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Introduction

Breast cancer is the leading cause of death for wom-
en. Early screening is key to reduce the death rate. How-
ever, early screening requires accurate and reliable tools. 
Computer-Aided Diagnosis (CAD) has been developed 

to help the radiologists in the detection and diagnosis of 
breast cancer. In recent years, several previous studies 
have suggested that CAD systems can increase early can-
cer detection rates [1]. Ultrasound (US) has been used in 
screening as a supplementary tool especially in women 
with dense breast tissue [2]. The most abnormal breast 
lesions are easy to find by using the conventional US, 
while some lesions are still hidden. Therefore, multiple 
US modes have been performed to extract different in-
formation from lesions. For example, B-mode (Bright-
ness) displays the acoustic impedance of a two-dimen-
sional cross-section of tissue, while color Doppler mode 
displays blood flow, the motion of tissue over time, the 
location of blood, the presence of specific molecules, the 
stiffness of tissue, or the anatomy of a three-dimensional 
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region. In previous studies, a single US mode has been 
improved. According to Ko et al [3], non-mass lesions 
were defined in four types.  Positive predictive values 
could have been improved but the differentiation of 
NMLs by B-mode remained ambiguous and required fur-
ther exploration. After intensive research, the elastogra-
phy mode was well-established in cases of breast masses 
[4-5]. Guo et al [6] used contrast agent CEUS to depict 
the microcirculation of breast masses and provide quali-
tative and quantitative analysis for classifying breast le-
sions. These studies showed that the elastography mode 
could be helpful, but they note that it remained imprecise 
in its interpretation. Color Doppler mode, which used to 
supplement in the conventional US, showed high sensi-
tivity, low angle dependency, and no aliasing [7]. Never-
theless, the compilation with recent clinical research [8] 
reported that the Doppler image alone was not able to 
significantly distinguish from a solid mass. Consequent-
ly, multiple US modes have been widely considered to 
combine B-mode and color Doppler mode for improving 
diagnosis performance. When B-mode was always ex-
amined together with color Doppler mode, the fusion of 
B-mode and color Doppler mode was performed [9,10]. 
These studies reported that combining the B-mode and 
color Doppler mode showed high accuracy and specific-
ity to guide the decision for biopsy for non-mass breast 
lesions. Laurence et al [11] evaluated the performance 
fusion of B-mode, color Doppler, and SWE measure-
ments. The result could significantly (p <0.001) improve 
characterization of testicular masses and, therefore, 
could avoid inappropriate total orchiectomy. Although 
previous studies demonstrated that the combination of 
US modes could improve the overall accuracy, these in-
vestigations were not performed with the CAD system. 
In addition, when the US examination is interpreted by 
an inexperienced radiologist, some pitfalls may appear 
by the human error. Lee et al [12] investigated the effect 
of CAD (S-detectTM) on breast US when inexperienced 
radiologists described and categorized breast lesions, es-
pecially in comparison with experienced radiologists. In 
their conclusion, the CAD system can be more beneficial 
and educational for less experienced radiologists than 
for experienced radiologists, not only when describing 
lesions, but also when determining if the lesion is malig-
nant. Thus, automatic breast lesion detection established 
with CAD could be beneficial to help radiologists in 
breast US. To our knowledge, there have been few stud-
ies that automatically combined multiple US modes. The 
CAD using four state-of-the-art methodologies for breast 
lesion detection were introduced to improve diagnostic 
performance.  For instance, Radial Gradient Index (RGI) 
Filtering [13] and Multifractal Filtering [14] have been 

widely cited works in this area, while Rule-based Region 
Ranking [15] and Deformable Part Models [16] also in-
cluded two recent approaches. Although the state-of-the-
art method took advantage, it was not designed for fusing 
multiple input images. 

When the fusion of each dataset is required, differ-
ent sources of information may be correlated or uncorre-
lated, so the fusion algorithm should be concerned about 
the correlation and ensure a compatible model between 
the two datasets. In recent years, the Principal Compo-
nent Analysis (PCA) and Canonical Correlation Analysis 
(CCA), which linearly projects from two sets of random 
variables to low dimension sub-space and maximizes 
correlation, have been developed to fuse heterogeneous 
datasets. However, these methods do not consider the 
class separation compared to its individual modalities. To 
address this issue, supervised dimension reduction meth-
ods supervised-PCA and supervised-CCA [17,18] have 
been introduced. 

These studies reported that the supervised method is 
able to fuse data from any number of modalities to a joint 
subspace that is robust to modality-specific noise. Mo-
tivated by recent success in supervised-CCA, this study 
proposes the Mutual Information Canonical Correlation 
Analysis (MI-CCA) strategy which is extended from the 
supervised-CCA for fusing US modes. Thus, this strategy 
is supposed to achieve a higher predictive performance as 
compared to single US mode and other fusion strategies 
such as unsupervised and supervised strategies includ-
ing unsupervised-PCA, unsupervised-CCA, supervised-
PCA, and supervised-CCA.

Material and method

Overview
The contribution of this study aims to fuse B-mode 

and color Doppler modes for breast cancer diagnosis in-
cluding (a) feature extraction from two breast US modes 
(B-mode and color Doppler mode) using CNN, (b) ex-
tension of CCA via Mutual Information MI-CCA for data 
fusion, and (c) building a classifier model to distinguish 
breast tumor from benign and malignant. Figure 1 shows 
the overview of method.

Data Acquisition and Data Description
The experiment dataset has been provided by the 

Department of Radiology of Thammasat University and 
Queen Sirikit Center of Breast Cancer of Thailand. These 
lesion images consist of 53 benign lesions and 202 ma-
lignant lesions (including 255 B-mode images and 255 
color Doppler mode images). Figure 2 show the STRAD 
diagram of this approach. The patients’ information has 
been removed from the images. All lesions were con-
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firmed by biopsy, thus it is absolutely clear whether the 
lesion was malignant or benign. In addition, the lesions 
were classified by three leading experts as malignant or 
benign. The consensus decision has been obtained by 
the majority voting rule (two out of three). The images 
were obtained by a Philips iU22 US machine in resolu-
tion ranges from 200×200 to 300×400 pixels based on 
the criteria of the provider. 

Feature extraction using Deep Convolution 
Neuron Network: DCNNs
The features were automatically extracted by using 

computer vision methods. According to modern practice, 
a set of image features was extracted from the Deep Con-
volutional Neural Networks (DCNNs) which are pow-
erful models that achieve impressive results for image 
classification to avoid the cost of hand-crafted feature 
extraction [19]. The success from many studies [20-23] 
was applied to large-scale image and video recognition. 
Inspired by their success, this approach was used to ex-
tract the features from US images. The feature extraction 
was carried out via DCNNs. During the training steps, 
the image was passed through a stack of convolutional 
(conv.) layers. These stack layers composed of the 5×5 
filter to capture the notion of position followed by a 
1×1 convolution filter. Then, spatial pooling layers were 
carried out by max-pooling layers. Non-linearity recti-
fication (ReLU) activation function, which is a popular 
choice especially for deep networks, was used to activate 
the parameter values. Finally, the final layer is the soft-
max layer to classify the target class. The results of the 
DCNNs feature extraction is shown in Table I.

Canonical Correlation Analysis (CCA)
Features extracted from the feature selection were 

defined as:

nixfxfxf i ,...,2,1);(),...,(),( 21 ∈  .

Fig 1. The overview of MI- CCA fusion for multiple ultrasound modes detected for screening or diagnosis. (A) Features were ex-
tracted from breast ultrasound images. (B) The fusion method was performed by MI-CCA. (C) From the fusion result, both groups 
finally had their lesion categorized as benign or malignant.

Fig 2. The STARD diagram of combination of B-mode and 
color Doppler mode.

Table I. The results of the DCNNs feature extraction

La- 
yer

Layer Type Size Output 
Features

1 Convolution + ReLU 32 5×5 filters
1 Max Pooling 2×2, stride 2 (32,12,12)
2 Convolution + ReLU 48 5×5 filters
2 Max Pooling 2×2, stride 2 (48,4,4)
3 Convolution + ReLU 48 5×5 filters
3 Max Pooling 2×2, stride 2 (64,1,1)
4 Fully Connected + ReLU 121 hidden units 121
4 Softmax 121 ways 121
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Given the first and the second dataset were defined as:
{ }nixnix ii ,...,2,1,},,...,2,1{; 21 ∈∈ .

Features matrix were defined as:
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Extension of CCA via Mutual Information
While CCA methods are able to account for 2 views, 

when used for classification, these representations do 
not consider class separation compared to its individual 
modalities. Therefore, supervised dimension reduction 
methods sPCA and sCCA were introduced. This study 
presents MI-CCA, which considers the labeled data to 
improve classification performance compared to super-
vised dimension reduction methods. The MI between 
random variables X and Y can estimate  the under prob-
ability distribution from the posterior knowledge of the 
pointwise mutual information H(X, Y). If X given Y are 
the evens, then the true frequencies of all combinations 
of (X;Y) pairs can be estimated by counting the number 
of times each pair occurs in the data. The mutual infor-
mation scores were computed using the equation, shown 
as:

( ) ( ) ( )
( ) ( ))

,(log,;
ypxp

yxpyxpYXH
Yy Xx
∑∑
∈ ∈

=
 
 (2)

(2) where p(x,y) is the joint probability density function 
of X and Y, and p(x)p(y) are the marginal probability den-

sity functions of  X and Y respectively. If X and Y are 
independent, then knowing X does not give any informa-
tion about Y, their mutual information is zero. Followed 
by this concept the parametric distributions over feature 
and target class, it is convenient to revise from the equa-
tion (2), shown as:

( )( ) ( )( )
( )

( )( )
( )( ) ( )

)
,

(log,;
Ypfp

Yfp

Xf Yy
YfpYfH

⋅

⋅
∑
∈⋅

∑
∈

⋅=⋅   (3)

where the set of ( )⋅f  is final output from DCNNs net-
works, and Y is the possible target class. The mutual infor-
mation scores ( )( ) ( )( ) ( )( )YxfHYxfHYxfH ii ;,...,;,; 2211  
were computed from the equation (3). Then, the features 
( )⋅f̂  which correspond over the mean score would be se-

lected to the CCA task, shown as 
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where superscript 1 is the first dataset and superscript 2 
is the second dataset, respectively. The objective func-
tion can be formulated as the following equation (1) that 
is modified from standard CCA to MI-CCA, shown as:
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where the covariance matrices ijC  were replaced to 11Ĉ , 
 22Ĉ , and 12Ĉ  that were calculated from ( )1

ˆ Xf  and ( )2
ˆ Xf .

Data fusion in the context of MI-CCA
Two modalities can be used to represent in the fusion 

space. Given n embedding components },...,2,1{,1 niU i ∈ , 
are expressed via XW T

iU i 1
1 =  and },...,2,1{,1 niV i ∈  are ex-

pressed via XW T
iV i 2

1 = . The embedding components U i
1, 

V i
1 will be included  in the fusion space based on the  

k-largest l (which is the variance ratio). The fusion 
space was written as:




= 1,1
iVU ieconcatenatS  (5) 

where i is the number of embedding components that 
corresponding to the top k-largest explain variance 
scores. The coordinate of ,  in the fusion space is mostly 
used for visualizing the prediction model instead of the 
original variables.  After the fusion step, the classification 
task was performed to classify the breast lesions. Table II 
shows the proposed algorithm of MI-CCA.

Comparative Data Fusion Strategies
While dimension reduction methods such as CCA 

or PCA are able to fusion for 2 views, when used for 
classification, these representations do not consider class 
separation compared to its individual modalities. There-
fore, supervised dimension reduction methods sPCA and 
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sCCA are introduced. This study aims to develop a fused 
algorithm with a higher predictive performance as com-
pared to other unsupervised strategies and supervised 
strategies including unsupervised PCA, unsupervised 
CCA, supervised PCA, and supervised CCA.

Statistical analysis 

Experiment 1: Exploration of correlation analysis 
via Pearson correlation
Because the objective of the data fusion method is the 

strongest correlation between two datasets, the Pearson 
correlation was used to measure the distance of linear 
relationships between variables to confirm our contribu-
tion and compare between other strategies. When the cor-
relation coefficient is close to 1 or −1, their correlation 
is the strongest. The correlation coefficient is close to 0, 
their correlation is weak. The calculation formula is as 
follows:

( ) ( )
YX

YXcovYX
σσ

ρ ,, =   (6)

where cov is the covariance, Xσ  is the standard deviation 
of X, and Yσ  is the standard deviation of Y. 

Experiment 2: Comparing the fusion of B-mode 
and color Doppler modes vs. single US mode
Confusion matrices were used to evaluate the per-

formance and compared with single B-mode and color 
Doppler mode. These matrices computed sensitivity (true 
positive rate), specificity (true negative rate) and accu-
racy of models. The predictive formulas were defined as:
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Experiment 3: Comparing MI-CCA fusion vs.  
other fusion methods 
The comparison was the receiver operating character-

istic curve (AUC). ROC is a probability curve and AUC 
represents the degree or measure of separation. It shows 
the capable of distinguishing between classes. The higher 
AUC shows a better model for distinguishing between 
patients with benign and malignant lesions. The ROC 
curve is plotted with TPR against the FPR where TPR is 
on y-axis and FPR is on the x-axis. 

FNTP
TPTPR
+

=   (10),  ySpecificitFPR −= 1   (11) 

where TP is true positive, TN is true negative, FP is false 
positive and FN is false negative. 

Results

Experiment 1: Exploration of correlation analysis 
via Pearson correlation
Fig 3a shows the comparisons of Pearson correlation 

of unsupervised and supervised strategies. First, the un-
supervised strategies (fig 3b, 3c) showed that unsuper-
vised PCA had a lower correlation (0.30) than unsuper-
vised CCA (0.90). Second, the supervised strategies (fig 
3d) showed that supervised PCA had the lowest correla-
tion (0.08). The supervised CCA (fig 3e) had an inverse 
correlation (-0.80), while proposed MI-CCA (fig 3f) had 
a lower correlation than supervised CCA. These results 
indicate that the unsupervised strategies seem to be the 
relevant information between the two datasets rather than 
supervised strategies.  The unsupervised strategies are 
performed to maximize variable correlation, while the 
supervised strategies not only are performed to maximize 
variable correlation but also performed to maximize the 
class label.

Experiment 2: Comparing the fusion of B-mode 
and color Doppler modes vs. single US mode
Table III shows the model performance in sensitivity, 

specificity, and accuracy. The results indicated that the 
fusion of two modes tended to achieve a high diagnostic 
accuracy.

Table II. The proposed algorithm of MI-CCA

Proposed algorithm:
MI-CCA:

( )1xf  = input feature 1, ( )2xf  = input feature 2
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Classification:
Output = SVM(S)

Table III. Comparing the fusion of multiple ultrasound modes 
vs. single ultrasound mode 

Mode Sen% Sp% Ac%
B-mode 92.11 86.92 90.92
color Doppler mode 98.12 94.23 97.61
MI-CCA Fusion 98.66 96.15 98.80

Se, sensitivity; Sp, specificity; Ac, accuracy
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Experiment 3: Comparing MI-CCA fusion vs. other 
fusion methods 
Fig 4 shows the comparisons of breast tumor clas-

sification accuracy of unsupervised strategies and super-
vised strategies. First, (fig 4a) unsupervised PCA was 
high (AUC 0.91, 95% CI [0.90, 0.91]) and no signifi-
cant difference was observed with the unsupervised CCA 
(AUC 0.90, 95% CI [0.84, 0.90]). Second, (fig 4b) the su-
pervised PCA was the lowest (AUC 0.93, 95% CI [0.91, 
0.93] and no significant difference was observed with the 
supervised CCA (AUC 0.95, 95% CI [0.91, 0.94]). The 
mutual information scores that were over mean would 
be selected (fig 5) for MI-CCA. The proposed MI-CCA 
was the highest performance (AUC 0.99, 95% CI [0.93, 

Fig 3. (A) Pearson correlation was used to evaluate the correlation of unsupervised and supervised strategies. (B) Unsupervised-PCA 
had a lower correlation (correlation = 0.30). (C) Unsupervised CCA had a higher (correlation = 0.90) than unsupervised-PCA. (D) 
Supervised-PCA had the lowest correlation (correlation = 0.08). (E) Supervised-CCA had an inverse correlation (correlation = -0.80), 
while proposed MI-CCA (fig 3f) had a lower correlation than supervised-CCA (F).

Fig 4. The AUC was evaluated and compared with unsupervised and supervised. (A) Unsupervised-PCA had a higher AUC than 
unsupervised-CCA. (B) Supervised PCA was the lowest AUC and no significant difference was observed with the supervised-CCA, 
while the proposed MI-CCA was the highest performance.

Fig 5. The mutual information scores were calculated and se-
lected.
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0.99]). MI-CCA is performed using high mutual infor-
mation between variables and class labels. Therefore, 
the variables tend to be more compatible with the class 
labels than other supervised strategies. These results in-
dicated that the supervised strategies tended to a more 
accurate diagnosis than unsupervised strategies. Figure 
2 shows the final diagnosis in STARD diagram of this  
approach.

Discussion

The popular tool and effective technique for breast 
cancer screening is digital mammography. However, 
there are some limitations. For instance, the lesions in 
the dense breast are hidden by the surrounding tissue. 
Therefore, breast US has been used in alternative tools 
to complement breast cancer detection due to its ability, 
non-radiation, and high sensitivity [25]. The general ab-
normal breast lesions are easy to find by using the con-
ventional US, while some cases are still hidden. There-
fore, multiple US modes have been performed to extract 
different information from the lesions. 

The recent additional US techniques have been sug-
gested and applied in practice to improve diagnostic ac-
curacy. Therefore, CAD has been developed to provide 
efficient interpretation or second opinion for a lesion 
detected on breast US [12]. For example, the US CAD 
system developed by Samsung Medison, Co, Ltd, Seoul, 
Korea provides additional morphologic analysis of breast 
masses to detect breast US according to the BI-RADS 
lexicon and assist in the final assessment for the detected 
breast masses [26]. According to previous studies using 
the CAD system, specificity can be improved for the 
diagnosis of malignant breast mass and assisted the ra-
diologists [27-29]. However, previous studies consider 
only a single mode. To extend the previous studies, the 
multiple US modes were fused and applied to the com-
puterized algorithm to improve diagnosis performance as 
a feature extraction, data fusion, and classification. The 
result showed an increase in sensitivity, specificity, and 
accuracy. 

Regarding the classification performance, single 
color Doppler mode was more accurate than the single 
B-mode because color Doppler mode can display blood 
flow, motion of tissue over time, the location of blood, the 
presence of specific molecules, the stiffness of tissue, or 
the anatomy of a three-dimensional region. This informa-
tion can be beneficial to improve diagnosis performance, 
whereas the fusion of B-mode and color Doppler mode 
achieve the highest performance by complementing the 
information with each other. In addition, our approach 
confirmed the previous study, who suggested that other 

methods may be reduced missing such as the explored 
correlation of image or integrated of double reading. 
Therefore, not only high accuracy but also the maximal 
correlation between fusion dataset has been important. 
Data fusion as described in Foster et al [30] noted that 
dataset X and Y will have similar information when there 
is a maximal correlation. CCA aim to explore the rela-
tionship between different views or a variety of datasets 
the many learning problems applied this technique with 
a great performance. 

In practice the advantage of data fusion should meet 
two requirements [31]. First, the final layer should be 
accurate. Second, the fusion layers should be a high 
relationship among views. Our results differ from An-
drew et al [32] that reported maximized the correla-
tion of dataset. Although the proposed MI-CCA had 
a lower correlation, the mutual information was help-
ful to maximize the accuracy performance. In addition, 
early detection and diagnosis of breast cancer is critical 
for survival [33-35]. Early diagnosis requires an accu-
rate and reliable tool to distinguish benign and malig-
nant tumors. The major cancer screening problems are 
false negative to take effect with patients who lose the 
chance of early treatment. The false positive devel-
oped unnecessary surgery such as biopsy. Our experi-
ments reduce the false positive and false negative; fur-
thermore, overall accuracy is better than the previous  
works. 

Some limitations of our study should be considered. 
First, the other information such as patient demograph-
ics and health history were not included. Second, other 
significant tumor characteristics such as dense breast or 
fat breast were considered. Finally, more sample datasets 
were included in the future work. In addition, like the 
clinicians’ decision, other medical evidence should be 
combined for diagnosis.

Conclusion

This study presents the combination of B-mode and 
color Doppler modes for improving the diagnosis per-
formance using MI-CCA. Our methodology achieves 
high performance compared with single mode and other 
fusion strategies when applied in breast US to classify 
breast tumors.
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