
Solving Logic Puzzles with Genetic Algorithm

Darunee Bunma, Prabhas Chongstitvatana

Department of Computer Engineering, Faculty of Engineering,

Chulalongkorn University, Bangkok, Thailand

Darunee.b@student.chula.ac.th, Prabhas.c@chula.ac.th

ABSTRACT

This work proposes a genetic algorithm with special

encoding and operators to solve Sudoku puzzles. The

proposed method can also be applied to a wide range of

logic puzzles. Sudoku puzzle is very complex, hence

solving it successfully is a challenge. The proposed

algorithm is tested on four hardness levels of the puzzles:

easy, medium, hard and expert. The result from the

experiment shows that the proposed algorithm works very

well, with the success rate 100% and the run-time is

competitive with the existing methods.

Keywords: Genetic Algorithm, Sudoku Puzzle, Mutation

operator

1. INTRODUCTION

The purpose of this puzzle is to compose groups of

permutation value in each row, column, and sub-block.

The applications for solving these puzzles derived from

several group of genetic algorithms (GA) and estimation

of distribution algorithm (EDA) variety of optimization for

metaheuristics algorithms.

Sudoku puzzles are composed of 𝑛2𝑥 𝑛2 grid/board

and divided into 𝑛2 different 𝑛 𝑥 𝑛 sub grids (Fig.1). To

solve Sudoku puzzles of 32 x 32 grid must be followed:

1. Each row and column has all integers from the set

1-9 without repetition.

2. Each sub-grid 3x3 has all integers from the set 1-9

without repetition.

No.257 Expert Level (20 Givens)

(a) The initial problem (b) The result

Fig. 1: Sudoku puzzles

This work proposes a genetic algorithm with special

encoding and operators to solve Sudoku puzzles. The

proposed method can also be applied to a wide range of

logic puzzles.

2. RELATED WORK

Meta-heuristics shows how different type of

evolutionary techniques such as GA, PSO and ACO have

been efficiently used to solve Sudoku puzzles [1]. An

implementation of GA for solving Sudoku was proposed

by Mantere and Koljonen [2]. They presented the mutation

technique that was designed to be used for sub-blocks

(3x3). Sato, and Hazuki Inoue [3] proposed a local search

technique with a fitness function (Eq.1) where

𝑔𝑖 (𝑥) refers to the amount of unique number in horizontal

line and ℎ𝑗(𝑥) refers to the amount of unique number in

vertical line, the mutation operator is a simple 2 swap

operation.

𝒇(𝒙) = ∑ 𝒈𝒊

𝟗

𝒊=𝟏

(𝒙) + ∑ 𝒉𝒋

𝟗

𝒋=𝟏

(𝒙)

𝑤ℎ𝑒𝑟𝑒 𝑔𝑖(𝑥) = |𝑥𝑖| 𝑎𝑛𝑑 ℎ𝑗(𝑥) = |𝑥𝑗|

The Restart Estimation of Distribution algorithm

(RESEDA) [4] this algorithm is initial numbers in order to

reduce the search spaces by not allowing number to be

changed as those numbers already have been used. The

function probabilistic model shown in (Eq.2)

𝑝𝑖,𝑗,𝑘
(𝑛)

= 𝑎𝑝𝑖,𝑗,𝑘
(𝑛)

+ (1 − 𝛼)𝑟𝑖,𝑗,𝑘
(𝑛+1)

where 0 ≤ 𝛼 ≤ 1. 𝑟𝑖,𝑗,𝑘
(𝑛+1)

 is a probability distribution

of the 𝑘 number of candidates found in population and the

parent 𝛼 represent a faster convergence process of learning

rate function in specifies with larger value. If the algorithm

getting trapped in a local optimum and then stuck

condition restart the optimization process.

3. THE PROPOSED ALGORITHM

3.1 Encoding

A constraint array determined the free position where

“0” mean the position can be changed and “1” means the

position is fixed. (Fig.2)

 Fig. 2: Encoding of a solution and the constraint

Given= [0 0 1 9 0 6 0 0 5

 0 0 0 0 7 0 0 0 1

 3 0 9 8 0 0 7 0 6
 0 0 2 6 8 0 4 7 0

 7 0 4 2 0 0 0 3 0

 5 0 8 7 3 0 1 0 2

 0 2 7 0 6 8 9 1 3

 9 0 5 3 4 0 0 0 0

 0 0 0 0 0 0 0 5 0]

 Constraint = [0 0 1 1 0 1 0 0 1
 0 0 0 0 1 0 0 0 1

 1 0 1 1 0 0 1 0 1

 0 0 1 1 1 0 1 1 0

 1 0 1 1 0 0 0 1 0

 1 0 1 1 1 0 1 0 1

 0 1 1 0 1 1 1 1 1

 1 0 1 1 1 0 0 0 0

 0 0 0 0 0 0 0 1 0]

(1)

(2)

3.2 Initial Population

A GA starts with a set of candidates are also known as

the chromosomes in the population. It is not allowed

duplicates in the same sub-block. However, it is possible

for duplicates to occur in rows and/or columns.

3.3 Selection

The tournament selection is employed. The result is

two individuals designated as parents.

3.4 Crossover

The crossover function requires parents to be selected

from the population by the selection method above two

rows from parents are randomly selected. The free

positions of two rows are exchanged.

3.5 Mutation

The mutation is applied between possible candidates

that resulted in not worsening the fitness value. For

example, the candidates and their positions are shown in

red (Fig. 3a). Let's assume the positions m1 and m2 are

selected for swap mutation. Two positions are considered,

swap 5 with 1, or swap 5 with 9 (Fig. 3b). The selected one

will be the one that does not lower the fitness value of the

solution. This way is a normal re-production process

offspring candidate by mutate parents.

3.6 Restart

If the evolution get stuck (the fitness does not improve

within 100 generations) then re-seed the initial population.

The parameters for running genetic algorithm is

shown in Table 1:

Table 1: GA Parameters

6 8 1,5,9 2 1,5,9 1,5,9 7 3 4,9

(a) Candidate array for sub-block

6 8 5 2 1 9 7 3 4

(b) Allowed and the lower case when the swap

mutation is prohibited

Fig. 3. Mutation operation

4. RESULT

The results are shown in Table 2 and 3. The proposed

algorithm compared very well with the competing one in

both criteria. In terms of run-time performance, the

proposed algorithm is faster in all puzzles.

Table 2: Success rates

Table 3: Speed of calculation

5. CONCLUSION

In this work we have shown that the proposed genetic

algorithm is effective in solving Sudoku puzzles. It

demonstrates good quality in search with success rate

always reaching 100%. The run-time is also competitive.

The algorithm can be applied to solve a wide variety of

optimization problems

6. REFERENCES

[1] Waiyapara, K., Wattanapornprom, W. and Chong

stitvatana, P. (2013) "Solving Sudoku Puzzles

with Node Based Coincidence Algorithm," Int.

Joint Conf. on Computer Science and Software

Engineering, pp.11-16

[2] Mantere, T. and Koljonen, J. (2007) "Solving,

rating and generating Sudoku puzzles with GA,"

IEEE Congress on Evolutionary Computation.

[3] Sato, Y. and Inoue, H. (2010) "Solving Sudoku

with genetic operations that preserve building

blocks," IEEE Conference on Computational

Intelligence and Games, pp. 23-29, August 2010.

[4] Maire, S. and Prissette, C. (2012) "A restarted

estimation of distribution algorithm for solving

sudoku puzzles," in Monte Carlo Methods and

Applications, Sabelfeld, K. (eds), vol.18, issue 2.

Description
Value

population size
1,000

maximum number of generations
10,000

mutation rate
0.06

number of elites
50

Tournament selection (select the better one

with 0.8 probability)
0.8

Difficulty Success rate Success rate

(our approach)

Easy1 & 2 100 100

Medium1&2 100 100

Hard1&2 100 100

Expert1&2
Cannot be

Solved
100

Difficulty Duration (ms)

Duration

(our approach) (ms)

 Easy 8 1

Medium 44 20

Hard 87 44

Expert Cannot be Solved 257

M1 M2

