRAM and flash pages. These pages
are called translation pages and can be located by a smaller mapping table
that resides in SRAM. An address translation is done by a two-level process.
The first level is getting the translation page number from the small table
in SRAM, and the second level retrieves the PPN from the read translation
page. The retrieved PPN is cached in SRAM for quick reference. The cache is
managed by the write-back policy in order to lower program operations, but
the delay of the translation page update makes the whole update become
a non-atomic operation. Consequently, an inconsistency problem between
data pages and translation pages is arisen. This problem is very important
for an FTL because the flash memory is vastly employed in mobile devices
that have many unexpected events, for example, power-loss. The FTL has
to tolerate such and ensures correctness of data locations.

In this paper, we propose a novel demand-based FTL named 3DFTL.
Without translation pages, updating data does not require additional page
programing; hence, it is inconsistency-free. The cache miss ratio of SDFTL
is kept low by spatial locality exploitation. In addition, omitting translation
page programing also decreases the maximum cache miss penalty, which in

turn improves the average system response time.

2 Demand-Based Three-Level Address Translation

3DFTL is a page-level FTL with a cache for the mapping table. Typically,
demand-based FTLs reduce the spatial requirement of SRAM by moving
PMT to data areas of flash memory pages, which in turn causes the inconsis-
tency problem. To overcome this obstacle, SDFTL places the PMT entries in
the spare area of the pages that store their corresponding data instead. As

both data and mapping information are stored in the same page, updating

E Lectronics

IEICE Electronics Express, Vol.*, No.*, 1-6

is considered as an atomic operation.

Since the spare area is much smaller than the data area, PMT demands
more pages for storing. Adopting the two-level address translation, as same as
typical demand-based FTL, will result in large global mapping table (GMT),
which resides in SRAM. In order to save precious SRAM capacity, 3DFTL
decreases the number of GMT entries by inserting an intermediate mapping
table (IMT) between GMT and PMT. In other words, 3DFTL employs three-
level address translation via GMT, IMT, and PMT. IMT entries are also
placed in the spare area of pages along with PMT entries.

In the first level of address translation, GMT maps an LPN to the PPN
of the corresponding IMT entry, and then the IMT entry points to the PMT
entry in the second level. Consequently, the PPN of the data, which is kept
in PMT, can be retrieved in the third level. Since two read operations are
involved, one for an IMT entry and another for a PMT entry, the address
translation could take longer time. However, the second read operation can
be omitted if the required PMT entry is in the same page as the retrieved
IMT entry. In other words, packing more PMT entries in one page can
decrease the number of read operations. Due to the spatial locality of data
write requests, the most significant bits (MSBs) of PPNs of nearby LPNs are
having high likelihood of repetition. 3DFTL takes advantage of this property
by employing a compression technique in order to make room for more PMT
entries. A PPN, which is the content of IMT and PMT entry, is split into
two parts: index (MSBs) and offset. A duplicated index is omitted from the
spare area; hence, extra PPNs can be stored.

As illustrated in Fig. 1, every spare area has a compression flag for indi-
cating the format of its metadata. In this example, PPN9 is uncompressed
while PPN6 and PPN11 are compressed. Both formats contain an LPN, IMT
entries, and PMT entries; however, a compressed format can have more PMT
entries. An uncompressed format keeps its contents unaltered since it is used
in case of very low compressibility to ensure mapping integrity, while a com-
pressed format stores them as a collection of distinct indices and several pairs
of index position and offset. The creation of a compressed metadata begins
with splitting every PMT entry that associated with the same GMT entry
into index and offset. Then, a PMT entry is replaced with the related IMT
entry until every distinct index can be packed into the compressed format.
Since the PPN of a page has to be known before accessing, keeping it in the
spare area is unnecessary. Therefore, the PPN of the compressing metadata
will be replaced by its LPN, which is indispensable for garbage collection
and recovery, in the next step. The LPN is also split into an index and an
offset, but the index is the least significant bits (LSBs). After substituting
the PPN with the LPN, the last step is sorting the indices in chronological
order so that IMT entries, which always equal to their latest PMT entries,
can be identified. Furthermore, the index of the LPN always holds at the
first position. Combining with the fact that offsets are ordered by the LSBs
of LPN, the LPN of the compressed metadata can be recomposed.

Another important component of 3DFTL is a cache of PMT called CMT.

E Lectronics

IEICE Electronics Express, Vol.*, No.*, 1-6

Flash Memory Compression Flag IMTO IMT1
Index PMTO__PMT1"["PMTO _PMTL')
T PPN6 “A” ECC1] 16 0 02 (12 | 01 (L0
G T [pPN=144 —7
® PN IMT PMTO PMT1
36,9 PPN9 “B” ECC[o] 147] 6 [5 9
11
[O) PPN11 e ECC[1] 17 D) 02 [@y (0.1)
@ T LPN=145 L)
@ Data Area Spare Area
WRITE CMT
Data = “C”, LPN = 145 1] 25 [o | 7 1 [o1 4 [3 I @
(GMT36, IMTO, PMT1) ® [6 ‘ 6 [1] 5 9 |
{ o 6 { 2 [=
[1] 36 1] 6 1 1] 5 9
Valid GMT @ ¥ “PMTO PMT1
Flag IMTO IMT Position IMT1

Fig. 1. The example of 3DFTL address translation.

The objective of CMT is to accelerate the address translation by exploiting
temporal and spatial locality. A cache lines resembles an extracted com-
pressed metadata, except that IMT entries are pointers to their latest PMT
entries. Hence, each cache line has sufficient information for generating either
a compressed or uncompressed metadata without accessing the flash memory.

An example of address translation is illustrated in Fig. 1. We assume
that, firstly, both LPN and PPN are 8-bit. Secondly, an LPN can be broken
into addresses of 6-bit GMT, 1-bit IMT, and 1-bit of PMT. In other words,
each GMT entry has two IMT entries, and each IMT entry has two PMT
entries. Lastly, each compressed metadata is limited to only two distinct
indices. In the beginning of a request for writing C' at LPN145 (GMT36,
IMTO, and PMT1), 3DFTL searches for GMT36 in CMT and the lookup
results in a cache miss. GMT25 is selected as a victim by LRU policy and
can be evicted immediately because of write-through policy. Since the PPN
of LPN145 has not been cached, a three-level address translation is required.
The IMT entries of GMT36 are located to be in the spare area of PPN9
according to GMT in step 2. PPNO is read in step 3 and will be cached in
step 4. However, the PPN9 metadata is uncompressed; it does not contain
all PMT entries associated with GMT36. CMT will store the IMT value in
place of the missing PMT entries. As the LPN of this page is 147 (GMT36,
IMT1, PMT1), two PMT entries in PPN9 belong to IMT1. In other words,
the PPN of IMT1 is 9, and the PPN6 in the IMT field belongs to IMTO.
Since the PMT entries of IMTO is in another page, only the second level of
the address translation, accessing IMT, can be done. Next, PPNG6 is read
for the PMT entries of IMTO in step 5. The PPN6 metadata is compressed.
This page is PMTO0 in IMTO according to the first index, which is LSBs of
the LPN. Hence, the LPN is 144 and the PMT entries are 6, 2, 5, and 0 after
substituting the first index and the offset of PMTO0 in IMT0 by the index and
offset of the current PPNG6. In this step, the PPN of LPN145 is known to be
2. The PMT entries of IMTO will be merged to the cache line of GMT36 in
step 6. In order to update LPN145, PPN2 will be invalidated and replaced
by PPN11, an empty page, in step 7. In step 8, the updated cache line of
GMT36 is compressed and written along with data C' to PPN11. Finally,
the record 36 of GMT is updated according to the modification.

E Lectronics

IEICE Electronics Express, Vol.*, No.*, 1-6

3 Evaluation

The experiments were conducted by simulating an 8GB MLC NAND flash
memory [3] with following parameters. It has 4096 blocks of 256 pages. The
data area of a page is 8192B while the spare area is 448B. However, only 112B
are usable because of ECC. A page read, a page program, and a block erase
operations take 7Hus, 1300us, and 3800us, respectively. The data transfer
rate is limited to 50MB/s. Benchmarks from SPC [4] and MSRC [5] were
used for performance evaluation. 3DFTL will be compared against DFTL [2],
CDFTL [6], and SCFTL [7]. DFTL is the baseline of demand-based FTLs
while CDFTL added the second-level cache in order to exploit spatial locality.
SCFTL is a high performance FTL that optimized for spatial locality and
large page size. The SRAM sizes of 3DFTL, DFTL, CDFTL, and SCFTL
were configured to 96.02KB, 101.00KB, 99.16KB and 101.19KB, respectively.
The GMT of 3DFTL takes 64KB because few IMT and PMT entries can be
packed into a spare area, and only 32KB is left for the CMT. In other FTLs,
their GMTs are only about 2KB, and their CMTs are over 96KB.

3.89
EDFTL OCDFTL EISCFTL m3DFTL

1.75 f

15

1.25

Normalized Average System Response Time

Fig. 2. The normalized average system response times.

As shown in Fig. 2, the average system response time of 3DFTL is the
best comparing with other techniques even though its cache size is about
one third of the others. The average system response time of 3DFTL is
14.33%, 23.67%, and 2.25% lower than DFTL, CDFTL, and SCFTL, respec-
tively. Besides the low cache miss rate, which is caused by the spatial locality
exploitation, the low cache miss penalty is also a major contributor for en-
hancing the performance. The maximum cache miss penalty of 3DFTL is
only two read operations in the worst case. Owing to the compression, the
worst case rarely occurs as shown in Fig. 3. On the contrary, the cache miss
penalty of other FTLs may include updating a translation page. Since a page
programing itself is over ten times slower than reading, the cache miss penalty
is considerably high. Furthermore, it may trigger a garbage collection that
requires even longer time.

An impact of cache miss penalty is clearly shown in Financiall bench-

E Lectronics

IEICE Electronics Express, Vol.*, No.*, 1-6

100% - M0.17% W 0.08%

B Cache Miss
90% -+ (Penalty = READ & WRITE)

80% - Cache Miss
(Penalty = READ x 2)

0, -
70% Cache Miss

60% *724 - (Penalty = READ)

O Cache Hit
(No Penalty)

Percentage of Accesses

50%

DFTL CDFTL SCFTL 3DFTL

Fig. 3. The percentage of address translation cost.

mark that contains write-intensive requests. CDFTL, which has few large
cache lines, exhibits very high overall cache miss penalty since 46.04% of its
cache misses needs to update translation pages. As a result, CDFTL is dras-
tically slow even though its cache miss ratio is very low. Moreover, DFTL
and SCFTL are also subject to high miss penalty during very stressing cache
accesses. However, our proposed FTL, 3DFTL, maintains low cache miss
penalty. Regardless of smaller cache size, 3DFTL outperforms other FTLs
and even surpasses, the high performance, SCFTL.

As previously stated, 3DFTL not only solves the inconsistency problem,
but also enhances the performance. In addition, 3DFTL provides better flash
space utilization since it does not occupy special pages for the mapping table.
For this reason, 3DFTL shows slight improvement in terms of P/E cycles,
which also means prolonging flash memory lifetime.

4 Conclusion

In this paper, a novel demand-based FTL named 3DFTL is proposed. It does
address translation at the page-level and employs a cache of the mapping ta-
ble like other demand-based FTLs. Differently, 3DFTL gets rid of translation
pages by utilizing the spare areas of flash memory pages. Since the mapping
information and data are simultaneously stored, the inconsistency problem
is creased to exist; hence, fault tolerance is improved. However, keeping the
locations of the page-level mapping table that stored in many little spare
areas demands large SRAM. Thus, the three-level address translation is re-
quired for controlling SRAM size. The compression and caching techniques
have been applied in order to exploit the spatial locality. The average cache
miss penalty is very low owing to zero explicit cache write-back operations.
To sum up, 3DFTL is an economical inconsistency-free high-performance
demand-based FTL. 3DFTL is more suitable for managing the flash memory
in a high performance mobile device than other demand-based FTLs.

Acknowledgments

Peera Thontirawong is in RGJ Ph.D. program by TRF (PHD/0273/2549).

