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Abstract— Quantum computer has shown the advantage 
over the classical computer to solve some problems using the 
laws of quantum mechanics. With a combination of knowledge 
of machine learning and quantum computing, Quantum neural 
networks adapted the concept from classical neural networks 
and apply parameterized quantum gates as neural network 
weights. In this paper, we present an application of quantum 
neural networks with real-world data to predict token price 
used in a course bidding system. The experiments were carried 
out on the Qiskit quantum simulator. The result shows that 
quantum neural networks can achieve a good prediction result 
compared to the classical neural network. The best model 
configuration has the lowest RMSE 6.38%. This approach opens 
an opportunity to explore the benefit of quantum machine 
learning in many research fields in the future. 
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I. INTRODUCTION 
Machine learning and Quantum computing are two 

research areas that have attracted considerable attention in 
recent years and have evolved into a new field known as 
Quantum machine learning [1]. Many research papers include 
[2, 3, 4, 5, 6] show the potential advantages such as speed up 
in training a model and in [7] has shown the power of using 
quantum neural networks to train machine learning model. 
One promising way to implement Quantum algorithms in the 
Noisy Intermediate Scale Quantum (NISQ) [8, 9] is using a 
technique call variational quantum circuits or trainable 
quantum circuits as a machine learning model [10, 11, 12, 13, 
14]. 

Quantum Neural Networks take advantage of a quantum 
computer using quantum mechanics such as superposition, 
entanglement, on quantum bits to perform the calculation [15]. 
The motivation behind this research is to present the 
application of Quantum Neural networks with real-world data 
and practical challenges that are yet to be solved by using the 
new method on near-term quantum devices.  

In this paper, we propose a quantum computing method to 
predict the token price to suggest and provide information to 
users in a course bidding system.  

II. QUANTUM NEURAL NETWORK 
A Quantum neural network is an algorithm designed for 

execution on a NISQ device by combining quantum 
computers with classical computers. It is a subclass of 
variational quantum algorithms using trainable quantum 
circuits as a machine learning model. Quantum computers will 
be used as hardware accelerators co-working with a classical 
computer. 

A. Variational quantum algorithms (VQAs) 
In the NISQ era, VQAs are algorithms that allow near-

term quantum advantage, comprised of an iterative quantum-
classical optimization loop between a classical computer and 
a quantum computer. In each iteration the classical computer 
sends the set of quantum logic gate parameters θ to the 
quantum circuit then the circuit was executed on the quantum 
device. The estimated expectation value is sent back to the 
classical computer where the classical optimizer is running 
and suggests a new set of parameters for the subsequent 
iteration to minimized or maximized the cost function. The 
well-known algorithm using the concept of variational 
quantum algorithms is Quantum Approximate Optimization 
Algorithm (QAOA) [16, 17]. 

B. Quantum neural network model 
QNN is inspired by a classical neural network that tries to 

mimic the structure of a classical neural network and use the 
parameterized quantum gates as the weights within a neural 
network. The training data are encoded into a quantum state 
via the feature map circuit. The number of qubits used depends 
on the training data attributes, one attribute per qubit. The 
feedforward and hidden layer are in the form of the variational 
quantum circuit. The backpropagation part measures all qubit 
output and calculates through loss function minimization. The 
goal is to optimize over a parameterized circuit, then set 
optimized parameters back to the variational quantum circuit. 

III. TOKEN ALLOCATION FOR COURSE BIDDING 
In paper [18] presents previous work about the Machine 

learning model used to predict the token price for allocation to 
course through a course bidding system. Three machine 
learning models are compared: Decision Tree, Random 
Forest, and Artificial Neuron Network (ANN) . The dataset is 
from a course bidding system and was pre-processed into 
eight input variables with the highest correlation score and one 
output variable. ANN is the best performing method to predict 
token price, with two hidden layers and one output layer, in 
each hidden layer has eight neurons fully connected.  

The result of the experiment shows that ANN is the best 
method with the lowest RMSE 3.98% over Decision Tree with 
RMSE 4.18% and Random Forest with RMSE 4.13%. This 
result inspired us to implement ANN in a new proposed 
quantum machine learning method to demonstrate the ability 
to use QNN with the real-world data set. 

 

 

 



IV. METHOD 
In this paper, we focus on implementing the QNN model 

by using a quantum simulator from Qiskit [19]. The quantum 
computer is very difficult to simulate classically and the 
resource required to grow exponentially with the number of 
qubits or the depth of the circuit. From this limitation, we limit 
the number of the qubit to only four qubits. This means the 
input for this model needs to be select from the most important 
by highest correlation score, four attributes shown in Table 1 
were selected  and data point was filtered by course interesting 
in which values more than two are used. 

TABLE I.  INPUT AND OUTPUT VARIABLE 

input output 

course interesting 
all_mean 

enrolled_min 
enrolled_mean 

Token price 

 

A. Data Encoding 
The first step is to translate classical data into the quantum 

state. We use a Second-order Pauli-Z evolution circuit 
(ZZFeatureMap) developed in [20] with four qubits and two 
repeated circuits. Hadamard gate applies on each qubit, 
followed by a layer of RZ-gates used to encode data and 
CNOT-gates on every pair of a qubit. With full entanglement, 
each qubit is entangled with all the others.  The output of the 
feature map circuit is quantum state and will be used as input 
of the quantum neural network. ZZFeatureMap circuit is 
shown in Fig. 1 

 

 
Fig. 1. Second-order Pauli-Z evolution circuit (ZZFeatureMap) with two 
repeated circuits, Hadamard gate applies on each qubit, followed by a layer 
of RZ-gates and CNOT-gates on every pair of a qubit. 

B. QNN Model 
For QNN, we used RealAmplitudes variational circuit 

shown in Fig 2, The circuit consists of 4 qubits with Full 
entanglement. The layer of parameterized RY-gates is applied 
to each qubit and used as neural network weights. Increasing 
the depth of the variational circuit means we have more 
trainable parameters in the model. The number of weight or 
trainable parameters can be calculated as d = (D+1)S, where S 
is an input size or the number of qubits and D is the depth of 
the circuit (the number of the repeated circuit).  

 

Fig. 2. RealAmplitudes circuit with two repeated circuits, Layer of RY-
gates followed by CNOT-gates is applied on every pair of a qubit. The circuit 
has a total of 12 trainable parameters. 

C. Model Training  
In this paper, we experiment on the number of repeated 

circuits to find the best model structure. We trained the model 
for 500 iterations on circuit depth range from 2-5, ADAM [21] 
optimizer with learning rate 0.001 and 100 iterations on circuit 
depth range from 4-7. ADAM optimizer with learning rate 0.1 
is used to shorten the training time. Both use the same MSE 
loss function. The overview of the training process is shown 
in Fig. 3 and the training loss values are plot in Fig.4-5 

 

 

Fig. 3. Overview of the quantum neural network training process. Feature 
map and Variation model are executed on quantum computer and 
optimization is on a classical computer. 

 
Fig. 4. ADAM optimizer with learning rate 0.001, Mean squared error loss 
as a function of training. The number of repeated circuit range from 2-5. We 
find that five repeated circuits have the lowest loss value. 
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Fig. 5. ADAM optimizer with learning rate 0.1, Mean squared error loss as 
a function of training. The number of repeated circuit range from 4-7. We 
find that five repeated circuits still have the lowest loss value. 

V. RESULT 
The result of the QNN model prediction is shown in Table 

2. We measure model performance by using RMSE on the 
testing data. Testing data was selected randomly for 30% of 
the samples.  

Increasing the number of repeated circuits from 2-5, the 
model can perform better and RMSE values are decreasing 
dramatically. Increasing the number of repeated circuits to 
more than five, the model seems to be overfitting. RMSE 
values from testing data of repeated circuits 6-7 are very close 
to 5. 

The best model configuration is five repeated circuits with 
24 trainable gates, with a learning rate of 0.001 has the lowest 
RMSE at 7.8%, learning rate of 0.1 has RMSE at 6.38%. 
RMSE values from 500 iterations are plotted in Fig. 6 

TABLE II.  EXPERIMENT RESULT 

Number of 
repeated circuits 

Number of 
trainable gates 

RMSE 
lr = 0.001 lr = 0.1 

2 12 0.0952 - 

3 16 0.1198 - 

4 20 0.1097 0.0691 

5 24 0.0780 0.0638 

6 28  0.0632 

7 32  0.0633 

 

 
Fig. 6. ADAM optimizer with learning rate 0.001, RMSE on four different 
model. QNN Model with five repeated circuit has shown the lowest error. 

VI. CONCLUSION 
In this paper, The result has shown that the Quantum 

Neural Network model can be trained and can perform 
regression tasks on real-world data set with a good result 
compared to the classical neural network. Our Quantum 
Neural network model with a limited input size of 4 and 24 
weight parameters has the lowest RMSE 6.38% compared to 
the ANN model in paper [18] with 8 inputs and 153 weight 
parameters has the lowest RMSE 3.98%. The variational 
algorithms only employ shallow depth quantum circuits and 
can be implemented on noisy intermediate-scale quantum 
(NISQ) devices. It has shown the potential of using Quantum 
computers in Machine learning.  

In addition, increasing repeated circuit or RY-gate is 
similar to increasing the number of nodes in a classical neural 
not only increases the capacity of a model network but also 
helps reduce training loss value and reduce the error of the 
predicted result.  
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