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ABSTRACT 

This work proposes a genetic algorithm with special 

encoding and operators to solve Sudoku puzzles.  The 

proposed method can also be applied to a wide range of 

logic puzzles. Sudoku puzzle is very complex, hence 

solving it successfully is a challenge. The proposed 

algorithm is tested on four hardness levels of the puzzles: 

easy, medium, hard and expert. The result from the 

experiment shows that the proposed algorithm works very 

well, with the success rate 100% and the run-time is 

competitive with the existing methods. 

Keywords: Genetic Algorithm, Sudoku Puzzle, Mutation 

operator  

1. INTRODUCTION 

The purpose of this puzzle is to compose groups of 

permutation value in each row, column, and sub-block. 

The applications for solving these puzzles derived from 

several group of genetic algorithms (GA) and estimation 

of distribution algorithm (EDA) variety of optimization for 

metaheuristics algorithms.  

Sudoku puzzles are composed of 𝑛2𝑥 𝑛2  grid/board 

and divided into  𝑛2 different  𝑛 𝑥 𝑛 sub grids (Fig.1). To 

solve Sudoku puzzles of 32 x 32 grid must be followed:  

1. Each row and column has all integers from the set 

1-9 without repetition. 

2. Each sub-grid 3x3 has all integers from the set 1-9 

without repetition. 
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(a) The initial problem    (b) The result 

 

Fig. 1: Sudoku puzzles 

 

This work proposes a genetic algorithm with special 

encoding and operators to solve Sudoku puzzles.  The 

proposed method can also be applied to a wide range of 

logic puzzles. 

2. RELATED WORK 

Meta-heuristics shows how different type of 

evolutionary techniques such as GA, PSO and ACO have 

been efficiently used to solve Sudoku puzzles [1]. An 

implementation of GA for solving Sudoku was proposed 

by Mantere and Koljonen [2]. They presented the mutation 

technique that was designed to be used for sub-blocks 

(3x3).  Sato, and Hazuki Inoue [3] proposed a local search 

technique with a fitness function (Eq.1) where  

𝑔𝑖 (𝑥) refers to the amount of unique number in horizontal 

line and ℎ𝑗(𝑥) refers to the amount of unique number in 

vertical line, the mutation operator is a simple 2 swap 

operation.  

𝒇(𝒙) =  ∑ 𝒈𝒊
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𝑤ℎ𝑒𝑟𝑒 𝑔𝑖(𝑥) = |𝑥𝑖| 𝑎𝑛𝑑 ℎ𝑗(𝑥) = |𝑥𝑗| 

 

The Restart Estimation of Distribution algorithm 

(RESEDA) [4] this algorithm is initial numbers in order to 

reduce the search spaces by not allowing number to be 

changed as those numbers already have been used. The 

function probabilistic model shown in (Eq.2) 

𝑝𝑖,𝑗,𝑘
(𝑛)

=  𝑎𝑝𝑖,𝑗,𝑘
(𝑛)

+ (1 − 𝛼)𝑟𝑖,𝑗,𝑘
(𝑛+1)

 

where  0 ≤ 𝛼 ≤ 1.  𝑟𝑖,𝑗,𝑘
(𝑛+1)

  is a probability distribution 

of the 𝑘 number of candidates found in population and the 

parent 𝛼 represent a faster convergence process of learning 

rate function in specifies with larger value. If the algorithm 

getting trapped in a local optimum and then stuck 

condition restart the optimization process. 

3. THE PROPOSED ALGORITHM 

3.1 Encoding 

A constraint array determined the free position where 

“0” mean the position can be changed and “1” means the 

position is fixed. (Fig.2) 

 

 

 

 Fig. 2: Encoding of a solution and the constraint  

Given= [0 0 1 9 0 6 0 0 5 

              0 0 0 0 7 0 0 0 1  

              3 0 9 8 0 0 7 0 6  
              0 0 2 6 8 0 4 7 0  

              7 0 4 2 0 0 0 3 0  

              5 0 8 7 3 0 1 0 2  

              0 2 7 0 6 8 9 1 3     

              9 0 5 3 4 0 0 0 0  

              0 0 0 0 0 0 0 5 0] 

 Constraint = [0 0 1 1 0 1 0 0 1 
                        0 0 0 0 1 0 0 0 1  

                        1 0 1 1 0 0 1 0 1  

                        0 0 1 1 1 0 1 1 0  

                        1 0 1 1 0 0 0 1 0  

                        1 0 1 1 1 0 1 0 1  

                        0 1 1 0 1 1 1 1 1     

                        1 0 1 1 1 0 0 0 0  

                        0 0 0 0 0 0 0 1 0] 

(1) 

(2) 



3.2 Initial Population 

A GA starts with a set of candidates are also known as 

the chromosomes in the population. It is not allowed 

duplicates in the same sub-block. However, it is possible 

for duplicates to occur in rows and/or columns. 

3.3 Selection 

The tournament selection is employed. The result is 

two individuals designated as parents. 

3.4 Crossover 

The crossover function requires parents to be selected 

from the population by the selection method above two 

rows from parents are randomly selected. The free 

positions of two rows are exchanged. 

3.5 Mutation 

The mutation is applied between possible candidates 

that resulted in not worsening the fitness value.  For 

example, the candidates and their positions are shown in 

red (Fig. 3a).  Let's assume the positions m1 and m2 are 

selected for swap mutation.  Two positions are considered, 

swap 5 with 1, or swap 5 with 9 (Fig. 3b). The selected one 

will be the one that does not lower the fitness value of the 

solution. This way is a normal re-production process 

offspring candidate by mutate parents.  

3.6 Restart 

If the evolution get stuck (the fitness does not improve 

within 100 generations) then re-seed the initial population. 

The parameters for running genetic algorithm is 

shown in Table 1: 

Table 1: GA Parameters 

 

6 8 1,5,9 2 1,5,9 1,5,9 7 3 4,9 

(a) Candidate array for sub-block 

 

6 8 5 2 1 9 7 3 4 

 

(b) Allowed and the lower case when the swap 

mutation is prohibited 

 

Fig. 3. Mutation operation 

4. RESULT 

The results are shown in Table 2 and 3.  The proposed 

algorithm compared very well with the competing one in 

both criteria.  In terms of run-time performance, the 

proposed algorithm is faster in all puzzles.    

Table 2: Success rates 

 

Table 3: Speed of calculation 

5. CONCLUSION 

In this work we have shown that the proposed genetic 

algorithm is effective in solving Sudoku puzzles. It 

demonstrates good quality in search with success rate 

always reaching 100%. The run-time is also competitive. 

The algorithm can be applied to solve a wide variety of 

optimization problems 

6. REFERENCES  

[1] Waiyapara, K., Wattanapornprom, W. and Chong 

stitvatana, P. (2013) "Solving Sudoku Puzzles 

with Node Based Coincidence Algorithm," Int. 

Joint Conf. on Computer Science and Software 

Engineering, pp.11-16 

[2] Mantere, T. and Koljonen, J. (2007) "Solving, 

rating and generating Sudoku puzzles with GA," 

IEEE Congress on Evolutionary Computation. 

[3] Sato, Y. and Inoue, H. (2010) "Solving Sudoku 

with genetic operations that preserve building 

blocks," IEEE Conference on Computational 

Intelligence and Games, pp. 23-29, August 2010. 

[4] Maire, S. and Prissette, C. (2012) "A restarted 

estimation of distribution algorithm for solving 

sudoku puzzles," in Monte Carlo Methods and 

Applications, Sabelfeld, K. (eds), vol.18, issue 2.   

 

Description 
Value 

population size 
1,000 

maximum number of generations 
10,000 

mutation rate 
0.06 

number of elites 
50 

Tournament selection (select the better one 

with 0.8 probability) 
0.8  

Difficulty Success rate Success rate  

(our approach) 

Easy1 & 2 100 100 

Medium1&2 100 100 

Hard1&2 100 100 

Expert1&2 
Cannot be 

Solved 
100 

Difficulty Duration (ms) 

Duration 

(our approach) (ms) 

 

 Easy 8 1 

Medium 44 20 

Hard 87 44 

Expert Cannot be Solved 257 

M1 M2 


