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Abstract. Quantum computing holds promise speedups for many hard
problems, especially in optimization, yet the practical evaluation of quan-
tum algorithms is increasingly hindered by the volatility of cloud-based
quantum services. In this study, we confront the challenge of reproducibil-
ity and infrastructure fragility through a case-based investigation com-
paring classical solvers (Gurobi, Fixstars) with D-Wave’s quantum an-
nealer. While our original intent was to benchmark solver performance
on standard QUBO formulations, repeated disruptions—deprecations
of IBM’s Qiskit backends, inconsistencies in quantum API behavior,
and unstable parameter mappings—reframed our effort into a study of
methodological brittleness. We argue that this infrastructural instabil-
ity is not an incidental inconvenience but a core research challenge in
quantum benchmarking in a rapidly shifting computational landscape.

Keywords: Quantum Optimization - QUBO - Quantum Annealing.

1 Introduction

Quantum optimization via the Quadratic Unconstrained Binary Optimization
(QUBO) has become more prevalent as its potential to outperform classcal
solvers such as Gurobi and Fixstars on certain combinatorial optimization prob-
lems. Yet in practice, today’s quantum benchmark landscape is increasingly frag-
ile, cloud services evolve rapidly, APIs deprecate and software stacks changes
which often renders previous reproducible experiments obsolete.

Despite rapid algorithmic progress, the practical landscape of quantum bench-
marking remains fragile. Cloud-based quantum computing as a service (QCaaS)
is inherently dynamic for instances: cloud services evolve rapidly, APIs are dep-
recated, and platform access models shift. These changes frequently compromise
reproducibility, even for otherwise sound experimental designs.
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To address this challenge, the quantum benchmarking literature increasingly
calls for standards that go beyond raw speed or accuracy. For instance, Hashim et
al. [8] propose a three-tier framework encompassing quantum device characteri-
zation, verification of solution validity, and validation of application correctness.
However, their focus remains primarily at the hardware level, without addressing
software and platform volatility.

In our experiment, we attempted to benchmark QUBO solvers across three
classes of problems—3SAT, Quadratic Assignment (QAP), and the Traveling
Salesman Problem (TSP)—using classical (Gurobi, Fixstars) and quantum (D-
Wave, Qiskit/QAOA) approaches. However, our efforts to deploy QAOA on IBM
Qiskit were derailed by backend incompatibilities and API changes'.

Despite our efforts to mitigate the problems by downgrading to earlier Qiskit
versions, we continued to face backend incompatibilities and persistent fail-
ures in executing quantum algorithms. API updates frequently broke existing
code, while backend services either became unavailable or exhibited new, un-
documented behavior. These recurring disruptions not only made it difficult to
maintain a consistent experimental environment but also undermined the repro-
ducibility and reliability of our benchmarking efforts.

This paper argues that fragility constitutes not only an inconvenience, but
a substantive research challenge in its own right. We reconceptualize our prior
benchmark study within this broader context, demonstrating that the evaluation
of QUBO solvers in an evolving quantum computing landscape reveals inherent
vulnerabilities in reproducibility, fairness, and methodological integrity.

2 Related Work

2.1 Benchmarking Classical Solvers for QUBO Problems

Classical methods for solving QUBO problems rely on mature combinatorial
optimization techniques. Gurobi is a widely used commercial solver that ap-
plies mixed-integer programming (MIP) with presolve strategies, cutting planes,
and heuristics to handle binary quadratic forms [5]. Fixstars Amplify provides
a GPU-accelerated simulated annealing engine tailored to QUBO problems, of-
fering fast approximate solutions via thermal heuristics [4]. Other works have
explored parallel tempering and metaheuristic hybrids for QUBO, although few
studies benchmark these methods under shared problem formulations.

Codognet et al. compared digital annealing with D-Wave on QAP instances,
showing that classical annealers can outperform quantum hardware depending
on problem structure and embedding efficiency [1].

2.2 Quantum Annealing Benchmarks

Quantum annealing (QA) has been experimentally evaluated on problems like
Max-Cut, 3SAT, and QAP [9]. The D-Wave Advantage series supports Ising

! https://quantum.cloud.ibm.com/docs/en/api/qiskit /release-notes
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and QUBO formats using minor embedding to map logical variables to hard-
ware qubits. However, embedding overhead and chain breakage remain signif-
icant limitations [2]. Villar-Rodriguez et al. conducted a large-scale sensitivity
study, revealing that performance depends heavily on tuning parameters like
chain_strength, annealing_time, and schedule [15].

These findings emphasize the need for controlled benchmarking methodolo-
gies that isolate performance factors across parameter sweeps.

2.3 Gate-Based Quantum Optimization

Gate-model solvers like QAOA (Quantum Approximate Optimization Algorithm)
provide an alternative to annealing, encoding QUBO problems into parameter-
ized quantum circuits [3]. While both implementations in Qiskit, and Cirq offer
access to both simulators and real devices, CUDA-Q is focused on simulations
and does not support real quantum devices. However, practical execution of
QAOA remains constrained by circuit depth, noise, and calibration drift.

3 Background

3.1 QUBO and Ising Formulations

Combinatorial optimization problems often admit reformulations into the Quadratic
Unconstrained Binary Optimization (QUBO) model, a standard mathematical
structure in both classical and quantum computing [6]. A QUBO instance is
defined by a real symmetric or upper triangular matrix @ € R™*™ and seeks a
binary vector z € {0,1}"™ minimizing the objective function:

E(z) =2TQx (1)

This framework enables encoding of problems such as Max-Cut, 3SAT, QAP,
and TSP by transforming constraints into penalty terms. For example, a con-
strained problem of the form Az = b can be absorbed into the QUBO cost using
a quadratic penalty term:

E(z) = 27Qx + || Az — b2 2)

where A > 0 controls the weight of the constraint penalty. The resulting
function remains quadratic in x, allowing the entire problem to be expressed as
a QUBO.

QUBO is equivalent to the Ising model, commonly used in quantum anneal-
ing. The transformation between the binary variable x; € {0,1} and the Ising
spin variable s; € {—1,+1} is given by:

o 1 + s;
2
Applying this transformation, the QUBO Hamiltonian becomes:

(3)

€Ty
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E(X) = Z Q“Iz + Z QijZCin, (4)

1<J

E(s)—;Q“<1;si>+ZQij (1;‘9> (1?]—) (5)

i<j
=Y Y Y sy (6)
i 1<j
E(s) = const + Z his; + Z Ji;j8i8;, (7)
i i<j

where h; and J;; are derived from (), and the resulting energy landscape corre-
sponds to the Ising Hamiltonian model [11].

3.2 Quantum Annealing Process

Quantum annealing (QA) is a metaheuristic that uses quantum tunneling to ex-
plore the solution space of discrete optimization problems. The annealing process
begins with a driver Hamiltonian Hp whose ground state is easily prepared (of-
ten a transverse field). Over a time-dependent schedule, the system interpolates
toward a problem Hamiltonian Hp encoding the QUBO (or Ising) cost function:

H(t) = A(t)Hp + B(t)Hp 8)

The coefficients A(t) and B(t) define the annealing schedule, which generally
satisfies A(0) > B(0) and A(T) < B(T), where T is the total annealing time.
Under adiabatic conditions, the system remains in its instantaneous ground state
throughout evolution [13].

Unlike classical simulated annealing, which relies on thermal noise to escape
local minima, QA leverages quantum tunneling, enabling transitions across en-
ergy barriers that may trap classical solvers [14].

3.3 QAOA on Gate-based Quantum Computers

The Quantum Approximate Optimization Algorithm (QAOA) is a variational
algorithm designed for gate-based quantum devices, inspired by adiabatic quan-
tum computation and quantum annealing. QAOA approximates the solution to
combinatorial optimization problems, such as QUBO or Ising models, by al-
ternating between the application of a problem Hamiltonian Hp and a driver
Hamiltonian Hp.

The QAOA circuit consists of p layers, each applying a unitary evolution
under the Hamiltonians Hp and Hp with variational parameters -y, and G:

p
[p(v.8)) = [ [ em P ttmemntirj)on (9)

k=1
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Here, |+)®" is the uniform superposition over all computational basis states.
The parameters v = (v1,...,7,) and 8 = (f1,...,5p) are optimized by a clas-
sical outer loop to minimize the expectation value of Hp [3].

In the limit p — oo, QAOA can theoretically reproduce the adiabatic trajec-
tory of quantum annealing, but in practice, even shallow circuits often yield good
approximate solutions. Unlike analog quantum annealing, QAOA is compatible
with near-term devices, noisy gate-model quantum hardware and enables hybrid
quantum-classical optimization [7].

4 Experiment

4.1 Solver Overview

We evaluated solver frameworks across combinatorial optimization problems:
Fixstars Amplify, D-Wave Advantage, and IBM Qiskit QAOA. All solvers were
accessed via official cloud APIs or SDKs using default configurations, unless
otherwise stated.

While additional classical solvers, including Gurobi and brute-force baselines,
were included in our full benchmark suite, we will not go into details for all
of them. Full comparative results are reported in our prior work [10] and are
excluded here for brevity and clarity of discussion.

Fixstars Amplify. A GPU-accelerated, quantum-inspired annealer that
performs simulated annealing (SA) over QUBO-defined landscapes. It runs en-
tirely on cloud hardware via REST API. Experiments used the default Simulated
Annealing engine under the Basic Evaluation Plan.

D-Wave Quantum Annealing. Experiments were conducted using the
Advantage System 6.4 quantum annealer through the D-Wave Leap cloud plat-
form. We employed default parameters except for num_reads, which was set
to 1000 to ensure sufficient sampling. Parameters such as chain_strength and
annealing_time were left at default values in line with recommendations for
initial benchmarking.

IBM Qiskit QAOA. Due to persistent execution failures, QAOA was ex-
cluded from the benchmark comparison and analyzed qualitatively in Section 5.

4.2 QUBO Model Formulations

Each combinatorial problem was encoded in QUBO form. For constraint-based
problems (QAP and TSP), constraints were incorporated using quadratic penalty
terms scaled by a fixed weight A\. The general QUBO structure takes the form:

H = Ho + M\g(x) (10)

where Hp is the objective and g(z) is the penalty function enforcing fea-
sibility. Penalty weights were chosen based on empirical calibration to prevent
solution distortion while preserving constraint enforcement.
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4.3 Execution Environment and Protocols

All solvers were evaluated on identical problem instances generated using fixed
seeds. D-Wave and Fixstars experiments were run via their respective cloud
APIs. Solver performance was measured under the following protocols:

Each solver was given a maximum runtime of 10 seconds per problem in-
stance.

— Fixstars and D-Wave were used as-is through the Amplify SDK.

— D-Wave’s num_reads parameter was set to 1000.

Each reported result represents the average of 10 independent trials.

Performance was measured in terms of success rate, solution accuracy, and
time-to-first-optimum (see Section 4.4 for metric definitions).

4.4 Experimental Metrics

To evaluate solver behavior, we recorded:

— Feasibility Rate: The proportion of runs returning syntactically valid so-
lutions.

— Solution Accuracy: The percentage of solutions matching known optima
or baselines.

— Execution Time: Average solver runtime per instance (ms).

4.5 Experiment Result

The results indicate that Fixstars achieves high accuracy with relatively short
runtimes, showing better scalability than traditional solvers. Its performance on
sparse problems like 3SAT remains consistently strong, and even dense problems
like QAP are solvable up to moderate sizes.

In contrast, the D-Wave quantum annealer currently performs worse overall
due to limitations in processing larger problem sizes on its hardware, effectively
handling sparse problems like 3SAT but struggling with dense ones such as QAP
and TSP because of minor embedding challenges and topology constraints.

Despite these limitations, D-Wave exhibits promising signs of linear time
growth, with only modest increases as problem sizes scale. This trend is evident
across all three problem types (Figures 1,2,3), highlighting its potential for future
advancements in tackling complex combinatorial optimization efficiently.

These findings underscore the evolving role of quantum annealing in the NISQ
era, emphasizing the need for hybrid approaches to overcome current hardware
barriers and achieve broader quantum advantages.

Table 1 is adapted from our previous work [10].
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Table 1. Summary of D-Wave results for 3SAT, QAP, and TSP

3SAT QAP TSP
size  acc(%)  time (ms) size acc(%) time(ms) size acc(%) time(ms)
20 100.000 95.803 4 100 94.444 4 100 94.443
40 99.000 106.503 5 70 99.603 5 100 99.603
70 97.091 126.205 6 0 106.165 6 20 106.164
111 97.033 190.226 7 0 124.323

268  97.523 193.467
400  95.661 211.567
530  95.721 227.981

5 Benchmark Fragility

Reproducibility is a well-established concern in quantum algorithm evaluation,
but its root causes increasingly stem from infrastructural-—not algorithmic—fragility.
Mauerer & Scherzinger (2022) explicitly highlight the importance of reproducibil-
ity engineering in quantum software experiments. Their approach advocates for
packaging code and configuration to remain traceable even when common hard-
ware or vendor platforms change [12].

Our own experience supports this diagnosis. After initial success using D-
Wave’s Advantage System 6.4 through the Leap cloud interface, it could not be
accessed with the same free-tier account after D-Wave releases as new pricing
model. In the case of IBM Qiskit, we attempted to follow the official QAOA
MaxCut tutorial?, which was functional on simulators. However, adapting the
same circuit logic to more general QUBO problems like TSP failed to yield valid
results. Even on simulation, QAOA produced nonsensical tours for instances
less than 5 nodes. This contrasts sharply with classical solutions obtained us-
ing NumPy and Scipy-based optimizers, which matched the known optimum.
Furthermore, when transpiled and submitted to real quantum backends, jobs
consistently failed to complete due to interactivity timeouts in the Qiskit Run-
time environment. These timeouts likely stemmed from session mismanagement
or delays exceeding the platform’s job queuing threshold, which disconnects users
from backend access during extended idle periods between QAOA iterations.

6 Discussion

Our benchmarking results reveal not only the relative performance of quantum
and classical QUBO solvers, but also the operational fragility that underlies
current quantum computing infrastructure—both at the hardware and software
level. This section reflects on the empirical findings, methodological decisions,

2 https://quantum.cloud.ibm.com/docs/en/tutorials/quantum-approximate-
optimization-algorithm
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and broader reproducibility implications, particularly in light of evolving quan-
tum cloud services.

6.1 QAOA and Workflow Limitations in General QUBO Problems

Building on the practical failures discussed in Section 5, we now reflect on the
broader implications these issues have for solver behavior, quantum benchmark-
ing methodology. Although the Qiskit version (1.3.1) supported QAOA un-
der the qiskit.algorithms and qiskit.optimization modules, these modules
were removed from official giskit support at the time of experimentation. They
remained widely indexed in online documentation and tutorials, leading us to
adopt an outdated implementation path unknowingly.

These failures were not due to quantum noise, or algorithmic instability, but
to volatility at the software and platform layers. Such infrastructural disruptions
pose a methodological threat to the integrity of longitudinal quantum experi-
ments and must be addressed as a first-class concern in quantum benchmarking
research.

6.2 Reproducibility and Structural Fragility in QCaaS Workflows

The broader insight from our benchmarking effort is the fragility of quantum
workflows under the QCaaS paradigm. Access to D-Wave’s cloud platform was
inconsistent: after initial experiments using Advantage 6.4, subsequent team
members were unable to access the same solver endpoints under the free-tier
account. Similarly, software-layer volatility in Qiskit made it difficult to execute
and generalize otherwise functional circuits. These issues were not due to algo-
rithmic shortcomings, but rather to unstable access models, poorly maintained
legacy APIs, and weak documentation pathways.

This supports the view that reproducibility in quantum computing must
be treated as a systems-level concern. Fragility arises not only from quantum
noise or hardware constraints but from the broader ecosystem—SDK evolution,
cloud API policies, and the discoverability of supported workflows. Until these
structural issues are addressed, benchmarking results must be interpreted within
the context of their platform dependencies and temporal validity.

6.3 Toward Robust Benchmarking Standards

The fragility observed in quantum benchmarking is not an incidental artifact—it
is a reproducible phenomenon that demands formal attention. As quantum
computing transitions into an infrastructure-intensive discipline, benchmark-
ing methodologies must evolve to address both algorithmic performance and
systems-level resilience.

To that end, we propose a four-pronged framework for designing robust quan-
tum benchmarks that are resilient to evolving APIs, deprecations, and cloud-
access variability. This framework aims to standardize practices across research
teams and improve reproducibility in future studies.
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1. Standardized Baselines: Adopt shared, publicly available QUBO formu-
lations with open-source reference implementations and solution sets. These
should include canonical problems like Max-Cut, 3SAT, QAP, and TSP
across defined sizes (e.g., 4-20 variables). Publishing not just problem defi-
nitions but also embedding logic and parameter settings ensures consistent
testing.

2. Snapshot-Aware Experimentation: Every benchmark run should log the
full software and platform stack, including;:

— Backend name and version (e.g., advantage_6.4, ibmq_brisbane)

— SDK version (e.g., qiskit==1.3.1)

— API changes or warnings during execution

— Execution date, user tier (free, pay as you go, premium, etc), and region

(when relevant)

These metadata form a "benchmark snapshot" that, while not guaranteeing
full reproducibility on real quantum hardware—due to ongoing backend evo-
lution and calibration drift—enable more reliable re-execution in simulators
and simplify migration to updated software stacks.

3. Resilient Methodology: Benchmarks should emphasize robustness over
narrow tuning. Parameter sensitivity (e.g., D-Wave’s chain_strength, an-
nealing time) should be reported as distributions or sweeps, not single val-
ues. Similarly, use QUBO encodings that are platform-agnostic—avoiding
reliance on proprietary transpilation steps when possible.

4. Benchmarking the Benchmarks: Core benchmark suites should be re-
executed periodically (e.g., quarterly or annually) to measure longitudinal
drift in performance or compatibility. This meta-benchmarking helps de-
tect when infrastructure evolution introduces silent errors, regressions, or
improvements.

Together, these components shift benchmarking from a one-off evaluation
to a reproducible and portable protocol. In future work, we envision a feder-
ated benchmarking registry—akin to MLPerf in machine learning—that tracks
quantum benchmark scores, version metadata, and known failure modes.

Finally, we recommend that platform-layer failure modes (e.g., runtime er-
rors, silent crashes, or API deprecations) be explicitly reported in benchmark
papers, not discarded as outliers. Treating infrastructure behavior as part of the
benchmark result will accelerate progress toward both trustworthy evaluations
and robust software-hardware co-design.

7 Conclusion

This study revisits the problem of benchmarking quantum and classical solvers
on combinatorial optimization tasks encoded as QUBO models. Our original goal
was to evaluate D-Wave’s quantum annealing system alongside classical base-
lines and gate-based quantum algorithms. While our experiments did succeed
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in comparing D-Wave, Fixstars, Gurobi, and Brute Force on standard bench-
marks (3SAT, QAP, TSP), a deeper insight emerged: the fragility of quantum
benchmarking pipelines is now an intrinsic feature of working in this domain.

D-Wave’s annealer performed reliably within its embedding limits, show-
casing low-latency performance and high solution accuracy. Fixstars Amplify, a
quantum-inspired classical solver, consistently delivered the fastest results across
problem types and sizes. Gurobi remained a strong general-purpose baseline, par-
ticularly for small-to-medium instances. Yet despite our preparation, efforts to
run QAOA on IBM Quantum failed due to systemic shifts in the software ecosys-
tem: deprecated primitives, incomplete V2 support, and mismatched transpila-
tion workflows rendered the platform unusable for our purposes. These failures
were not due to algorithmic flaws or user error but stemmed from structural
volatility in the tooling stack.

The implications of these results extend beyond raw performance. Bench-
marking in quantum computing is no longer only a matter of evaluating speed
or scalability — it now requires explicit awareness of platform evolution, soft-
ware versioning, and service deprecation. As Hashim et al. note [8], reproducibil-
ity in quantum computing must grapple with a moving target: API instability,
hardware calibrations, and cloud service transitions all confound longitudinal
analysis.

We emphasize that benchmarking in quantum computing is no longer a
purely algorithmic task. It is an exercise in infrastructure navigation, repro-
ducibility engineering, and version-aware experimentation. Platform instabil-
ity—whether through API changes, job failures, or embedding collapse—must
be recognized as a core challenge, not a peripheral concern. To move the field
forward, we recommend:

— Treating solver configurations and backend versions as first-class experimen-
tal parameters.

— Recognizing and reporting platform-level failure modes as benchmark out-
comes.

As quantum computing transitions from theoretical promise to practical eval-
uation, methodological resilience will be as critical as raw performance. Our find-
ings are not a verdict on solver supremacy, but a call for mature, reproducible,
and infrastructure-aware benchmarking standards in the next phase of quantum
algorithm research.

Acknowledgments. The first three authors contributed equally to this work.
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