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Abstract. Porosity is a major problem occurring in aluminium alloy casting. During the process of 

solidification, alloy would shrink and emit dissolving hydrogen causing porosity formation inside the 

solidified part which leads to mechanical properties degradation. This research aims to produce a 

formula to explain the resulting porosity with the initial chemical compositions and cooling rate. A 

mathematic model is, at first, inferred from previous researches to be a template function. Evolution 

Algorithms are utilized to generate inner polynomial parts and to find appropriate coefficients to fit the 

experimental data obtained from publications. The optimized function promisingly shows good fit to 

the problem domain demonstrating that the resulting function is an effective model to explain porosity 

formation behaviour.  

Introduction 

In the last few decades, aluminium has turned into an extremely popular metallic material especially 

its casting alloys. Porosity formation from casting process is one of the major problems since it can 

limit elongation and fatigue properties of the final product [1]. For the last few decades, there are many 

researches related to explanation or prediction of porosity formation in Al casting ranging from 

analytical models and chemical and thermodynamic relations to computer simulations of casting 

process that are able to predict formation of macroporosity precisely [2-4]. However, for 

microporosity, most models still have some limitations and are unable to overcome conditions found 

in industrial castings. Recently artificial neural networks (ANN) are applied to porosity prediction [5, 

6] which provided satisfactorily accurate predictive frameworks. Nevertheless, the models acquired 

from ANN training processes could be difficult to analyze the influences of variables. 

This study aims to create a formula to explain the tendency of porosity amount with chemical 

compositions and cooling rate as independent variables. Model of function is derived from [6] to leave 

only polynomial parts to be operated. The function is optimized to fit experimental data from Dash and 

Makhlouf [7] with utilization of genetic algorithm and differential evolution.  

Methodology 

Porosity formation — Porosity in aluminium casting alloy could be classified, by causes, into 2 main 

types [8]. The first one is shrinkage porosity which rises from significantly lower volume of solid alloy 

compare to what it is in liquid state. In other words, when alloy liquid goes through solidification 

process, shrinkage occurs. Without adequate feeding and pressure, it is certain to leave undesirable 

empty space. The other one is gas porosity. This type of porosity happens from solvent's ability to 

dissolve gases (hydrogen in particular for Al alloys) and the loss of alloy after it solidified resulting in 

emission of hydrogen gas to surrounding liquid. 

 

 



 

Template Function — According to [6], each hydrogen porosity and shrinkage porosity relies on a 

certain trend. For hydrogen porosity, the faster cooling proceeds, the less time for gas to diffuse toward 

pores. In other words, porosity should decrease with the higher cooling rate. To imitate the trend, the 

exponential decay function, Eq. 1, is the most suitable since it would not go below zero. 
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The shrinkage porosity, however, inclines in the opposite way since quick solidification can cause 

more formation of dendrites which resist the feeding flow and lead to formation of shrinkage porosity. 

Exponential growth function is actually applicable. Accordingly, the logistic function, Eq. 2, 

possessing the same growing manner without exceeding limit, gains more favour in this case. 
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In reality, both types of porosity should occur simultaneously. With a hypothesis of absolute 

independency between them, total porosity shall be the result of summing them up as in Eq. 3 where Pi 

are polynomials being responsible for adjusting the functions magnitudes and transformations and R is 

the cooling rate. 
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Function Generation and Optimization — Genetic algorithm (GA) [9] is used in conjunction 

with Differential Evolution (DE) [10] to generate the suitable form of the equation and its parameters 

that fit to the experimental data. Powers of each variable are serialized into a string of integers to serve 

as a chromosome for GA as well as parameters that are turned into a vector for DE as shown in Fig. 1. 

Fig. 2 demonstrates the flow of GA-DE to search for good fit polynomials of the function to 

experimental data. The process scheme is summarized, using the configurations in Table 1, as follow: 

1. Randomly create the first generation of function’s powers. 

2. Repeat all of the following steps for GA in order until any termination criterion are satisfied. 

3. Create a new generation of function powers by applying uniform recombination and uniform 

mutation. 

4. Each of the new generated functions must search for its proper parameters by utilizing DE. 

5. Once all of the functions in both population pool and offspring become aware of their relevant 

parameters, evaluate error of every single function and select only the best one to be the new 

generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Representation model 

 
 

Figure 2 Flow chart of GA-DE method 
 



 

Table 1 Algorithm configurations 
GA configuration DE configuration 

Representation : Integer, µ = 250, λ=75 Population : µ = 200 

Mutation : Uniform, pm = 0.3 Scale Factor : F = 0.85 

Recombination : Uniform Crossover Probability : Cr = 0.75 

Selection : Elitist Strategy : DE/rand/1 either-or-algorithm 

 

Experimental Data — The dataset used here is experimental data published by [7]. They provided 

96 samples of porosity percent results along with the relevant chemical compositions consisting of 

silicon, iron, copper, magnesium, manganese, strontium and titanium. Moreover, cooling rates are also 

displayed which is the important reason why this dataset is chosen as a main model. 

Results and Discussion 

The best function obtained from GA-DE is presented below, Eq. 4. 
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Fig. 3 illustrates the accuracy of the presented function to predict the total porosity percent in 

aluminium casting. A very good agreement is found between the predicted values and the measured 

values of all 96 training data [7], as shown in Fig. 3a, with the root-mean-square error (RMSE) of 0.05. 

In addition, it can be clearly seen in Fig. 3b that the predicted porosity promisingly shows good fit to 

the measured porosity of 9 validation data reported by Dinnis et al. [11]. The RMSE of the regression 

is ~0.1.  
 

 

Figure 3 The predicted values of porosity percent compared with the experimental values reported by  

(a) Dash and Makhlouf [7] and (b) Dinnis et al. [11]  
 

The prediction of total porosity as a function of cooling rate during solidification is depicted in  

Fig. 4. In the lower range of cooling rate (Fig. 4a), porosity decreases monotonically with greater 

cooling rate. It can be observed that porosity decreases substantially from ~1% to less than 0.5% when 

the cooling rate of 5.5 K/s is doubled. An increasing cooling rate would allow less time for hydrogen 

gas to diffuse towards the pores. As the growth of gas porosity is controlled by diffusion [3], this 

restriction inhibits the formation of gas porosity and thus leading to the reduction of total porosity. 

Similar phenomena have been reported in previous studies [12, 13].  

In the higher range of cooling rate (Fig. 4b), the volume fraction of porosity, on average, is 

significantly lower than that in the lower cooling rate range. Note the different scales in Fig.4a and  

Fig. 4b. Unlike the lower range, the total porosity is observed to increase with increasing cooling rate. 

Although an increasing cooling rate would decrease the amount of gas porosity as discussed earlier, 

the formation of shrinkage porosity is more pronounced in this range of fast cooling [14]. The rapid 

solidification causes a smaller secondary dendrite arm spacing (SDAS) which is attributes to the 



 

corresponding decrease in permeability. This will attribute to larger pressure drop and hence higher 

shrinkage porosity [6, 15]. It is worth noting that the optimum predicted cooling rate (valley shown in 

Fig. 4b) might still be not conclusive due to the large variation in alloy composition tested and the 

error associated with the porosity measurement. 
 

 

Figure 4  Predicted porosity and prior experimental data [7] as a function of cooling rate 
 

Fig. 5 exhibits the GA-DE prediction for the variation of porosity as a function of alloy 

composition. It is clearly shown in Fig. 5a that porosity formation increases with increasing Fe 

content. This can be attributed to the formation of iron-containing -intermetallics. The presence of 

these detrimental phase can increase the porosity content as they can cause flow blockage in the 

interdendritic channels [16, 17] and act as pore nucleation sites [13]. Silicon content has a small effect 

on the total porosity as seen in Fig. 5b. Previous work [7] have explored that Si can be beneficial to 

castability but could also promote porosity formation by forming intermetallic and eutectic phases. 

However, in this work, only slight change in porosity is observed with increasing Si content. Fig. 5c 

illustrates that higher level of Ti (i.e. more TiB2 grain refiner) gives less porosity. This is because TiB2 

particles can provide active nucleation sites for pores, leading to more even distribution of small pores 

[18]. The reduction in porosity may also be related to the delayed dendrite coherency point of the 

grain-refined alloy [7]. The effect of Fe:Mn ratio of the alloy on pore formation is shown in Fig. 5d. 

More porosity is predicted with increasing Fe:Mn ratio. This is in a good agreement with previous 

experimental study which reported that the Fe:Mn ratio should be maintained at 2:1 to neutralize the 

effect of iron-containing -intermetallics [19]. 
 

 
 

Figure 5 Contribution of alloy composition on percent porosity. 



 

Conclusion 

This research provides an alternative way for prediction of porosity formation in aluminium alloy 

casting by the application of evolutionary algorithms to generate predicting functions. The result 

function is capable of both the porosity percent prediction and the influence of compositions analysis. 

Because it provides the prediction results reasonably close to the ones in the training dataset and it also 

gives satisfying results after applying it to another dataset as well as the results from the influence of 

compositions analysis that agree with metallurgical theory. These abilities would allow industries to 

further optimize their production cost and time.  
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