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Abstract. This paper proposes a Node-Based Coincidence Algorithm
(NB-COIN) for the permutation flowshop scheduling problems (PFSP)
aimed at Makespan minimization. For almost half a century, a variety
of complex algorithms have been introduced to solve the problems. Nev-
ertheless, these algorithms will be useless if they fail to implement in
practice where computational time and complexity of algorithm become
an important issue of concern. NB-COIN is proved to be an effective
algorithm and it is extremely fast. Based on the bench-mark data sets
of Taillard, the presented algorithm provides acceptable solutions within
a very short period of time. More importantly, the results generated by
NB-COIN are also better than other well-known algorithms in consider-
ation.
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1 Introduction

In the highly competitive industrial market, production speed and operation cost
become important factors for a manufacturing process. Producing wide variety
of goods using the same production line is a key solution for many manufacturing
companies. This technique is called flowshop.

In the permutation flow shop scheduling problem (PFSP), there are n jobs
and m machines. All jobs have to be processed on every machine in the same
order. Over the production period, all machines are ready and only one job can
enter to the machines at a specific time. The pre-emption and interruption is
not allowed. In order to reduce the search space, passing any jobs is prohib-
ited in PFSP. In general, the performance is measured by two main objectives,
makespan minimization or flowtime minimization. The makespan criterion is
well-known to lead to rapid turn-around of jobs, uniform utilization of resources
and minimization of work-in-process inventory.

The permutation flow shop scheduling problem (PFSP) has become an in-
teresting research topic for many researchers since Johnson [1] introduced it in
the 1950s. Later, the complexity of PFSP is proved to be NP-hard by Garey
et al [2] and Rinnooy Kan [3]. Many heuristic optimization methods have been
developed to achieve high quality solutions in a reasonable computational time
such as Nawaz et al. [4], Palmer [5], Campbell et al. [6], Dannenbring[7], Tail-
lard [8], Framinan et al. [9] and Framinan and Leisten [10]. The results given



by the most powerful heuristics, NEH, proposed by Nawaz et al. [4] are still
far, at almost 7%, from the optimal value. Using only heuristics may not be
capable enough to reach the optimum solution for the PFSP, many researchers
developed more complex methods, metaheuristics, such as tabu search [11-14],
genetic algorithms (GAs) [15-16], ant colony optimization [17-19], particle swarm
optimization [20], iterated local search (ILS) [21] or the Estimation of Distribu-
tion Algorithm (EDA) [22]. Although these methods provide better results, they
need to trade-off with long computational time or a lot of resources. Later, the
algorithms are even enhanced by integrating two or more metaheristics, called
the hybrid metaheuristics. This technique was used by G.I. Zobolas [23] and H.
Liu [24] to achieve optimal solution. However a simple algorithm that can pro-
vide a reasonable solution in a short period of time is more practical in the real
world. Node-Based Coincidence Algorithm (NB-COIN) is a new metaheuristic
tool improved from Coincidence Algorithm (COIN) [25]. This method is proved
to be an effective algorithm for flowshop scheduling problems in terms of total
flow time minimization[26]. Moreover, NB-COIN is easy to implement, using
very few user-defined parameters.

This paper is organized as follows: Section 2 illustrates the Permutation Flow-
shop Scheduling Problem. Section 3 determines the related work. The Node-
Based Coincidence Algorithm (NB-COIN) is described in Section 4. Section 5
presents the computational result and the conclusion is shown in Section 6.

2 Permutation Flowshop

The makespan is the finished time of the last job in the schedule. The makespan
minimization is described as n/m/P/Cmax. It consists of a set J of n jobs,
J = {j1, . . . , jn}, and set K of m machines, K = {k1, . . . , km}. Let tk,j denotes
as the processing times of job J on machine K and C(k, j) be the completion
time of job J on machine K. Thus, C(k, j) can be calculated as follows:

C(1, 1) = t(1,1) (1)

C(1, j) = C(1, j − 1) + t1,j where j = 2, . . . , n (2)

C(k, 1) = C(k − 1, 1) + tk,1, where k = 2, . . . ,m (3)

C(k, j) = max{C(k, j − 1), C(k − 1, j)}+ tk,j (4)

3 The Related Work

In this section, a brief overview of four well-known methods for the PFSP is
provided. In addition, the strength and weakness of these algorithms are pointed
out. The methods include three heuristics; the NEH [4], the constructive greedy
(CG)and the stochastic greedy (SG) [29], two metaheuristics; ant colony system
[18] and the hybrid metaheuristic by G.I. Zobolas [23].

The performance of the NEH Heuristic (NEH) [4] has been confirmed by
Park et al [27] since 1984. In addition, Turner and Booth [28], and Taillard [8],



also came to a conclusion that NEH is an efficient tool for minimizing makespan
in flow shop scheduling problem. The main idea of this heuristic is that the
high priority should be given to the job with more total processing time on all
machines. There are 3 main steps of NEH. Step 1 order the jobs by decreasing

sums of processing time, Tj =
m∑

k=1

Pkj where Pkj defines as the processing time

of job j in machine i. In step 2, schedule the first two jobs to minimize partial
makespan. Finally, The Kth jobs are inserted individually at the position with
the shortest makespan.

The greedy concept has been adapted to the PFSP by M. Ancau [29]. The
author proposed two heuristics; the constructive greedy heuristic (CG) and the
stochastic greedy heuristic (SG) and compares them against the NEH. As the re-
sult, these algorithms provide a better result in the makespan criterion, however
they consume longer computational time than the well-known NEH heuristic.

The constructive heuristic algorithm (CG) generates a job’s sequence using
two lists called job list and optimal schedule. A job list consist of n elements
(j1, j2, ..., jn). Firstly, a pair of jobs from the job list will be selected and arranged
to find the minimum completion time passing to the optimal schedule. Then,
repeat the first step, however either increase the selected elements to k(n−k−1),
k is the number of rounds, or pass to the optimal schedule in the relative position
that minimize completion time.

In the stochastic heuristic (SG), the job list consists of n random job’s el-
ements. The first pair from the job list will be selected and finds an optimal
completed time. Other jobs in the job list will be selected individually and find
the best position in the optimal schedule.

K.C. Ying presented an Ant Colony System (ACS) [18] for the PFSP. This
method was first introduced by Dorigo [30]. It is inspired from real ant behavior,
finding shortest path using the relevant pheromones. The algorithm consists of
four steps. In the first step, the method generates a set of artificial ants. Each
ant employs a stochastic greedy to create a path (in the PFSF is job’s sequence).
The amount of pheromone is updated when the ants build a tour. Then, after
all ants have completed their paths, the pheromones are modified again. The
ACS is an effective algorithm that generates a solution within a small amount
of time. Nevertheless, this method is sensitive to the user-defined parameters.

The hybrid metaheuristic was proposed by G.I. Zobolas[23] in 2009. This
method combines different techniques and concepts from four construction heuris-
tics and two metaheuristics to expand the solution space search and overcome
the limitation of a single metaheuristic. The combination includes the heuristic
proposed by Nawaz et al[4], Campbell et al. [6], Palmer’s [5], Gupta’s [32], and
the metaheuristic algorithms such as the well-established GA [15-16] and vari-
able neighbourhood search (VNS) [31]. In the initialization stage, the algorithm
employs four well-known heuristics (NEH, Gupta, CDS, and Palmer) to generate
the population. Then, the GA that adopts a special variation of the operator
from Murata et al. [33] is applied for improving the population. In the third step,
the VNS is used to avoid the trap of local optima. Finally, the populations are
updated by replacing the old population with the new one. The results obtained



from this algorithm are achieved all optimum solution when the number of job
are lower than 50.

4 Node Based Coincidence Algorithm

NB-COIN is a permutation based Estimation of Distribution Algorithm (EDA).
It generates solution strings in sequences, ensuring that only valid permutations
are sampled. It uses a data structure called coincidence matrix H to model
substructures from absolute positions. The matrix Hxy represents the probability
of y found in the absolute position x. The update equation of NB-COIN is

Hxy(t+1) = Hxy(t)+
k

n
(rxy(t+1)−pxy(t+1))+

k

(n− 1)2

 n∑
j=1

pxj(t + 1)− rxj(t + 1)


(5)

where k denotes the learning step, n is the problem size, rxy is the number
of xy found in the good solutions, and pxj is the number of xy found in the

not-good solutions. The term k
(n−1)2

(
n∑

j=1

pxj(t + 1)− rxj(t + 1)

)
represents the

adjustment of all other Hxj where j 6= x and j 6= y.
After each population was evaluated and ranked, two groups of candidates

are selected according to their fitness values: better-group and worse-group. The
better-group is selected from the top c% of the rank and is used as a reward,
and Hxy is increased for every pair of xy found in this group. The punishment
is a decrease in Hxy for every pair of xy found in the worse group of the bottom
c% of the population rank.

The pseudo code of NB-COIN is simplified as follows:

Step 1: Initialize the model

Step 2: Sample the population

Step 3: Evaluate the population

Step 4: Select candidates

Step 5: Update the model

Step 6: Repeat steps 2 to 5 until terminated.

5 Computational Result

The proposed algorithm, Node Based Coincidence Algorithm(NB-COIN), was
coded in C++ and run on MS Windows 7 using Intel Core i5 450M, 2.40GHz
and 4GB of RAM. 40 instances of Taillard benchmark[8] where n ∈ {20, 50} and
m ∈ {5, 10, 20} were selected and represented in four sets; 20×5, 20×10, 20×20
and 50×5 to determine the efficiency and performance of NB-COIN in the PFSP.
Each set consist of 10 instances. Moreover, the proposed algorithm was tested
according to two different criteria; computational time and performance.



5.1 Computational time

The CPU time obtained from NB-COIN were compared against the powerful
metaheuristics such as ant colony system [18] and the hybrid metaheuristic pro-
posed by G.I. Zobolas[23] in 2009 with the allocation of CPU time for 5, 15, 25
and 100 seconds to four problem sets; 20×5, 20×10, 20×20 and 50×5. In Table 1,
the results obtained from all groups of instances are summarized. The computa-
tional time of NB-COIN is superior when the number of jobs is twenty, especially
in the 20×5 Taillard instance. It is twice as fast as the hybrid metaheuristic and
the ACS in 20×5 problem. Furthermore, the speed of hybrid metaheuristic is
slower than NB-COIN by 5 and 15 seconds in 20×10 and 20×20 problems while
NB-COIN is slightly slower than the ACS by 3 seconds and 9 seconds. How-
ever, the computational speed of NB-COIN decreases when the number of jobs
exceeds 50.

Table 1. The computational speed

Instances
CPU time (Seconds)

Hybrid Metaheuristic ACS NB-COIN

20×5 10 11 5

20×10 20 12 15

20×20 40 16 25

50×5 25 44 100

5.2 The performance analysis

In this section, the solutions acquired from NB-COIN were tested on the Taillard
benchmark against the upper bound. Although NB-COIN achieved the upper
bound only in a few solutions, it is essential to mention that NB-COIN was run
on the PC. It finds the high quality solution very fast while usually the upper
bounds are generally generated by branch and bound techniques and run on
more powerful workstations for extended time periods.

To compare the quality of solutions, the percentage gap between the makespan
from our algorithm and the upper bound (UB) of Taillard. Each instance was run
5 times. To calculate the percentage gap, the equation is presented as follows:

Gap(%) =
Cmax − UB

UB
× 100 (6)

The results of three methods; NEH, CG and SG are adopted from the origi-
nal paper proposed by Nawaz et al. [4] and M. Ancau[29] and compared against
NB-COIN. Overall, we found that NB-COIN performs far better than the NEH
and the constructive greedy (CG) in all problem sizes while it is slightly supe-
rior compared to the stochastic greedy (SG) in the small size problem (20×5).



Moreover, NB-COIN provides a wide variety of solutions that share the same
quality.

Table 2 shows the result of Taillard’s 20×5 instance. NB-COIN not only
found many optimum solutions the average gap is also a lot lower than both
NEH and CG. Comparing with SG algorithm, the average gap is slightly higher.
However NB-COIN is better in terms of the number of good solutions.

Table 2. Performance comparison of Taillard’s 20×5 instances

Instance UB NEH CG SG NB-COIN
Gap%

NEH CG SG NB-COIN

Ta001 1278 1286 1286 1278 1294 0.626 0.626 0 1.252

Ta002 1359 1365 1367 1366 1363 0.442 0.589 0.515 0.294

Ta003 1081 1159 1141 1097 1090 7.216 5.550 1.480 0.833

Ta004 1293 1325 1358 1306 1304 2.475 5.027 1.005 0.851

Ta005 1235 1305 1301 1244 1244 5.669 5.344 0.729 0.729

Ta006 1195 1228 1224 1210 1210 2.762 2.427 1.255 1.255

Ta007 1239 1278 1264 1251 1251 3.148 2.018 0.968 0.968

Ta008 1206 1223 1268 1206 1206 1.410 5.141 0 0

Ta009 1230 1291 1277 1253 1253 4.959 3.821 1.870 1.870

Ta010 1108 1151 1144 1117 1120 3.880 3.250 0.812 1.083

Average 3.258 3.379 0.863 0.913

The quality of solutions in the 20×10 and 20×20 problem are shown in Table
3 and Table 4. Since the performance of CG and SG algorithm for the instance
where m ∈ {10, 20} are not reported by M. Ancau [29]; NB-COIN is solely tested
with the NEH. The results show that the average gap of NB-COIN is over three
times better than the NEH in both sizes of problem.

Table 3. Performance comparison of Taillard’s 20×10 instances

Instance UB NEH NB-COIN
Gap%

NEH NB-COIN

Ta011 1582 1680 1599 6.195 1.074

Ta012 1659 1729 1679 4.219 1.205

Ta013 1496 1557 1518 4.077 1.471

Ta014 1377 1439 1392 4.502 1.089

Ta015 1419 1502 1433 5.850 0.987

Ta016 1397 1453 1417 4.008 1.432

Ta017 1484 1562 1513 5.256 1.954

Ta018 1538 1609 1575 4.616 2.406

Ta019 1593 1647 1608 3.390 0.942

Ta020 1591 1653 1617 3.897 1.634

Average 4.601 1.419



Table 4. Performance comparison of Taillard’s 20×20 instances

Instance UB NEH NB-COIN
Gap%

NEH NB-COIN

Ta021 2297 2410 2323 4.919 1.132

Ta022 2099 2150 2119 2.430 0.953

Ta023 2326 2411 2349 3.654 0.989

Ta024 2223 2262 2242 1.754 0.855

Ta025 2291 2397 2314 4.627 1.004

Ta026 2226 2349 2243 5.526 0.764

Ta027 2273 2362 2300 3.915 1.188

Ta028 2200 2249 2235 2.227 1.591

Ta029 2237 2320 2276 3.710 1.743

Ta030 2178 2277 2200 4.545 1.010

Average 3.731 1.123

As seen in Table 5, NB-COIN performs very well in Taillard’s 50×5 instance.
It is clear that the SG provides slightly better results in this size of problem.
However, NB-COIN found more optimum solutions than SG and has a lower
average gap than both the NEH and CG algorithm. In addition, in each instance,
although the average gap of SG algorithm is slightly lower than NB-COIN, the
SG consumes more CPU time, at almost double.

Table 5. Performance comparison of Taillard’s 50×5 instances

Instance UB NEH CG SG NB-COIN
Gap%

NEH CG SG NB-COIN

Ta031 2724 2733 2761 2724 2724 0.330 1.358 0 0

Ta032 2834 2843 2889 2848 2848 0.317 1.941 0.494 0.494

Ta033 2621 2640 2674 2622 2640 0.725 2.022 0.038 0.725

Ta034 2751 2782 2782 2782 2771 1.127 1.127 1.127 0.727

Ta035 2863 2868 2908 2863 2863 0.175 1.572 0 0

Ta036 2829 2850 2863 2840 2835 0.742 1.202 0.389 0.212

Ta037 2725 2758 2781 2732 2739 1.211 2.055 0.257 0.514

Ta038 2683 2721 2780 2701 2704 1.416 3.615 0.671 0.783

Ta039 2552 2576 2595 2562 2565 0.940 1.685 0.392 0.510

Ta040 2782 2790 2787 2784 2782 0.287 0.180 0.072 0

Average 0.727 1.676 0.343 0.396

Overall, the quality of solutions as measured by gap averaging over all test
instances (Table 2-5) is 0.96% from the upper bound.



6 Conclusion

In this paper, we present a new method to solve the permutation flowshop
scheduling problem called the Node Based Coincidence Algorithm (NB-COIN).
This algorithm makes use of positive and negative knowledge to rapidly improve
the solution. The proposed method was tested on a set of 40 Taillard instances.
The experiment shows that the solution of NB-COIN is very close to the optimal
value, at only 0.96% from the upper bound on average. Moreover, the proposed
algorithm not only provides acceptable results very fast, it has few user-defined
parameters. Hence, NB-COIN is a highly appropriate method that is easy to ap-
ply to real world situations where lower computational time and higher quality
solutions are preferred.
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