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ABSTRACT 

In Evolutionary Computation, good substructures that are 

combined into good solutions are called Building Blocks.  In this 

context, Building Blocks are common structure of high-quality 

solutions.  This paper describes an algorithm that exploits building 

blocks (BBs) with Compact Genetic Algorithm (cGA) in order to 

solve difficult optimization problems. cGA is a second generation 

of Genetic Algorithm that contains the model of the solution in 

terms of probability vectors representing probability density 

function of solutions.  The main idea is to update the probability 

vectors as a group of bits that represents BBs thus avoiding the 

disruption of the BBs.  A comparison to the plain cGA is made. 

The experiments are carried out on Trap-function and TSP 

problems. The results show the effect of this heuristic. It is most 

effective when the problem instants have common structures that 

can be identify as Building Blocks. 
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1 INTRODUCTION 

Genetic Algorithms (GAs) has now become one of the most 

flexible techniques to solve complex optimization problems using 

the ideas of natural selection and genetics. The GA [9,14] is a 

simulation of the genetic state of a population of individuals. GA 

evolves candidate solutions to an optimization problem towards 

better solutions. The evolution starts from a population of 

randomly generated individuals, and happens in generations. In 

each generation, the fitness of every individual in the population 

is evaluated, multiple individuals are stochastically selected from 

the current population based on their fitness, and modified to form 

a new population. The cGA [12], an algorithm that mimics the 

order-one behavior of a simple GA with a given population size, 

selection rate under tournament selection and uniform crossover. 

The cGA reduces its memory requirements because it is not 

necessary to store n bits for each gene position. The cGA 

represents the population as a probability distribution over the set 

of solutions. It only needs to keep the proportion of ones (and 

zeros), a finite set of n numbers that can be stores with log2n bits. 

However, as the problem’s difficulty increase, higher selection 

rate must be used to produce new chromosomes that are as good 

as the ones already in the population. Higher selection pressure 

based on the cGA is used to solve soft-decision decoding 

effectively [6]. 

The example of GA-hard problem is trap function [1]. Trap 

function is an adversary function for studying BBs and linkage 

problems in GAs [11]. The general n-bit trap functions are defined 

as: 

 

Fn(b0….bn-1) = {
𝑓ℎ𝑖𝑔ℎ;               𝑖𝑓 𝑢 = 𝑛

𝑓𝑙𝑜𝑤 − 𝑢
𝑓𝑙𝑜𝑤

𝑛−1
    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

             (1) 

 

Where bi ∈ {0, 1}, u = ∑ 𝑏𝑖𝑛−1
𝑖=0 , and fhigh > flow. Usually, fhigh is set 

at n and flow is set at n-1. 

The reason this is called a GA-hard problem or deceptive 

problem is that the GAs gets rewarded incrementally for each 0 it 

adds to the problem, but the best solution consists of all 1s. In 

swapping genes between parents in the simple GA, it will often 

disrupt good combinations and the average fitness in the 

population decrease after crossover. The crossover operator mixes 

and also breaks the BBs because the cut point is chosen at random 

(see Fig. 1). Similarly, the order-1 probability represents the 

population as a probability distribution over the set of solutions. 

Yet, generating new solutions using probability distribution leads 

to poor solutions. That is, both the simple GA and the cGA, fail to 

produce new chromosomes that are as good as the ones already in 

the population. A building block crossover can be developed in 

the GA with the purpose that the crossover operator needs to 

understand related genes, and not break up the combinations they 

represent. A building block only swap whole solutions to sub-

problems, instead of single genes. 

 

  
Figure 1: The solutions are mixed by the crossover operator. 

The BBs are shadowed. The random cut point is selected and 

the tails of its two solutions are swapped to get new solutions. 

In case (A), the solutions are mixed while maintaining the 

BBs. In case (B), the BBs are disrupted. 

 

There are strategies in the GA literature use the bit-reordering 

approach to pack the dependent bits close together, for instance, 

inversion operator [11], messy GAs [10], symbiotic evolution 

[18], recombination strategy adaption [19], adaptive linkage 

crossover [19], and linkage learning [9], Recently, the Hybrid 

Linkage Crossover (HLX) operator and incorporating it into the 
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Differential Evolution was presented [7]. The bit-reordering 

approach does not explicitly identify BBs, but it successfully 

achieves the optimal solution. Several papers do BBs 

identification explicitly to find a partition of bit positions. For 

example, Table 1 infers the partition: 

 

{ {0,1,2}, {3,4,6}, {7,8,9}, {10,11,12}, {13,14,15} } (2) 

 

In the case of non-overlapping BBs, partition is a clear 

representation [3,4,13,15-17]. The bits governed by the same 

partition subset are passed together to prevent BB disruption. 

Table 1: A Population of Highly Fit Individuals  

Indivi

dual 

No. 

b0b1b2 b3b4b5 b6b7b8 b9b10b11 b12b13b14 Fitness 

1 111 000 111 111 000 13.0 

2 000 000 111 000 111 12.0 

3 000 111 000 111 000 12.0 

4 000 000 000 111 000 11.0 

5 000 000 000 000 000 10.0 

The fitness is the sum of five three-bit trap functions. “111” is the 

optimum for three-bit trap function. “000” gives more 

contribution to the fitness than that of “001”, “010”, “011”, “100”, 

“101”, and “110”. As a result, the highly fit population is 

composed of “000” and “111”. 

 

Moreover, identification of BBs is practically impossible in 

realworld problems. BBs on design variables of Interior 

Permanent Magnet Synchronous Motor (IPMSM) are identified 

and GA is applied to optimal design of IPMSM using information 

of identified BB [20]. 

There are many strategies of identifying the BBs. We will only 

refer to the building-block identification by simultaneity matrix 

(BISM) [8]. The algorithm consists of two parts: simultaneity 

matrix construction (SMC) and partitioning (PAR) algorithms. 

The SMC construct the matrix according to a set of solutions and 

counts a pair of two-bit BBs that are complement to each other. 

Then, PAR searches for a partition for the matrix. The partition is 

exploited in solution recombination so that the bits governed by 

the same partition subset are passed together. 

This paper presents a new hybrid algorithm that exploits BBs 

with the cGA in order to solve difficult optimization problems. 

Let us assume that we have already know the BBs of n bits. The 

cGA with BBs construct a probability vector (P) of each building 

block, instead of probability vector (P) of each single bit. The 

solutions are randomly generated from P of each building block at 

each generation and P of each building block is then updated base 

on their solutions. 

The remainder of the paper is organized as follows. Section II, 

we will begin by briefly reviewing the working of the cGA. Then, 

we describe the cGA exploited by using BBs in Section III. 

Section IV, computer simulation compares the two algorithms, 

both in terms of solution quality and speed. We will then modify 

the cGA with BBs for the travelling salesman problem (TSP) in 

Section V and presents the comparison results with the cGA 

applied to the TSP in Section VI. At the end of the paper in 

Section VII, some conclusions are drawn. 

2 COMPACT GENETIC ALGORITHM 

Compact genetic algorithm represents the population as a 

probability vector over the set of solutions and is operationally 

equivalent to the order-one behavior of the simple GA (sGA) with 

uniform crossover. The vector contains each bit with a real 

number from 0.0 to 1.0 representing the probability of that bit to 

be one. This reduces the storage of the population to just the 

storage of the probability vector. 

Here is a short description of the steps in cGA. In the 

initialization step a random population is generated. An 

appropriate encoding of the candidate solution is dependent on the 

problem. The second step is to sample two candidates from the 

population. Each member of the population is then evaluated and 

we calculate a ‘fitness value’ for that individual by using the 

fitness function. The third step is to allow the two candidates to 

compete and determine a winner and a loser by comparing their 

fitness values. The winner’s chromosome will be used to update 

the probability vector so that the distribution will converge 

towards the best fit solution. This is an iterative process until we 

reach a termination condition. 

The cGA is approximately equivalent to the sGA with uniform 

crossover: it achieves solutions of comparable quality with 

approximately the same number of function evaluations. As a 

problem with higher order building blocks, cGA with both higher 

selection rates and larger population sizes should allow it to solve 

problems. Such an increase to the selection pressure helps the 

cGA to converge to better solutions since it increases the survival 

probability of higher order building blocks. Although the cGA 

mimics the order-one behavior of a sGA with uniform crossover, 

it was not proposed as an alternative algorithm. According to its 

authors, it can be used to quickly assess the “difficulty” of a 

problem. A problem is easy if it can be solved with a cGA 

exploiting a low selection rate. On the other hand, if it requires 

raising the selection rate to solve the problem, it should be 

considered as difficult. 

3 COMPACT GENETIC ALGORITHM WITH 

BUILDING BLOCKS 
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The cGA with BBs are a set of l-bit binary string and a number of 

n bits in BBs. The set of l-bit binary string is distributed into l/n 

BBs and the one BB consist of 2n sub-solutions. It is assumed that 

all bits in each BBs are dependent. The set of l-bit binary string 

denoted by: 

 

S = {s0, s1, . . . , sl-1} (3) 

 

where si is the ith string. The number of bits in BBs is n bits 

where 1 < n ≤ l. Therefore we can partition for the solution to the 

sub-solutions every the nth string. The set of BBs l-bit binary 

string denoted by: 

 

S = { {s0, s1, . . . , sn-1}, {sn, sn+1, . . . , s2n-1}, . . . , {s2n, s2n+1, . . . 

, sl-1} }. 
(4) 

 

The joint probability of these n bits in each BBs having total 2n 

sub-solutions. The initial probability value for each sub-solution is 

1/2n. For example, a 30-bit trap functions problem can be formed 

by grouping together each three genes into a sub-solution and 

these three genes are related. This problem will have 10 of BBs. 

The joint probability of these three bits having total 8 sub-

solutions and the initial probability vector for each sub-solution is 

1/8 as shown in Table 2. 

Table 2: The Joint Probability of Three Bits and Initial 

Probability Vector for a Sub-solution  

Sub-

solution 

000 001 010 011 100 101 110 111 

Initial 

Probability 

Vector 

.125 .125 .125 .125 .125 .125 .125 .125 

The joint probability of these three bits having total 8 sub-

solutions including “000”, “001”, . . ., “111”. The initial 

probability vector is 1/8 for each sub-solution. Fig. 2 gives pseudo 

code of the cGA with BBs. 

 

Algorithm cGA with BBs is shown in Fig. 2. Step 1 initialize the 

probability vector P of BBs which input is set of l-bit binary string 

and a number of bits in BBs. Step 2 generate two individuals from 

probability vector of each BBs. Step 3 let them compete based on 

their fitness value. Step 4 BBs is then updated based on these 

solutions. Step 1 to 4 will be iterative until the terminating 

condition is met. So that in step 6 the distribution will converge to 

a population that fits the solution requirement. The time 

complexity of cGA with BBs is O( I2n+1/n ) for one generation 

where n is a number of bits in BBs and l is length of bit binary 

string. 

 

 

 

 

Figure 2: Pseudo code of the cGA with BBs. 

 
For a deceptive problem such as n-bit trap functions problem, it 

will take a long time to solve problems with higher order BBs. 

Therefore we limit the size of trap. 10 copies of a 3-bit trap 

functions are concatenated to form a 30-bit trap functions. In the 

cGA, all the pi start with 1/2 and pi is dependent on one bit. For an 

order-3 schema, the survival probability is 1/8. Therefore the 

selection rate should greater than 8 that is enough to combat the 

disruptive effects of crossover. However, a selection rate of s = 2 

in the cGA with BBs is enough to converge to reach the optimal 

solution because the algorithm maintains related genes by 

updating probability vector of BBs so that it does not break up the 

combinations.  

 

 

 

1) Initialize the probability vector p which input is set of l-

bit binary string and n is a number of bits in BBs 

 numberOfBBs = l / n; 

 For i := 1 to numberOfBBs do  

         For j := 1 to 2n do  

              generateAllBinaryBit(n); 

     p[j] := 1 / 2n; 

 

2) Generate two individuals from p 

 a := generate(p); 

 b := generate(p); 

 

3) Let them compete 

 Winner, loser := compete(a, b); 

 

4) Update p towards the better one 

 For i := 1 to numberOfBBs do 

         For j := 1 to 2n do 

              if winner[j] ≠ loser[j] then 

                          if winner[j] = 1 then   

          p[j] := p[j] + 1/β 

     else p[j] := p[j] - 1/β 

 

5) Check if the vector p has converged 

 For i := 1 to l do 

         if p[i] > 0 and p[i] < 1 then 

              return to step 2; 

 

6) The probability p represents the final solution 

 

cGA with BBs parameters 

 β: population size. 

 l: bit length. 
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4 EXPERIMENTAL RESULTS FOR TRAP 

FUNCTION 

This section presents simulation results and compare the 

effectiveness between the cGA with BBs and the original cGA, 

both in terms of solution quality and in the number of function 

evaluations taken. For solution quality, we count the number of 

correct BBs. All experiments are averaged over 50 runs. The cGA 

uses tournament selection with s = 8 while the cGA with BBs uses 

tournament selection with s = 2. All runs end when the population 

fully converges that is all positions of P become binary (0 or 1). 

Fig. 3 and 4 show the results of the experiments on the 10 copies 

of a 3-bit trap function. Figure 3 plots the solution quality 

(number of correct BBs at the end of the run) for the various 

population sizes. Fig. 4 plots the number of function evaluations 

taken until reaching the convergence state known for different 

population sizes. 

 

 
Figure 3. Solution quality comparison achieved by the cGA 

and the cGA with BBs on the 10 copies of a 3-bit trap 

function. The solid line is for the cGA and the dashed line is 

for the cGA with BBs. 

 

 

 
Figure 4. Performance comparison achieved by the cGA and 

the cGA with BBs on the 10 copies of a 3-bit trap function. 

The solid line is for the cGA and the dashed line is for the 

cGA with BBs. 

 

Fig. 3 shows that the solution quality of the cGA with BBs is 

averaged 1.6 times better than the cGA and Fig. 4 shows that the 

performance of cGA with BBs is averaged 2.8 times less number 

of evaluations than the cGA for the various population sizes on a 

deceptive problem. 

5 COMPACT GENETIC ALGORITHM WITH 

BUILDING BLOCKS FOR TRAVELLING 

SALESMAN PROBLEM 

The traveling salesman problem (TSP) is the most well-known 

NP-hard combinatorial optimization problem. The TSP problem 

consists of a salesman and a set of cities. The salesman has to visit 

each one of the cities starting from a certain one, visiting each 

exactly once, and returning to the same city such that the total 

distance traveled is minimized [5]. A combinational crossover 

technique based on genetic algorithm and utilize the concept of 

heritable BBs is employed in the search for optimal or near-

optimal TSP solution [2].  In this paper, in order to design the 

cGA with BBs for the TSP, we adopted the path-representation 

model which represents a feasible tour as one of the k! possible 

permutations of the k cities [21]. Total number of feasible edges 

between cities is 

Total number of feasible edges = 
𝑘−1

2
(k)   where k cities (5) 

Total number of feasible edges represents a set of l-bit binary 

string. The initial probability value Pij[] (one for each bit) is set to 

0.5, where Pij is the probability vector for edge between city i and 

city j.  For instance, Table 3 infers the number of feasible edges 

for 6 cities and the initial probability vector. 

Table 3: The feasible edges of 6 cities (A,B,C,D,E,F) that 

represents 15-bit binary string and the initial probability 

vector for each bit  

Edgeij EAB EAC EAD EAE EAF EBC EBD EBE 

Pij .5 .5 .5 .5 .5 .5 .5 .5 

 

Edgeij EBF ECD ECE ECF EDE EDF EEF 

Pij .5 .5 .5 .5 .5 .5 .5 

 

Let us assume that we have k cities to visit. We need to have 

instances of problems that contain BBs so we arrange the k cities 

into n BBs. So that each BB contains the k/n cities. Then, we find 

the best path of k/n cities in each BB and the path is not a loop. To 

find the best path for each BB, the steps are as follows: 

 

1. From Table 3, an EAB is randomly selected and define 

city A is the starting city from that path. Then, city A 

will be inserted in the tour N as the starting city.   

2. To generate feasible tour: the next feasible path must 

not be city in tour N and must have city B in the path. 

City B is set to the current city 
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3. Generate feasible tour by randomly selecting and update 

traversed city in tour N and the current city.  

4. Repeat step 2-3 until traverse all cities in the BB and the 

path is not a loop.  

Then, we find the best route to connect each BB into one loop. So 

that we can visit each one of the cities starting from a certain one, 

visiting each exactly once, and returning to the same city. 

Generate two individuals from the probability vector and find out 

the best one, updating the probability vector towards the better 

one same as step 4 of the cGA with BBs. The above steps will be 

iterative until the terminating condition is met. The time 

complexity of cGA with BBs for TSP is O( 2n2k ) for one 

generation where n is a number of BBs and k is a number of cities 

for each BB. The algorithm of the cGA with BBs for TSP is 

shown in Fig. 5. 

Figure 5. Pseudo code of the cGA with BBs for TSP 

6 EXPERIMENTAL RESULTS FOR TSP 

This section presents simulation results and compare the 

effectiveness between the cGA with BBs for TSP and the cGA, in 

terms of solution quality. All experiments are averaged over 50 

runs. The tournament selection with s = 2. All runs end when the 

population fully converges that is all positions of P become binary 

(0 or 1). Figure 6 show the results of the experiments on the TSP 

for U.S. cities (13 cities). Fig. 6 plots the solution quality (number 

of correct bits at the end of the run) for the various population 

sizes. 

 

 

Figure 6. Solution quality comparison achieved by the cGA 

for TSP and the cGA with BBs for TSP on the TSP to find 

the shortest route through the U.S. cities (13 cities). The 

solid line is for the cGA for TSP and the dashed line is for 

the cGA with BBs for TSP. 

 

Fig. 6 shows that the solution quality of the cGA with BBs for 

TSP is averaged 1.89 times better than the cGA. 

7 CONCLUSIONS 

In this paper, we show that the cGA with BBs can be successfully 

deal with difficult order-n optimization problems such as the trap 

function and the TSP. The optimal solution can be achieved by 

composing BBs. Our algorithm can maintain BBs by using 

probability distribution for the BB instead of individual bit; genes 

being considered order-n BB where n is a number of bits in a BB. 

So that the BBs are maintained in solution recombination. We 

introduce tournament selection with the probability vector 

distribution of each of the BBs. We applied our algorithm to solve 

a n-bit trap function problem. A comparison to the cGA that using 

higher selection pressure with randomly generated individuals is 

made. Empirical results show that the cGA with BBs is more 

effective than the cGA, both in terms of solution quality and 

speed. Moreover, we modified the cGA with BBs for TSP. The 

algorithm was evaluated on small problem instances. The results 

achieved were satisfactory if compared to the cGA. The cGA with 

BBs successfully delivers the optimal solution while the cGA fail 

to solve the problem. 

7) Initialize( vector ) 

8) bestFitness = INT_MAX 

9) repeat 

     for i = 1 to 2 do 

          routeCount = 0  

          for block = 1 to n - 1 do 

 for routeIndex = 1 to cityInBlock - 1 do 

      validRouteVecto = validateBlockRoute  

                (currentRoute,vector,routeArray) 

      currentRoute = generateRoute   

                (validRouteVector ) 

      routeArray[routeCount] = currentRoute  

    routeCount++ 

 end for 

          end for 

               for routeIndex = 1 to numBlock do 

                   validRouteVector =validateBlockConnectionRoute 

                               (currentRoute,vector,routeArray) 

                   currentRoute = generateRoute( validRouteVector ) 

                   routeArray[routeCount] = currentRoute 

                   routeCount++ 

               end for 

          candidate[i] = routeArray 

          fitness[i] = computeLength( candidate[i] ) 

     end for  

 

     if( fitness[0] < fitness[1] ) then 

          winner = candidate[0], loser = candidate[1] 

     else 

          winner = candidate[1], loser = candidate[0] 

          winnerFitness = computeLength( winner )  

    

     if ( bestFitness > winnerFitness ) then 

          bestFitness = winnerFitness 

          best = winner 

     updateVector(vector, winner, loser) 

until ( bestFitness == BEST_PROBLEM_FITNESS OR 

generation == MAX_GENERATION ) 

output( best , bestFitness ) 
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