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Abstract—In this study, we present three methods of sharing 
knowledge between cooperative compact genetic algorithms. 
The methods exploit the effect of the worse solutions of the 
two-cooperative compact genetic algorithms to the search 
space which can prevent premature convergence. The benefit 
also encourages exploring other areas in solution space which 
enhance the opportunity to discover the better solutions. The 
proposed algorithm has a simple structure requires much less 
execution time than the non-sharing compact genetic 
algorithm.  
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I.  INTRODUCTION 
In the present, there are classes of problems that are 

difficult to solve. The time required to solve these problems 
increase very quickly as the size of the problems grows. As a 
result, the evolutionary algorithms have been designed and 
developed. The genetic algorithm (GA) [1], [2] is an 
algorithm that is widely used to solve these problems. 

In this research, the compact genetic algorithm (cGA) is 
focused because it is operationally equivalent to the simple 
genetic algorithm with uniform crossover, while it requires 
less memory than the simple genetic algorithm. Under the 
compact genetic algorithm, its population is represented by a 
probabilistic vector [3]. Despite constant memory throughout 
a run, the long execution time is required in order to obtain 
good solutions. Consequently, the parallelization is used in 
order to reduce the execution time. There are many kinds of 
parallelization proposed. The experiment shows that 
migration is an effective method to increase performance on 
parallelized genetic algorithms [4], [5], [6] Migrating policy 
and migration parameter must be meticulously defined for 
the best performance.  Thus, the cooperation of the two 
compact genetic algorithms is investigated further to study 
how to share the knowledge between them. Most of the 
previous parallelization of the genetic algorithm, in 
migration step, always share the better solution and reject the 
worse one (e.g. [2], [4], and [7]). However, for cGAs sharing 
their probabilistic vectors, these methods may lead to getting 
stuck in local optima, so the new proposed cooperative 

compact genetic algorithm uses the worse results together 
with the better results among nodes. Finally, the method is 
put to test its ability to solve some real-world problems.  

The subsequent sections start with a basic description of 
the compact genetic algorithm. In section III, the migration 
of the parallel genetic algorithm is described. Then, the next 
section introduces and explains the new cooperative 
algorithms, followed by the experiment of the algorithm to 
evaluate the performance and the discussion of its results in 
section IV.  The last section shows the conclusion and the 
future work. 

II. COMPACT GENETIC ALGORITHM 
The compact genetic algorithm is introduced by Harik, 

Lobo, and Goldberg [3] and proved that it is equivalent to the 
simple genetic algorithm with uniform crossover. The main 
idea is to search for some good solutions in solution space by 
imitating natural evolvement. Basically, its process starts by 
representing the whole population by a probabilistic vector. 
Size of the vector indicates the number of alleles required to 
represent solutions. However, in some cases, the size of the 
vector depends on the encoding of problems. Actually, there 
are many ways to initial values in the vector such as Edge 
length(EL) method for TSP that uses probabilities computed 
from the lengths of possible neighbors [8]; yet they are 
commonly set to 0.5 (Uniform distribution). After assigning 
values to the vector, individuals are selected based on the 
vector. Then, each individual is evaluated its quality by a 
fitness function which is specific to each problem. The final 
process is to update the probabilistic vector following the 
high potential solution according to the quality measured in 
the latest step. If the best solutions are not found or the 
results do not meet the conditions such as the amount of 
executed fitness functions, these steps are repeated. From the 
figure 1, it illustrates the pseudocode of the compact genetic 
algorithm and the fundamental parameters and the main 
steps mentioned above. 
 
 
 
 



1) initialize probability vector 
for i = 1 to l do p[i] = 0.5 

 
2) generate two individuals from the vector 

a = generate(p), b = generate(p) 
 
3) let them compete 

winner, loser = evaluate(a,b) 
 
4) update the probability vector towards the better one  

for i = 1 to l do 
if winner[i] != 1 then p[i] = p[i]+1/n 

         else p[i] = p[i]-1/n  
 
5) p represents the final solution 

compact GA parameters 
n: population size, l: chromosome length 
 
 

1) initialize probability vector, assign C constant. 
2) broadcast the vector to cGAs. 
3) calculate received knowledge. Weight depends on 

NFs and scores. 
if NF is high until reach C, go to 5) step 
if the score is higher and NF is low, get low weight 
else If the score is lower and NF is low, get high weight 
else If the score is higher and NF is high, get high 

weight 
else get low weight 
4) update the global probability vector and back to 1). 
5) the global probability vector is updated to a 

proportion of itself and the first initialized global 
probability and go back to 1) step. 

 

 
Figure 1.  Pseudocode of the compact genetic algorithm [10] 

III. THE DIFFERENCES OF MIGRATION IN PARALLEL GAS 
AND PARALLEL CGAS 

The migration is a method to share information among 
nodes in a parallel system. For GA and cGA, the migration 
encourages the propagation of high-quality solutions.  
Although the GA and the cGA exploit the benefit of the 
migration for the same purposed, there are differences of 
migration parameters and topology because of the different 
structure of algorithms. 

A. The migration in the parallel genetic algorithms 
The migration parallel GA is a way to prevent premature 

convergence at local optima of unsatisfied solutions. The 
high-quality results are disseminated throughout parallel 
GAs and replace low-quality individuals to improve the poor 
evolvement getting trapped in local optima. However, the 
difficulty is how to achieve a balance between convergence 
of solutions and diversity from independent evolvement. The 
short interval time of migration and the vast number of 
migrating individuals can destroy the balance. Because there 
are parameters for migration which have dramatic effects on 
performance such as migration size, migration topology, 
migration frequency and migration strategy, the parameters 
must be delicately determined. 

B. The migration in the parallel compact genetic 
algorithms 
The parallelization of the compact genetic algorithm has 

an alternative migration method by using probabilistic 
vectors instead of individuals [9], [10]. In detailed, the 
impact of migrating the probabilistic vectors on search space 
is more significant than migrating individuals due to the fact 
that the whole population is distributed while transferring 
individuals is limited by the migration cost. However, there 

are the same problems as the parallel GA, the balance 
between convergence and diversity. One way of migration is 
to share solely probabilistic vectors possessing high-quality 
solutions of the generation or share all probabilistic vectors. 

IV. THE COOPERATIVE ALGORITHMS 
The three cooperative algorithms are inspired by the 

effect of probabilistic vector owning low-scored individuals 
on search space. The algorithms enhance this concept to 
prevent premature convergence and increase opportunities to 
search in other areas. The algorithm consists of one master 
node and two cooperative compact GAs. The two-
cooperative compact GAs independently execute to preserve 
diversity and frequently migrate their probabilistic vectors to 
the master node. The master node has functions to update the 
global probabilistic vector by defining and applying weights 
to control the impact of the shared probabilistic vectors. It 
then broadcasts the updated global vector to the two cGAs. 

A. Master node algorithm 
For the first algorithm, after discovering new best 

solutions, the difference calculated from a probabilistic 
vector possessing the lower-scored individual in the 
generation before and after being updated gains more weight. 
Then, the weight of the probabilistic vector possessing the 
higher-scored individual in the generation slightly increases 
to provide some opportunities for searching in high-scored 
areas. However, chances for exploring in high-scored areas 
are limited. When the number of fitness function counted 
after finding the current best individual reaches a maximum, 
the search space will be moved to an area between itself and 
the initialized search space as shown at the step 3 in the 
figure 2. The algorithm exploits the worse solutions in this 
direction. On the other hand, the second algorithm is similar 
but puts more weight on the better probabilistic matrix in 
order to search in high-quality space before using the lower-
scored individuals to explore other spaces. Finally, the third 
algorithm randomly selects one element of the two 
probabilistic matrices, so this algorithm does not have the 
maximum. 

 

 



NF: the number of executed fitness functions after 
finding the latest best solution. 

1) assign received values to probability vector. 
2) generate individuals from the vector. 
3) evaluate the individuals. 
4) update the vector and NF. 
5) if reaching the time interval of migration: 
    Send the count, the score of the best solution in the 

generation and the difference of vector before and after 
being updated to master node. 

6) if the best score in cGA is the global solution, then 
finish the program. 

Else back to 1) 

Figure 2.  Pseudocode of the master node of the first proposed algorithm 

B. Parallel cGAs algorithm (slave node) 
Slave nodes operate as normal cGA. Selection, evaluation 

by fitness function and update of local probabilistic vectors 
occur in these nodes. However, probabilistic vectors are 
assigned by the master node. For the first and the second 
methods, the slave nodes also remember the number of 
executed fitness function after exploring the current best 
individuals called NF shown in the figure 3 to predict being 
caught in local optima. 

Figure 3.  Pseudocode of the slave node 

V. EXPERIMENT 
For performance evaluation of the proposed algorithms. 

Four migration methods are compared with the same 
migration frequency and a non-cooperative method. The 
experiment was controlled and run on one computer to avoid 
the network issue. Traveling salesman problems which is a 
deceptive problem [11] were used to qualify the algorithm. 
The TSP itself has a large number of deceptive local optima. 
11 cities, 15 cities, and 17 cities with five instances (Prob. 1-
5) for each of them were used in the experiment. A 
probabilistic matrix represents the probabilities of each path 
from one city to other cities is used to encode the solution. 
Each cGA had a probabilistic matrix initially assigned by 
values computed from the lengths of possible neighbor cities. 
Local heuristic, 2-opt [12], was exploited to reduce execution 
time. To be fair, the interval time of migration is fixed at 80 
and all processes irrelevant to migration are the same for all 
tests. 

A. Evaluation 
For each migration method, the experiment was run ten 

times for all instances and measured the quality using the 
average number of executed fitness functions of each 
instance. The limitation of the total number of fitness 
function is 500000 iterations, 250000 iterations for each 
slave node.  Each group of instances possesses a complicated 
trap problem having similar and high distances among cities. 
As a result, the experiment sometimes did not attain the 

global solutions. In the case of reaching the limitation but not 
discovering global results, the evaluation considered the best 
solution acquired.  

There are four migration methods and one non-
cooperative cGAs executed to effectively exhibit the 
performance of algorithms. The main difference between the 
methods is the scheme to update the global probabilistic 
matrix. The first migration method is to randomly choose 
one element of the two probabilistic matrices. Adapted from 
a concept of the migration in genetic algorithm [2], [4] and 
[7], another method chooses one probabilistic matrix 
maintaining the better solution of the generation at the 
interval time. Weight is used in the third and the fourth 
approaches to managing the proportion between two 
probabilistic matrices. However, the third method puts more 
weight on the better probabilistic matrix, while the fourth 
method emphasizes on the worse matrix. Finally, the non-
cooperative cGAs is two cGAs independently operating 

B. Results and discussion 

TABLE I.  THE NUMBER OF EXECUTED FITNESS FUNCTION 
COMPARISON BETWEEN THE PROPOSED ALGORITHM AND OTHER 4 SIMILAR 

MIGRATION METHODS 

 

Migration methods 

Rando
m 

selectio
n(Rand

) 

Best 
selectio
n(BST) 

More 
weight 

on 
better 

scores(
WB) 

More 
weight 

on 
worse 

scores(
WW) 

Non-
coope
ration
(Non
Co) 

11 
cities 
Prob. 
1 

Best 2 3 2 3 2 

Worse 28 24 34 43 114 

Avg. 14.9 17.6 11.8 14.3 26.2 

11 
cities 
Prob. 
2 

Best 18 34 91 8 19 

Worse 2102 1770 1833 2958 29422 

Avg. 879 686.2 782.4 657.3 5458.
5 

11 
cities 
Prob. 
3 

Best 30 12 16 3 5 

Worse 625 665 723 803 8606 

Avg. 289.2 256.1 375.7 298 2415 

11 
cities 
Prob. 
4 

Best 12 8 11 5 2 

Worse 94 97 110 63 571 

Avg. 50.1 42.4 52.9 32.6 120.4 

11 
cities 
Prob. 
5 

Best 30 2 3 2 25 

Worse 269 338 372 221 3320 

Avg. 98.6 116.3 101.2 97 602.4 

15 
cities 
Prob. 
1 

Best 866 112 162 123 13 

Worse 19642 15302 14153 10924 11762
3 

Avg. 8657.1 7741.2 6435.8 3772.6 36996
.4 

15 Best 3 5 3 2 4 



 

Migration methods 

Rando
m 

selectio
n(Rand

) 

Best 
selectio
n(BST) 

More 
weight 

on 
better 

scores(
WB) 

More 
weight 

on 
worse 

scores(
WW) 

Non-
coope
ration
(Non
Co) 

cities 
Prob. 
2 

Worse 118 86 63 113 27678 

Avg. 23.4 30.6 32.3 25.8 5635.
6 

15 
cities 
Prob. 
3 

Best 12 15 28 18 3 

Worse 1069 361 381 593 86838 

Avg. 178.7 166.5 179.1 157.8 12083 

15 
cities 
Prob. 
4 

Best 131 93 16 5 3 

Worse 4164 4258 914 3787 20399
2 

Avg. 1000 1172.6 500 932.4 64592
.1 

15 
cities 
Prob. 
5 

Best 2 2 2 2 2 

Worse 4 4 4 3 487 

Avg. 2.8 2.7 5 2.7 53.2 

17 
cities 
Prob. 
1 

Best 27 39 248 97 5 

Worse 2276 1479 3939 2958 40474
4 

Avg. 1092.2 632.2 1087.5 1104.2 44415
.2 

17 
cities 
Prob. 
2 

Best 347 974 15 149 1423 

Worse 2960 19184 12544 7475 43612
6 

Avg. 1855 4408.5 3284.4 2737.3 54712
.4 

17 
cities 
Prob. 
3 

Best 6342 24176 299 10437 - 

Worse 206631 333331 231185 206347 - 

Avg. 103348
.1 

115416
.6 

91192.
9 

77455.
9 

- 

17 
cities 
Prob. 
4 

Best 213 110 715 78 89 

Worse 2497 5214 4490 2561 21577
3 

Avg. 1238.4 1852.8 1936.5 1030.8 22187
.4 

17 
cities 
Prob. 
5 
 

Best 16538 1542 1332 2269 - 

Worse 125292 145044 147238 141917 - 

Avg. 41045 58394.
9 

40264.
1 

32803.
8 - 

 
From the table I, the number of executed fitness function 

is presented the best, worse and average values. WW, WB 
and Rand present the first, second and third proposed 
algorithms, sequentially. The results show that WW has 
excellent performance more than 10 times and almost 2 
times greater than non-cooperative method (NonCo) and 
pure selection based on the best individual of the generation 
(BST) in the case of difficult instances [13], respectively.  

For simple instances [13], these two methods, BST and 
NonCo, usually take the first and the second places of the 
lowest iterations of the "Best" values recorded for each test 

in the table since the algorithms tend to quickly convergence. 
In contrast, in complicated problems, premature convergence 
leads to being trapped in local optima. For example, from the 
table I, the third and fifth instances of 17 cities group are 
difficult problems [12]. Most final solutions of NonCo 
method are local optima with about 99.3 percent accuracy, 
the average accuracy of the solutions. 

The performance of Rand and WB is slightly better than 
migration algorithm using solely better probabilistic 
matrices. However, because the differences in these results 
are not significant and some process of the compact genetic 
algorithm is based on probability, it is difficult to assure 
which algorithm among Rand, BST and WB is the most 
effective indeed. At least, the results prove that low-quality 
solutions can be exploited to advance the performance. 

VI. CONCLUSION AND FURTHER STUDY 
Sharing knowledge in the cooperative compact genetic 

algorithm is presented in this paper. The proposed 
cooperative compact genetic algorithms are built on the 
benefits of using low-quality solutions to prevent premature 
convergence and expand search space. The results indicate 
the average performance of the proposed algorithms better 
than non-cooperative algorithm and migration method using 
solely the higher-scored solution. In the future, we plan to 
scale out the algorithm to be able to use in scalable 
parallelization. 

ACKNOWLEDGMENT 
This work is supported by scholarship of the 

computer engineering department, Chulalongkorn 
University, 2018. 

 

REFERENCES 
 

[1] J. H. Holland, Adaptation in natural and artificial systems: an 
introductory analysis with applications to biology, control, and 
artificial intelligence. Cambridge, MA: MIT Press, 2010. 

[2] E. Cantù-Paz, Efficient and accurate parallel genetic algorithms. 
Boston, MA: Kluwer Academic Publishers, 2001. 

[3] G. R. Harik, F. G. Lobo and D. E. Goldberg, "The compact genetic 
algorithm," 1998 IEEE International Conference on Evolutionary 
Computation Proceedings. IEEE World Congress on Computational 
Intelligence (Cat. No.98TH8360), Anchorage, AK, 1998, pp. 523-
528. 

[4] L. Wang, A. A. Maciejewski, H. J. Siegel and V. P. Roychowdhury, 
"A comparative study of five parallel genetic algorithms using the 
traveling salesman problem," Proceedings of the First Merged 
International Parallel Processing Symposium and Symposium on 
Parallel and Distributed Processing, Orlando, FL, 1998, pp. 345-349. 

[5] M. Nowostawski and R. Poli, “Parallel genetic algorithm 
taxonomy,” 1999 Third International Conference on Knowledge-
Based Intelligent Information Engineering Systems. Proceedings 
(Cat. No.99TH8410). 

[6] D. Whitley, T. Starkweather, and K. Mathias, Optimization using 
distributed genetic algorithms. Fort Collins, CO: Colorado State 
University, Dept. of Computer Science, 1991. 

[7] F. J. Marin, O. Trelles-Salazar, and F. Sandoval, “Genetic Algorithms 
on LAN-message passing architectures using PVM: Application to 



the Routing problem,” Parallel Problem Solving from Nature — 
PPSN III Lecture Notes in Computer Science, pp. 534–543, 1994.  

[8] R. Baraglia, J. I. Hidalgo and R. Perego, "A hybrid heuristic for the 
traveling salesman problem," in IEEE Transactions on Evolutionary 
Computation, vol. 5, no. 6, pp. 613-622, Dec 2001. 

[9] F. G. Lobo, C. F. Lima, and H. Mártires, “An Architecture for 
Massive Parallelization of the Compact Genetic Algorithm,” Genetic 
and Evolutionary Computation – GECCO 2004 Lecture Notes in 
Computer Science, pp. 412–413, 2004. 

[10] M. Pelikan, D.E. Goldberg, F. Lobo, "A survey of optimization by 
building and using probabilistic models", American Control 
Conference 2000. Proceedings of the 2000, vol. 5, pp. 3289-3293 
vol.5, 2000, ISSN 0743-1619. 

[11] D. E. Goldberg, "Simple genetic algorithm and the minimal deceptive 
problem," in Genetic Algorithms and Simulated Annealing, L. Davis, 
editor, San Mateo, CA: Morgan Kaufmann, 1987, pages 74-88. 

[12] G. A. Croes, “A method for solving traveling salesman problems,” 
Oper. Res., vol. 6, no. 6, pp. 791–812, 1958 

[13] K. Smith-Miles, J. V. Hemert, and X. Y. Lim, “Understanding TSP 
Difficulty by Learning from Evolved Instances,” Lecture Notes in 
Computer Science Learning and Intelligent Optimization, pp. 266–
280, 2010. 
 
.   

 

 
 

 

l The below form will not be published, but it will help us to understand your paper better 

Authors’ background 
 Name 
 

Email 
 

Position  
(Prof , Assoc. 
Prof. etc.) 

Research 
Field 
 

Homepage URL 
 

Orakanya 
Gateratanakul orakanyag12@gmail.com Graduate student Optimization   

Prabhas 
Chongstitvatana prabhas.c@chula.ac.th 

Professor Optimization 
and quantum 
computing 

https://www.cp.eng.chula.ac.th/~piak/ 

     
     
 


