
Knowledge Sharing in Cooperative Compact Genetic Algorithm

Orakanya Gateratanakul, Prabhas Chongstitvatana
Department of Computer Engineering

Chulalongkorn University
Bangkok, Thailand

orakanyag12@gmail.com, prabhas.c@chula.ac.th

Abstract—In this study, we present three methods of sharing
knowledge between cooperative compact genetic algorithms.
The methods exploit the effect of the worse solutions of the
two-cooperative compact genetic algorithms to the search
space which can prevent premature convergence. The benefit
also encourages exploring other areas in solution space which
enhance the opportunity to discover the better solutions. The
proposed algorithm has a simple structure requires much less
execution time than the non-sharing compact genetic
algorithm.

Keywords: compact genetic algorithms; parallelization of the
evolutionary algorithm; parallel genetic algorithm

I. INTRODUCTION
In the present, there are classes of problems that are

difficult to solve. The time required to solve these problems
increase very quickly as the size of the problems grows. As a
result, the evolutionary algorithms have been designed and
developed. The genetic algorithm (GA) [1], [2] is an
algorithm that is widely used to solve these problems.

In this research, the compact genetic algorithm (cGA) is
focused because it is operationally equivalent to the simple
genetic algorithm with uniform crossover, while it requires
less memory than the simple genetic algorithm. Under the
compact genetic algorithm, its population is represented by a
probabilistic vector [3]. Despite constant memory throughout
a run, the long execution time is required in order to obtain
good solutions. Consequently, the parallelization is used in
order to reduce the execution time. There are many kinds of
parallelization proposed. The experiment shows that
migration is an effective method to increase performance on
parallelized genetic algorithms [4], [5], [6] Migrating policy
and migration parameter must be meticulously defined for
the best performance. Thus, the cooperation of the two
compact genetic algorithms is investigated further to study
how to share the knowledge between them. Most of the
previous parallelization of the genetic algorithm, in
migration step, always share the better solution and reject the
worse one (e.g. [2], [4], and [7]). However, for cGAs sharing
their probabilistic vectors, these methods may lead to getting
stuck in local optima, so the new proposed cooperative

compact genetic algorithm uses the worse results together
with the better results among nodes. Finally, the method is
put to test its ability to solve some real-world problems.

The subsequent sections start with a basic description of
the compact genetic algorithm. In section III, the migration
of the parallel genetic algorithm is described. Then, the next
section introduces and explains the new cooperative
algorithms, followed by the experiment of the algorithm to
evaluate the performance and the discussion of its results in
section IV. The last section shows the conclusion and the
future work.

II. COMPACT GENETIC ALGORITHM
The compact genetic algorithm is introduced by Harik,

Lobo, and Goldberg [3] and proved that it is equivalent to the
simple genetic algorithm with uniform crossover. The main
idea is to search for some good solutions in solution space by
imitating natural evolvement. Basically, its process starts by
representing the whole population by a probabilistic vector.
Size of the vector indicates the number of alleles required to
represent solutions. However, in some cases, the size of the
vector depends on the encoding of problems. Actually, there
are many ways to initial values in the vector such as Edge
length(EL) method for TSP that uses probabilities computed
from the lengths of possible neighbors [8]; yet they are
commonly set to 0.5 (Uniform distribution). After assigning
values to the vector, individuals are selected based on the
vector. Then, each individual is evaluated its quality by a
fitness function which is specific to each problem. The final
process is to update the probabilistic vector following the
high potential solution according to the quality measured in
the latest step. If the best solutions are not found or the
results do not meet the conditions such as the amount of
executed fitness functions, these steps are repeated. From the
figure 1, it illustrates the pseudocode of the compact genetic
algorithm and the fundamental parameters and the main
steps mentioned above.

1) initialize probability vector
for i = 1 to l do p[i] = 0.5

2) generate two individuals from the vector

a = generate(p), b = generate(p)

3) let them compete

winner, loser = evaluate(a,b)

4) update the probability vector towards the better one

for i = 1 to l do
if winner[i] != 1 then p[i] = p[i]+1/n

 else p[i] = p[i]-1/n

5) p represents the final solution

compact GA parameters
n: population size, l: chromosome length

1) initialize probability vector, assign C constant.
2) broadcast the vector to cGAs.
3) calculate received knowledge. Weight depends on

NFs and scores.
if NF is high until reach C, go to 5) step
if the score is higher and NF is low, get low weight
else If the score is lower and NF is low, get high weight
else If the score is higher and NF is high, get high

weight
else get low weight
4) update the global probability vector and back to 1).
5) the global probability vector is updated to a

proportion of itself and the first initialized global
probability and go back to 1) step.

Figure 1. Pseudocode of the compact genetic algorithm [10]

III. THE DIFFERENCES OF MIGRATION IN PARALLEL GAS
AND PARALLEL CGAS

The migration is a method to share information among
nodes in a parallel system. For GA and cGA, the migration
encourages the propagation of high-quality solutions.
Although the GA and the cGA exploit the benefit of the
migration for the same purposed, there are differences of
migration parameters and topology because of the different
structure of algorithms.

A. The migration in the parallel genetic algorithms
The migration parallel GA is a way to prevent premature

convergence at local optima of unsatisfied solutions. The
high-quality results are disseminated throughout parallel
GAs and replace low-quality individuals to improve the poor
evolvement getting trapped in local optima. However, the
difficulty is how to achieve a balance between convergence
of solutions and diversity from independent evolvement. The
short interval time of migration and the vast number of
migrating individuals can destroy the balance. Because there
are parameters for migration which have dramatic effects on
performance such as migration size, migration topology,
migration frequency and migration strategy, the parameters
must be delicately determined.

B. The migration in the parallel compact genetic
algorithms
The parallelization of the compact genetic algorithm has

an alternative migration method by using probabilistic
vectors instead of individuals [9], [10]. In detailed, the
impact of migrating the probabilistic vectors on search space
is more significant than migrating individuals due to the fact
that the whole population is distributed while transferring
individuals is limited by the migration cost. However, there

are the same problems as the parallel GA, the balance
between convergence and diversity. One way of migration is
to share solely probabilistic vectors possessing high-quality
solutions of the generation or share all probabilistic vectors.

IV. THE COOPERATIVE ALGORITHMS
The three cooperative algorithms are inspired by the

effect of probabilistic vector owning low-scored individuals
on search space. The algorithms enhance this concept to
prevent premature convergence and increase opportunities to
search in other areas. The algorithm consists of one master
node and two cooperative compact GAs. The two-
cooperative compact GAs independently execute to preserve
diversity and frequently migrate their probabilistic vectors to
the master node. The master node has functions to update the
global probabilistic vector by defining and applying weights
to control the impact of the shared probabilistic vectors. It
then broadcasts the updated global vector to the two cGAs.

A. Master node algorithm
For the first algorithm, after discovering new best

solutions, the difference calculated from a probabilistic
vector possessing the lower-scored individual in the
generation before and after being updated gains more weight.
Then, the weight of the probabilistic vector possessing the
higher-scored individual in the generation slightly increases
to provide some opportunities for searching in high-scored
areas. However, chances for exploring in high-scored areas
are limited. When the number of fitness function counted
after finding the current best individual reaches a maximum,
the search space will be moved to an area between itself and
the initialized search space as shown at the step 3 in the
figure 2. The algorithm exploits the worse solutions in this
direction. On the other hand, the second algorithm is similar
but puts more weight on the better probabilistic matrix in
order to search in high-quality space before using the lower-
scored individuals to explore other spaces. Finally, the third
algorithm randomly selects one element of the two
probabilistic matrices, so this algorithm does not have the
maximum.

NF: the number of executed fitness functions after
finding the latest best solution.

1) assign received values to probability vector.
2) generate individuals from the vector.
3) evaluate the individuals.
4) update the vector and NF.
5) if reaching the time interval of migration:
 Send the count, the score of the best solution in the

generation and the difference of vector before and after
being updated to master node.

6) if the best score in cGA is the global solution, then
finish the program.

Else back to 1)

Figure 2. Pseudocode of the master node of the first proposed algorithm

B. Parallel cGAs algorithm (slave node)
Slave nodes operate as normal cGA. Selection, evaluation

by fitness function and update of local probabilistic vectors
occur in these nodes. However, probabilistic vectors are
assigned by the master node. For the first and the second
methods, the slave nodes also remember the number of
executed fitness function after exploring the current best
individuals called NF shown in the figure 3 to predict being
caught in local optima.

Figure 3. Pseudocode of the slave node

V. EXPERIMENT
For performance evaluation of the proposed algorithms.

Four migration methods are compared with the same
migration frequency and a non-cooperative method. The
experiment was controlled and run on one computer to avoid
the network issue. Traveling salesman problems which is a
deceptive problem [11] were used to qualify the algorithm.
The TSP itself has a large number of deceptive local optima.
11 cities, 15 cities, and 17 cities with five instances (Prob. 1-
5) for each of them were used in the experiment. A
probabilistic matrix represents the probabilities of each path
from one city to other cities is used to encode the solution.
Each cGA had a probabilistic matrix initially assigned by
values computed from the lengths of possible neighbor cities.
Local heuristic, 2-opt [12], was exploited to reduce execution
time. To be fair, the interval time of migration is fixed at 80
and all processes irrelevant to migration are the same for all
tests.

A. Evaluation
For each migration method, the experiment was run ten

times for all instances and measured the quality using the
average number of executed fitness functions of each
instance. The limitation of the total number of fitness
function is 500000 iterations, 250000 iterations for each
slave node. Each group of instances possesses a complicated
trap problem having similar and high distances among cities.
As a result, the experiment sometimes did not attain the

global solutions. In the case of reaching the limitation but not
discovering global results, the evaluation considered the best
solution acquired.

There are four migration methods and one non-
cooperative cGAs executed to effectively exhibit the
performance of algorithms. The main difference between the
methods is the scheme to update the global probabilistic
matrix. The first migration method is to randomly choose
one element of the two probabilistic matrices. Adapted from
a concept of the migration in genetic algorithm [2], [4] and
[7], another method chooses one probabilistic matrix
maintaining the better solution of the generation at the
interval time. Weight is used in the third and the fourth
approaches to managing the proportion between two
probabilistic matrices. However, the third method puts more
weight on the better probabilistic matrix, while the fourth
method emphasizes on the worse matrix. Finally, the non-
cooperative cGAs is two cGAs independently operating

B. Results and discussion

TABLE I. THE NUMBER OF EXECUTED FITNESS FUNCTION
COMPARISON BETWEEN THE PROPOSED ALGORITHM AND OTHER 4 SIMILAR

MIGRATION METHODS

Migration methods

Rando
m

selectio
n(Rand

)

Best
selectio
n(BST)

More
weight

on
better

scores(
WB)

More
weight

on
worse

scores(
WW)

Non-
coope
ration
(Non
Co)

11
cities
Prob.
1

Best 2 3 2 3 2

Worse 28 24 34 43 114

Avg. 14.9 17.6 11.8 14.3 26.2

11
cities
Prob.
2

Best 18 34 91 8 19

Worse 2102 1770 1833 2958 29422

Avg. 879 686.2 782.4 657.3 5458.
5

11
cities
Prob.
3

Best 30 12 16 3 5

Worse 625 665 723 803 8606

Avg. 289.2 256.1 375.7 298 2415

11
cities
Prob.
4

Best 12 8 11 5 2

Worse 94 97 110 63 571

Avg. 50.1 42.4 52.9 32.6 120.4

11
cities
Prob.
5

Best 30 2 3 2 25

Worse 269 338 372 221 3320

Avg. 98.6 116.3 101.2 97 602.4

15
cities
Prob.
1

Best 866 112 162 123 13

Worse 19642 15302 14153 10924 11762
3

Avg. 8657.1 7741.2 6435.8 3772.6 36996
.4

15 Best 3 5 3 2 4

Migration methods

Rando
m

selectio
n(Rand

)

Best
selectio
n(BST)

More
weight

on
better

scores(
WB)

More
weight

on
worse

scores(
WW)

Non-
coope
ration
(Non
Co)

cities
Prob.
2

Worse 118 86 63 113 27678

Avg. 23.4 30.6 32.3 25.8 5635.
6

15
cities
Prob.
3

Best 12 15 28 18 3

Worse 1069 361 381 593 86838

Avg. 178.7 166.5 179.1 157.8 12083

15
cities
Prob.
4

Best 131 93 16 5 3

Worse 4164 4258 914 3787 20399
2

Avg. 1000 1172.6 500 932.4 64592
.1

15
cities
Prob.
5

Best 2 2 2 2 2

Worse 4 4 4 3 487

Avg. 2.8 2.7 5 2.7 53.2

17
cities
Prob.
1

Best 27 39 248 97 5

Worse 2276 1479 3939 2958 40474
4

Avg. 1092.2 632.2 1087.5 1104.2 44415
.2

17
cities
Prob.
2

Best 347 974 15 149 1423

Worse 2960 19184 12544 7475 43612
6

Avg. 1855 4408.5 3284.4 2737.3 54712
.4

17
cities
Prob.
3

Best 6342 24176 299 10437 -

Worse 206631 333331 231185 206347 -

Avg. 103348
.1

115416
.6

91192.
9

77455.
9

-

17
cities
Prob.
4

Best 213 110 715 78 89

Worse 2497 5214 4490 2561 21577
3

Avg. 1238.4 1852.8 1936.5 1030.8 22187
.4

17
cities
Prob.
5

Best 16538 1542 1332 2269 -

Worse 125292 145044 147238 141917 -

Avg. 41045 58394.
9

40264.
1

32803.
8 -

From the table I, the number of executed fitness function

is presented the best, worse and average values. WW, WB
and Rand present the first, second and third proposed
algorithms, sequentially. The results show that WW has
excellent performance more than 10 times and almost 2
times greater than non-cooperative method (NonCo) and
pure selection based on the best individual of the generation
(BST) in the case of difficult instances [13], respectively.

For simple instances [13], these two methods, BST and
NonCo, usually take the first and the second places of the
lowest iterations of the "Best" values recorded for each test

in the table since the algorithms tend to quickly convergence.
In contrast, in complicated problems, premature convergence
leads to being trapped in local optima. For example, from the
table I, the third and fifth instances of 17 cities group are
difficult problems [12]. Most final solutions of NonCo
method are local optima with about 99.3 percent accuracy,
the average accuracy of the solutions.

The performance of Rand and WB is slightly better than
migration algorithm using solely better probabilistic
matrices. However, because the differences in these results
are not significant and some process of the compact genetic
algorithm is based on probability, it is difficult to assure
which algorithm among Rand, BST and WB is the most
effective indeed. At least, the results prove that low-quality
solutions can be exploited to advance the performance.

VI. CONCLUSION AND FURTHER STUDY
Sharing knowledge in the cooperative compact genetic

algorithm is presented in this paper. The proposed
cooperative compact genetic algorithms are built on the
benefits of using low-quality solutions to prevent premature
convergence and expand search space. The results indicate
the average performance of the proposed algorithms better
than non-cooperative algorithm and migration method using
solely the higher-scored solution. In the future, we plan to
scale out the algorithm to be able to use in scalable
parallelization.

ACKNOWLEDGMENT
This work is supported by scholarship of the

computer engineering department, Chulalongkorn
University, 2018.

REFERENCES

[1] J. H. Holland, Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and
artificial intelligence. Cambridge, MA: MIT Press, 2010.

[2] E. Cantù-Paz, Efficient and accurate parallel genetic algorithms.
Boston, MA: Kluwer Academic Publishers, 2001.

[3] G. R. Harik, F. G. Lobo and D. E. Goldberg, "The compact genetic
algorithm," 1998 IEEE International Conference on Evolutionary
Computation Proceedings. IEEE World Congress on Computational
Intelligence (Cat. No.98TH8360), Anchorage, AK, 1998, pp. 523-
528.

[4] L. Wang, A. A. Maciejewski, H. J. Siegel and V. P. Roychowdhury,
"A comparative study of five parallel genetic algorithms using the
traveling salesman problem," Proceedings of the First Merged
International Parallel Processing Symposium and Symposium on
Parallel and Distributed Processing, Orlando, FL, 1998, pp. 345-349.

[5] M. Nowostawski and R. Poli, “Parallel genetic algorithm
taxonomy,” 1999 Third International Conference on Knowledge-
Based Intelligent Information Engineering Systems. Proceedings
(Cat. No.99TH8410).

[6] D. Whitley, T. Starkweather, and K. Mathias, Optimization using
distributed genetic algorithms. Fort Collins, CO: Colorado State
University, Dept. of Computer Science, 1991.

[7] F. J. Marin, O. Trelles-Salazar, and F. Sandoval, “Genetic Algorithms
on LAN-message passing architectures using PVM: Application to

the Routing problem,” Parallel Problem Solving from Nature —
PPSN III Lecture Notes in Computer Science, pp. 534–543, 1994.

[8] R. Baraglia, J. I. Hidalgo and R. Perego, "A hybrid heuristic for the
traveling salesman problem," in IEEE Transactions on Evolutionary
Computation, vol. 5, no. 6, pp. 613-622, Dec 2001.

[9] F. G. Lobo, C. F. Lima, and H. Mártires, “An Architecture for
Massive Parallelization of the Compact Genetic Algorithm,” Genetic
and Evolutionary Computation – GECCO 2004 Lecture Notes in
Computer Science, pp. 412–413, 2004.

[10] M. Pelikan, D.E. Goldberg, F. Lobo, "A survey of optimization by
building and using probabilistic models", American Control
Conference 2000. Proceedings of the 2000, vol. 5, pp. 3289-3293
vol.5, 2000, ISSN 0743-1619.

[11] D. E. Goldberg, "Simple genetic algorithm and the minimal deceptive
problem," in Genetic Algorithms and Simulated Annealing, L. Davis,
editor, San Mateo, CA: Morgan Kaufmann, 1987, pages 74-88.

[12] G. A. Croes, “A method for solving traveling salesman problems,”
Oper. Res., vol. 6, no. 6, pp. 791–812, 1958

[13] K. Smith-Miles, J. V. Hemert, and X. Y. Lim, “Understanding TSP
Difficulty by Learning from Evolved Instances,” Lecture Notes in
Computer Science Learning and Intelligent Optimization, pp. 266–
280, 2010.

.  

l The below form will not be published, but it will help us to understand your paper better

Authors’ background
 Name

Email

Position
(Prof , Assoc.
Prof. etc.)

Research
Field

Homepage URL

Orakanya
Gateratanakul orakanyag12@gmail.com Graduate student Optimization

Prabhas
Chongstitvatana prabhas.c@chula.ac.th

Professor Optimization
and quantum
computing

https://www.cp.eng.chula.ac.th/~piak/

