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Abstract- This work reports the 
experiment on building quantum circuit for 
regression learning using qiskit library.  
The circuit is based on Watabe's work 
with some modification based on 
our interpretation. The parameters and 
results are stored and used in the quantum 
circuits.  We performed the experiments on 
fitting the linear function and quadratic 
function. From the experiment, learning 
the linear function is more accurate than 
quadratic function within 120 times of 
training. The initial parameters effect on 
the number of rounds of training and the 
accuracy of the result are investigated. 

Keywords- Quantum Computing, Quantum 
Machine Learning 

I. INTRODUCTION
Quantum machine learning (QML) 

was initiated by scientists in 2013 [1]. 
There are many QML research such as Iris 
Cong’s “Quantum Convolutional Neural 
Networks”[2], Quantum Neural Network 
(Fahri E. & Neven H. [3]). This paper 
provides the result of a modification of 
quantum learning circuit offered by Masaya 
Watabe’s Team. [4] The backpropagation 
process is augmented according to our 
interpretation.  

II. METHODOLOGY
There are several ways for making 

QML circuits. This research provides the 
result and evaluation from the proposed 
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quantum circuit. The pattern of circuit can 
be described as:     

|𝜓!"#〉 = 	𝑈(𝜃)|𝜓$%〉    (1) 
which  𝑈(𝜃), |𝜓$%〉and |𝜓!"#〉stands for 
weight matrix, input state, and output state 
accordingly.  

Like other ML training, the 
backpropagation process is used to regulate 
the weight matrix of this quantum circuit.  It 
is operated by the chain rule of a partial 
differential on complex valued vector space. 
The probability amplitude c, observation 
probability p, and loss function L are 
related to the backpropagation equation as : 

(2) 

III. PARAMETER AND CIRCUIT
STRUCTURE

We propose a quantum circuit based 
on Watabe’s work [4]. It is a 
parameterized quantum circuit 
(ansatz) in which parameters are 
converted into the circuit. The circuit is 
composed of 3 sections, Preparation,  
Quantum parameter network, and 
Measurement. The preparation circuit is 
composed of rotational Pauli-Y gate and 
Pauli-Z gate respectively. The quantum 
states are set up depending on the 
input parameters. The quantum 
parameter network circuit is prepared as 
a weighted node. This part is composed of 
two blocks, 
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local unitary blocks and entanglement 
blocks. The local unitary block which is 
composed of rotational Pauli-Y gate and 
Pauli-Z gate. It changes the quantum state 
depending on applied parameters. The 
entanglement block makes the entangling 
state between each qubit. Controlled Z-gate 
is applied in this block. Both blocks are 
arranged in alternating order. In some 
research, this part is called “Quantum 
Variational Classification” which is used 
for finding an optimal hyperplane in 
Support Vector Machine on quantum 
circuit[5].  Measurement is the last part that 
reads the output state from the circuit. The 
overview of the circuit as shown in Fig 1. 
 

 
Fig.1 Overview of the Masaya Watabe’s 
quantum circuit [4] 
 

Masaya Watabe’s research provides 
two types of quantum circuit task, 
regression and classification. In this 
research, we consider only a regression task. 
There are two types of parameters that are 
supplied to this circuit, one is from 
converted input data and another is 
variational parameter. In the preparation, 
one-dimensional input data x is converted 
into values in range [0, 2π) by the following 
equations.: 

(3) 
After that, the converted input values 

are fed into the rotational Pauli-Y gate and 
Pauli-Z gate as parameters in the 
preparation section. Meanwhile, the 
variational parameters are first randomized 
and fed into the quantum parameter 
network section. These randomized δ 
parameters are being calibrated in the 
training process. While this quantum circuit 
is repeatedly evaluated, the parameters are 
converged into the appropriate value, a 

classic deep learning network. When the 
circuit is measured and given a result, the 
result will be compared with the target 
value to find an error. The error is used to 
calibrate the randomized parameters in the 
backpropagation process. Although this 
circuit works similar to a neural network, it 
is not included because of two significant 
properties, no activation function and no 
hidden layer.  
 
 

IV. ERROR IN REGRESSION  
 
The expected value〈Z〉of this circuit 

can be described by this equation: 

(4) 
which 𝑝

1,'
|0〉 and 𝑝

1,'
|1〉  represents the 

probability of observed 1st qubit state, |0〉
and |1〉. 

For the regression task, the error δ can 
be expressed in the form of a partial 
derivative of the least square loss function 
which can be written along with the target 
value f(x) and the expected value〈Z〉as 
follows: 

(5) 
In another word, this error means 

comparing target value with the doubled 
expected value.In the backpropagation 
section, the following error is applied to 
make matrices to fix the variational 
parameters. There are 3 steps of 
backpropagation operating on the nodes, 
dot product node, notation gate node, and 
observation probability node. 

1. Dot product node 
 When the input state vector X with 

2nstates (n qubits) pass through the W-
weight local unitary block, producing an 
output state vector Y; its backpropagation, 
in the term of partial differentiation, can be 
shown as Fig 2 and expressed in the form of 
equation as below: 



 

978-1-6654-1197-4/21/$31.00 ©2021 IEEE 
 

   (6) 

 
Fig.2 Dot product node operation [4] 
 

2. Rotation gate node 
When Parameter Ө is applied into 

an rotation gate in the local unitary, it is 
projected into the 2x2 matrix form. So its 
backpropagation form can be expressed as 
Fig.3 and below equation:  

 
        (7) 

3. Observation Probability node 
In the measurement section, the 

probability amplitude of the output state is 
converted into an observation probability 
via repeated evaluation. The 
backpropagation in this section can be 
expressed as Fig 4. 
 
      

 
Fig.3 Rotation gate node [4] 
 

 
Fig.4 Observation probability node [4] 
 

Which probability amplitude c and 
observation probabilities p are included. 
The derivative version is: 

    (8)  
V.  ERROR CORRECTION       
Some of  the relation between error 

value and backpropagation process is not 
specified in [4]. This section provides the 
augmented equation from our interpretation. 
 

1. Relation between  )*
)+

 and expected 
value 
We transform the expected value 

into the  )*
)+

 in the observation probability 
node by the following equation: 

 (9) 
which ),-.

)+
 can describe as: 

 (10) 
2. Considering n qubits and 1 qubit in 
backpropagation 

We design 2 types of error form, one 
expected value and average of expected 
value from n values. Such as the quantum 
learning circuit operating on 3 qubits has an 
error )*

)+
with 2% states as Fig. 5  
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Fig. 5 The form of error )*

)+
 

 
VI. EXPERIMENT 

The experiment is conducted with 
Python, composed of IBM’s library 
framework “QISKIT”, numpy library, 
sympy library, matplot library, and Google 
Collaboratory as a text editor and 
simulation. Qiskit is used for building the 
learning circuit. Numpy and sympy are 
used for calculating the matrix operation 
and tensor product in the process of 
backpropagation. Matplotlib is used for 
plotting the result of curve fitting. The 
circuit uses 3 qubits and 3 layers of 
quantum parameter network (3 
entanglement blocks and 4 local unitary 
blocks). We conduct the training 120 times 
on linear function: 𝑓(𝑥) = 𝑥 and quadratic 
function 𝑓(𝑥) 	= 	 𝑥/ which x ∈ [-1,1] and 
use the 2-type errors. The training is 
performed around 120 times. Seeding the 
initiated random variables is used to 
observe the training affected behavior. We 
configure the random weight with 
seed(0). After that, we perform the 
experiment with random seed. 
 

VII. RESULT 
The result of the experiment is shown 

for the curve fitting problem with number 
of training and mean square error in Fig.6 
 

The result shows that the circuit 
conducts the curve fitting to the linear 
function 𝑓(𝑥) 	= 	𝑥  converge in 120-time 
training with the Mean Square Error lower 
than 0.1. In contrary, for the quadratic 
function 𝑓(𝑥) 	= 	 𝑥/  it is not converged 
with the Mean Square Error (MSE) higher 
than 0.4. There is no difference between 2-
type errors calculation. 
 

We also show the result of linear 
function testing with random seed as Fig. 
7. .All of them are conducted on the linear 
function 𝑓(𝑥) 	= 	𝑥. 
 

 

 
 
Fig. 6 (a) conducting  𝑓(𝑥) = 𝑥  with one 
expected value, (b) conducting  𝑓(𝑥) = 𝑥 
with average of expected value from n 
values, (c) conducting 𝑓(𝑥) 	= 	 𝑥2 with one 
expected value, (d) conducting 𝑓(𝑥) 	= 	 𝑥2 
with average of expected value from n 
values 
 

The result shows that the circuit for 
the linear function 𝑓(𝑥) 	= 	𝑥 perform well. 
But the amount of training to get the least 
value of MSE in each seed pattern is 
obviously distinct. We can indicate that the 
circuit spends at least 120 times of training 
to get the best result for this task. 
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Fig. 7  conducting  𝑓(𝑥) = 𝑥 on the various 
random seed 
 

Comparing to the result in Masaya 
Watabe team’s work, which the circuit 
performed the curve fitting with the linear 
function and the quadratic function well [4] , 
the differences of experiment may cause 
from the distinct interpretation or parameter 
setting or missing calculation. More than 
120-time of training is not performed 
caused of time consuming. However, the 
better way of backpropagation and error 
mitigation and the limitation of fitting 
quadratic function should be discussed.  
 
 

VIII. CONCLUSION 
This paper reported the experiment 

of quantum learning circuit. We provided 
the error calculation that are not defined in 
the original paper, according to our 
interpretation. We provided the 
modification of circuit for error calculation. 
We provided two forms of error, one value 

and n-value average. We conducted the 
experiment to test the circuit to perform the 
curve fitting task. From the experiment, 
learning the linear function is better than 
quadratic function in 120 times of training. 
The initiate weight random parameter 
effectes  the number of  round of training. 
The inaccuracy may occurred from missing 
calculation or our interpretation of error 
correcting circuit which would be discussed 
in the future work. 
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