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Abstract— This study explores how well Grover's Algorithm 

performs in solving the Boolean Satisfiability Problem (SAT) using 

quantum circuits. The algorithm is implemented with IBM's Qiskit 

framework and compared to classical brute-force methods. 

Experiments focus on 3-SAT, 4-SAT, and 5-SAT problems, using 

quantum simulators and IBM quantum hardware. The results show 

that Grover's Algorithm is more efficient, offering a theoretical 

quadratic speedup over classical methods. However, practical issues 

like limited qubit availability, hardware noise, and optimization 

challenges impact its current performance. The data highlights the 

potential for quantum computing to scale and solve NP-complete 

problems. This research shows how quantum computing can 

improve problem-solving and lays the groundwork for future studies 

on more complex SAT problems and advanced quantum hardware. 
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I. INTRODUCTION 

Quantum computing is transforming how we solve complex 
problems, offering capabilities far beyond classical systems. 
This paper examines Grover's Algorithm, a quantum search 
algorithm known for its quadratic speedup, and its application to 
the Boolean Satisfiability Problem (SAT). SAT, a fundamental 
NP-complete problem, is critical in optimization, logic, and 
computational theory. Classical methods like brute force often 
struggle with the computational demands of SAT as problem 
size increases. 

Using IBM's Qiskit framework, this study implements 
Grover's Algorithm to solve 3-SAT, 4-SAT, and 5-SAT 
problems, benchmarking its performance against classical brute-
force methods. Experiments are conducted on quantum 
simulators and IBM hardware to evaluate computational 
efficiency and scalability. Despite current hardware limitations, 
the results highlight quantum computing’s potential for solving 
NP-complete problems, marking a significant step toward 
practical quantum algorithm applications. 

II. BACKGROUND KNOWLEDGE 

This section is divided into six parts. First, it will cover the 
Boolean Satisfiability Problem (SAT) and its complexity. 
Second, it will discuss classical approaches to SAT, focusing 
on brute-force methods and their limitations. The third section 

will introduce Grover's Algorithm and its potential speedup for 
solving SAT problems with quantum computing. Fourth, it will 
explore quantum computing and Qiskit, detailing the principles 
of quantum computation and the use of Qiskit for simulating 
quantum algorithms. Fifth, it will examine quantum 
entanglement and its role in quantum processes. Finally, the 
sixth section will discuss NP-Complete problems and their 
implications for SAT. 

A. Boolean Satisfiability Problem (SAT) 

First, The Satisfiability (SAT) problem is one of the most 
critical issues in computational theory, particularly in logic, 
constraint satisfaction, and various areas such as VLSI design 
and machine learning. SAT is the task of determining whether 
there exists an assignment of truth values to variables that makes 
a given Boolean formula satisfiable. This formula is typically 
expressed in Conjunctive Normal Form (CNF), where clauses 
are composed of literals (variables or their negations) connected 
by logical OR, and the overall formula is a conjunction (AND) 
of these clauses. SAT is central to a family of NP-complete 
problems, meaning that while a solution can be verified quickly, 
finding the solution itself may require non-deterministic 
polynomial time in the worst case. It has broad applications, 
including optimization, artificial intelligence, and circuit design. 
Traditional methods for solving SAT focus on treating it as a 
decision problem, employing algorithms such as resolution-
based techniques. However, more recent approaches have 
transformed the SAT problem into an optimization problem, 
where the objective is to minimize the number of unsatisfied 
clauses. This allows the use of iterative optimization techniques, 
including local search methods, which have shown increased 
efficiency for specific classes of SAT formulas compared to 
classical approaches [1]. 

B. Classical Approaches to SAT 

First, The Classically, SAT problems are often solved using 
algorithms like the brute-force method, which explores every 
possible combination of truth values, making it highly 
inefficient for large problems. More sophisticated algorithms, 
like the Davis-Putnam-Logemann-Loveland (DPLL) algorithm 
[2] and its variations, attempt to reduce the search space by 
recursively simplifying the problem. However, even these 
optimized algorithms struggle with the computational demand 



as the problem size increases. SAT solvers are widely used, but 
they have limitations when dealing with large, complex 
instances due to the exponential time complexity associated with 
NP-complete problems. 

C. Grover’s Algorithm 

Grover’s Algorithm, introduced by Lov Grover in 1996 
[3], is a quantum search algorithm that offers a quadratic 
speedup over classical search algorithms. It is designed to search 
through an unsorted database or solution space of size N in O(

√N) time, making it a powerful tool for solving problems like 
SAT. While classical brute-force methods for SAT operate in 

exponential time (O(2^n) for n variables), Grover’s Algorithm 

can reduce the time complexity to O(√ 2^n), offering a 
significant performance advantage, particularly for large 
problem instances. Grover’s Algorithm is particularly suited for 
structured search problems and demonstrates the potential of 
quantum computing to solve NP-complete problems more 
efficiently than classical methods. 

D. Quantum Computing and Qiskit 

Quantum computing leverages the principles of 
superposition and entanglement to perform operations on 
quantum bits (qubits), which can represent both 0 and 1 
simultaneously. This allows quantum computers to process vast 
amounts of data in parallel, which classical computers cannot 
achieve [4]. Qiskit is an open-source quantum computing 
framework developed by IBM [5], which provides tools for 
designing, simulating, and running quantum circuits. Qiskit’s 
quantum simulators enable the testing of quantum algorithms, 
such as Grover’s, in a controlled environment before deploying 
them on actual quantum hardware. The framework is essential 
for experimenting with quantum algorithms and comparing their 
performance to classical methods. 

E. Quantum Entanglement 

Quantum entanglement, a foundational concept in quantum 
mechanics, refers to the non-classical correlations between 
subsystems of a compound quantum system. Initially recognized 
by Einstein, Podolsky, and Rosen, it took over 70 years to be 
fully appreciated as a tangible resource with profound 
implications for quantum processes. Entanglement plays a 
central role in quantum cryptography, teleportation, and dense 
coding, offering potential for advances in quantum 
communication and computation. Despite its complexity and 
environmental fragility, entanglement is robust in theoretical 
frameworks, with tools like Bell inequalities and entanglement 
witnesses used for its detection and characterization. The 
irreversibility of entanglement manipulations, particularly in the 
context of bound entanglement, highlights its unique role in 
quantum communication and computation [6]. 

F. NP-Complete 

NP-Complete problems are a pivotal class within 
computational complexity theory [7]. A problem is in NP if, 
given a solution, it can be verified in polynomial time. Any 
problem in NP can be transformed into an NP-Complete 
problem in polynomial time. A problem P is NP-Complete if it 
is in NP and every problem Q in NP can be reduced to P using a 
polynomial-time transformation. This indicates that if any NP-

Complete problem can be solved in polynomial time, all NP 
problems can also be solved in polynomial time, effectively 
establishing that � = �� [8]. 

III. RELATED WORK 

We review the foundational and contemporary works 
relevant to the study of satisfiability problems (SAT) and the 
application of quantum computing, particularly Grover’s 
algorithm. It examines the classical complexity of SAT, the 
emergence of quantum computing, and the challenges and 
advancements in applying quantum algorithms to solve SAT 
problems. 

A. Satisfiability Problem 

The In the field of computational complexity, the 
Satisfiability Problem (SAT) plays a central role due to its wide 
applicability in logic, optimization, artificial intelligence, and 
computational theory. The work of Thomas J. Schaefer in "The 
Complexity of Satisfiability Problems" [9] made a significant 
contribution to this area by classifying a broad range of SAT 
problems and demonstrating that each problem in this infinite 
class is either polynomial-time solvable or NP-complete, with 
no intermediate complexity classes.  

Schaefer’s paper specifically explores the distinction 
between SAT instances with clauses restricted to two literals, 
which are efficiently solvable in polynomial time, and SAT 
instances with three literals per clause, which are proven to be 
NP-complete. This establishes a foundational result in that SAT 
problems with larger clause sizes are generally more 
computationally challenging and belong to the NP-complete 
class, for which no efficient (polynomial-time) solution is 
known unless P equals NP. Schaefer's work broadens this 
understanding by presenting a classification theorem that applies 
to an infinite family of SAT problems, determining whether a 
given SAT problem is in the polynomial-time solvable class or 
NP-complete, depending on the specific structure and 
constraints of the propositional formulas.  

Additionally, Schaefer extends this analysis to quantified 
SAT problems, a more complex version involving quantifiers, 
and demonstrates that these problems are either solvable in 
polynomial time or require exponential space. The results from 
this paper serve as a framework for identifying new NP-
complete problems, as well as polynomial-time problems, 
offering a deeper understanding of computational complexity in 
logic-based problem solving. Schaefer’s classification theorem 
has been a critical tool in the study of satisfiability problems and 
has inspired extensive research in both theoretical and practical 
aspects of computational complexity. 

B. The Significance of Quantum Computing 

The field of quantum computing has emerged as a 
revolutionary area of research, blending concepts from classical 
information theory, computer science, and quantum physics. In 
a paper, Quantum Computing [10], Andrew Steane highlights 
the pivotal role quantum computing plays in reshaping our 
understanding of computation and the natural world, particularly 
by integrating the concept of quantum information into the 
computational domain.  



Steane begins by positioning quantum computing within the 
broader framework of information theory, tracing its roots back 
to mid-20th century developments in classical information 
theory and computer science. Classical theories of computation, 
such as Turing machines and Shannon’s information theory, 
provide the foundation for understanding quantum computing's 
departure from classical systems. The difference is most notably 
captured in the Einstein, Podolsky, and Rosen (EPR) experiment 
and the EPR-Bell correlations [11], which distinguish quantum 
from classical physics. Quantum entanglement, as Steane notes, 
is a core component in these divergences, enabling new forms 
of computation and information transfer.  

A central theme in Steane’s review is the quantum bit 
(qubit), which serves as the fundamental unit of quantum 
information. Unlike classical bits, which are binary and exist as 
0 or 1, qubits can exist in superpositions of states. This principle 
underlies the significant. 

C. Exploring Grover’s Algorithm 

In recent years, quantum computing has emerged as a 
transformative field with the potential to outperform classical 
algorithms in various applications, particularly in data 
processing and optimization. One notable quantum algorithm is 
Grover's algorithm, which offers a quadratic speedup for 
unstructured search problems compared to classical 

counterparts. Grover’ s algorithm operates on a quantum 
superposition of states, allowing it to search through N items in 

approximately √N queries, a significant advantage over the 
O(N) time complexity required by classical search algorithms.  

The theoretical underpinnings of Grover’s algorithm 
demonstrate its applicability across various domains, including 
cryptography, database searching, and optimization problems. 
As the data landscape expands, with datasets reaching and 
surpassing petabytes, the demand for efficient algorithms like 
Grover’s is increasingly pressing. This need is particularly 
pronounced in areas such as machine learning and artificial 
intelligence, where rapid data processing is crucial. Recent 
studies have focused on implementing Grover’s algorithm on 
real quantum hardware, such as IBM's quantum computers. 
Mandviwalla et al. explore the practical application of Grover's 
algorithm through multiple implementations on IBM Q devices, 
providing empirical results that reflect the capabilities and 
limitations of current quantum technology. Their research 
highlights the challenges of achieving theoretical accuracy in 
practical applications, where factors such as qubit coherence and 
error rates play critical roles [12]. 

D. Grover’s Algorithm’s Impact on SAT Problems 

The satisfiability problem, particularly in its NP-complete 
form, poses significant challenges in classical computing. 
Specifically, determining whether a given Boolean formula in 
conjunctive normal form (CNF) is satisfiable involves searching 
through an exponential number of potential variable 
assignments. Grover's algorithm can be employed to enhance 
the efficiency of this search process, offering a promising 
approach to tackle the SAT problem.  

Cheng and Tao (2024) investigate the application of Grover's 
algorithm specifically for 3-SAT, a variant of SAT where each 
clause contains exactly three literals. They highlight the 

limitations imposed by current quantum technology, particularly 
the number of stable qubits available for practical 
implementations. The authors point out that the performance of 
Grover's algorithm is directly linked to the size of the oracle used 
and the number of repeated calls to it. This creates a constraint 
on the number of qubits that can be effectively employed 
without sacrificing performance [13]. 

E. Applications of Grover’s Algorithm Beyond SAT Problems 

One notable application of Grover's algorithm is in database 
search and pattern matching. Tezuka et al. (2024) proposes a 
novel approach that implements Grover's algorithm for image 
pattern matching, demonstrating its potential to enhance data 
retrieval processes significantly. The authors utilize an 
approximate amplitude encoding method in a shallow quantum 
circuit, enabling efficient data loading and amplitude 
amplification. This adaptation addresses the challenges 
previously faced in realizing the original motivations behind 
Grover's algorithm in practical settings [14].  

The algorithm operates by encoding the data in a quantum 
state that resembles the query, followed by an amplitude 
amplification process independent of the target data index. This 
approach not only highlights the algorithm's capability in 
traditional database search scenarios but also showcases its 
application in more complex contexts such as image processing, 
where pattern recognition and matching are crucial. 

F. Heuristic Method Limitations 

The paper “Computers and Intractability” by Garey and 
Johnson (1979) highlights key limitations of heuristic methods 
like WalkSAT and DOLL when applied to combinatorial 
optimization problems such as SAT. These heuristics, often used 
to find approximate or locally optimal solutions, do not 
guarantee finding the global optimum or even all solutions. 
WalkSAT, for example, relies on a probabilistic approach with 
random flips to explore the solution space, but it is prone to 
getting stuck in local minima, limiting its effectiveness. As these 
heuristics typically search only a small portion of the solution 
space, they may miss valid solutions or underperform on 
specific problem instances. In contrast, Grover's algorithm 
offers a significant advantage by providing a quantum speedup 
that allows it to systematically explore the entire solution space, 
with a high probability of success, and guarantees the discovery 
of the correct solution if run enough times. This fundamental 
difference—heuristics offering approximate solutions versus 
Grover’s exact search capability—makes heuristics less suitable 
for direct comparison with Grover's algorithm, which is 
specifically designed for exhaustive, exact search [15]. 

G. Classical Brute Force vs Classic Heuristics 

One notable application of quantum computing in solving 
SAT problems is the use of Grover's algorithm, which provides 
a quadratic speedup over classical brute force methods. While 
classical heuristics like WalkSAT and DPLL may perform well 
in practice, they are limited by their inability to guarantee a 
solution and potential performance bottlenecks as problem size 
increases. Montanaro (2016) discusses how Grover's algorithm 
offers a more scalable solution than classical methods, 
especially for larger instances, and suggests that benchmarking 



quantum algorithms against brute force is crucial because it 
provides a guaranteed solution, unlike heuristic methods [16]. 

H. Quantum Supremacy 

One notable application of quantum computing in solving 
Arute et al. (2019) demonstrated quantum supremacy by 
utilizing a noisy quantum processor to solve a specific random 
circuit sampling task, outperforming classical methods. This 
achievement marked a significant milestone in quantum 
computing, illustrating that quantum systems, despite being 
imperfect and subject to noise, can still provide a computational 
advantage for certain problems. While the quantum processor 
used in this experiment was not error-corrected, the results 
emphasize the potential of quantum computing to surpass 
classical methods in specific contexts, even with current noisy 
hardware. The experiment highlights the importance of 
continuing to explore the capabilities of quantum systems in 
their present noisy state, as it offers valuable insights into the 
future development of quantum computing [17]. 

IV. EXPERIMENTAL METHODOLOGY 

We outline the experimental methodology employed to 
evaluate the performance of Grover's algorithm on the 
satisfiability problems (3-SAT, 4-SAT, and 5-SAT). Utilizing 
Qiskit, we conduct experiments on both a quantum simulator 
and actual quantum hardware, when feasible. This allows us to 
compare the efficiency of Grover's algorithm against classical 
brute-force methods in solving these SAT problems. 

A. Overview of the Experimental Setup 

For the quantum simulations, we employed Qiskit, an open-
source quantum computing framework, running on Google 
Colab with the Qiskit Aer Simulator as the backend. This 
environment allowed us to efficiently prototype and test 
Grover's algorithm across different SAT problem instances. The 
flexibility of Qiskit enables the creation of quantum circuits 
tailored to the specific requirements of each problem, facilitating 
quick iterations and optimizations.  

To evaluate the performance of Grover's algorithm on actual 
quantum hardware, we used IBM's quantum processor, 
specifically the IBM Quantum System One, codenamed 
“Sherbrooke”. This platform provides access to real quantum 
devices, allowing us to compare results obtained from 
simulations with those executed on a physical quantum 
computer. The Sherbrooke device offers a limited number of 
qubits, which is crucial for the implementation of Grover's 
algorithm, particularly for larger SAT problems.  

For the classical brute-force approach, we implemented the 
SAT solving algorithm using Python in Google Colab. This 
setup enabled us to efficiently explore all possible combinations 
of variable assignments to determine the satisfiability of each 
SAT instance. By running the classical algorithm alongside the 
quantum implementations, we aimed to draw direct comparisons 
between their performance metrics.  

The experiments were designed to collect data on execution 
time and success rates for each algorithm across varying 
problem sizes. This comprehensive approach enables us to 
analyze the impact of problem size on computational speed and 

to predict the advantages of quantum computing as the number 
of qubits increases. 

B. Implementation of Grover’s Algorithm 

To begin, we express each SAT instance in a human readable 
format known as the Boolean string format. This format 
represents the SAT problem as a conjunction (AND) of 
disjunctions (OR), where each clause consists of literals, either 
as variables or their negations. Once the SAT problem is 
expressed in this format, we translate it into a quantum circuit 
using Qiskit's PhaseOracle function. The PhaseOracle generates 
a corresponding quantum oracle that marks the satisfying 
assignments (solutions) of the SAT problem.   

Next, Grover’s algorithm is applied to search for a satisfying 
solution. A register of qubits is prepared, with each qubit 
corresponding to one of the variables in the SAT problem. A 
Hadamard gate is then applied to each qubit to create an equal 
superposition of all possible states. This allows the algorithm to 
explore all potential variable assignments simultaneously, thus 
leveraging quantum parallelism.  

Before executing the quantum circuit, it must be optimized 
and transpiled for the target quantum hardware. The Qiskit 
transpiler is used to map the high-level circuit onto the hardware, 
minimizing gate errors and decoherence [18]. In our 
implementation, we set the optimization level to 3 to achieve the 
highest degree of optimization for both the simulator and 
quantum hardware. This step ensures that the circuit layout is 
optimized, reducing gate count and improving performance, 
which is crucial for obtaining accurate results, especially when 
using real quantum hardware with limited qubit coherence time. 

C. Experimental Procedure 

This section outlines the procedure for conducting 
experiments to solve 3-SAT, 4-SAT, and 5-SAT problems using 
both quantum and classical methods. The goal is to compare the 
performance of Grover's algorithm implemented in Qiskit on a 
quantum simulator and actual quantum hardware against 
classical brute-force algorithms implemented in Python.  

The first set of experiments is conducted using the Qiskit 
framework to implement Grover's algorithm on a quantum 
simulator as well as on IBM’s Sherbrooke quantum hardware. 
To compare the quantum results with classical methods, a brute-
force algorithm is implemented in Python. The brute-force 
algorithm systematically checks every possible combination of 
variable assignments to find the solution that satisfies the SAT 
problem.  

After gathering the experimental results from both quantum 
and classical approaches, the data will be compared in terms of 
execution time and accuracy. The time taken to execute Grover's 
algorithm on the Qiskit simulator and quantum hardware will be 
plotted against the size of the SAT problem (i.e., number of 
variables and clauses). The performance of the quantum 
simulator and quantum hardware will also be compared. 
Similarly, the time taken by the brute-force method in Python 
will be plotted against the size of the SAT problem.  

For the quantum experiments, the success rate of Grover's 
algorithm (i.e., how often the correct solution is found) will also 
be recorded and compared against theoretical expectations. The 



execution times for both quantum and classical approaches will 
be plotted on a graph to visualize the difference in scaling as the 
SAT problem size increases. This chart will help illustrate how 
quantum methods scale with increasing problem size in 
comparison to classical brute-force methods. 

D. Data Collection and Visualization 

Data collection was performed systematically during the 
experiments, ensuring that key metrics were recorded for each 
test case. For the quantum implementations, we gathered data on 
execution times from both the Qiskit simulator and the IBM 
Sherbrooke quantum processor. Key metrics included execution 
time, which is the total time taken for the algorithm to complete, 
measured in milliseconds, and success rate, which is the 
percentage of successful runs that resulted in the correct output 
for the given SAT instance.  

To facilitate the analysis of the data collected, we utilized 
graphical representations. Various types of visualizations were 
employed, including bar charts to compare the execution times 
of Grover's algorithm against the classical method for each 
problem size, and line graphs to illustrate trends in execution 
time as the size of the SAT problem increases, highlighting the 
potential benefits of quantum speedup. These visualizations 
aided in understanding how the performance of Grover's 
algorithm scales with problem size and the implication of 
increased qubit counts on computational efficiency. By 
analyzing these results, we aimed to derive conclusions 
regarding the potential of quantum computing to outperform 
classical methods in solving NP-complete problems. 

E. Limitations and Challenge 

While the experiments conducted in this paper offer valuable 
insights into the performance of Grover's algorithm for solving 
SAT problems, there are several key limitations and challenges 
that affect the scope and accuracy of the results.  

One of the most significant limitations of this study is the 
restricted number of qubits available on current quantum 
hardware. As Grover’s algorithm requires an increasing number 
of qubits to represent larger SAT problems (such as 6-SAT or 
higher), the available quantum computers, such as IBM 
Sherbrooke, do not have enough qubits to experiment with high-
complexity SAT instances. This limitation prevents us from 
exploring higher-order k-SAT problems and fully testing the 
scalability of Grover’s algorithm on such problems.  

Quantum computers available to the public, such as those 
provided by IBM, often have limited access times. The restricted 
usage time for the quantum hardware means that only a limited 
number of SAT problem instances could be run and tested, 
making it difficult to conduct large-scale experiments or repeat 
experiments extensively to improve accuracy. Additionally, the 
current error rates in quantum hardware can lead to less reliable 
results, further contributing to the challenges of performing 
high-precision experiments.  

Due to noise and decoherence in quantum systems, the 
results of the quantum experiments may not always be accurate 
or consistent with theoretical expectations [19]. While Grover’s 
algorithm is designed to provide quadratic speedup, this 
advantage can be diminished on real quantum hardware by 
issues like gate errors and readout errors. As a result, the 

outcomes presented in this paper are more indicative of the 
potential future performance of quantum computers rather than 
an exact measure of their current capabilities.  

The study focuses on 3-SAT, 4-SAT, and 5-SAT problems, 
which are relatively small instances due to the limitations of both 
classical and quantum computing resources. As a result, the 
experimental data may not fully represent how Grover’s 
algorithm would perform on larger, real-world SAT problems. 
While the results provide insight into how increasing problem 
size affects execution time, the conclusions drawn here are more 
predictive and hypothetical for future experiments with more 
powerful quantum hardware.  

Given the limitations mentioned above, this paper 
emphasizes the collection of data to make predictions about the 
future of quantum computing rather than delivering concrete, 
definitive results. The experiments conducted serve as a 
preliminary foundation for future research. The predictions 
made in this paper are based on extrapolations of the data 
collected from small-scale experiments, and more 
comprehensive studies are required once quantum computers 
with more qubits and greater stability become available. 

V. RESULT 

We collected results from the benchmark experiment. The 
experiment involved running 15 SAT problems on classical 
brute force, the Qiskit simulator, and the IBM Sherbrooke. 
These problems can be separated into three groups: 3-SAT, 
4SAT, and 5-SAT, each consisting of five problems. The results 
of each group were averaged across its five problems. 

 

Fig. 1. Execution time for classical brute force and the Qiskit simulator 

 

Fig. 2. Execution time for ibm_sherbrooke 



 

Fig. 3. Accuracy 

It is important to note the following disclaimers regarding 
the accuracy of the data collected. The experiments were 
conducted over a short period, resulting in a limited number of 
problem instances for testing. For the quantum algorithm, we 
used a fixed number of shots (1024) with a custom parameter 
setup that may not be optimized. The execution times reported 
for the real quantum hardware may not be entirely accurate, as 
we utilized time data from the built-in metrics function, which 
displays times in seconds without floating-point precision. 
Additionally, a fixed optimization level (3) was used for both 
the simulator and actual hardware, which may affect the 
performance results. 

VI. CONCLUSION 

The results show that classical brute force is the most 
efficient approach, achieving the fastest execution times and 
perfect accuracy across all problem sizes. The Qiskit simulator, 
while slower than classical brute force, demonstrated near-
perfect accuracy, making it a viable option for quantum 
simulations, though its execution times are not yet competitive 
for small problem sizes. On the other hand, IBM Sherbrooke 
quantum hardware exhibited significantly slower execution 
times and lower accuracy compared to both classical methods 
and the simulator, suggesting that quantum hardware, as of now, 
is not yet suitable for solving SAT problems of these sizes 
effectively. 

These findings highlight the current dominance of classical 
methods in terms of both execution time and accuracy, with 
quantum simulators offering a promising but slower alternative. 
The results also emphasize the need for further advancements in 
quantum hardware and algorithms to make quantum computing 
competitive for SAT problem-solving tasks. 

Future work should focus on optimizing quantum hardware 
and developing more efficient quantum algorithms to improve 
both the execution time and accuracy for larger and more 
complex problem instances. Grover’s Algorithm, while 
theoretically offering a quadratic speedup, faces significant 
scalability challenges as the clause size increases beyond 
problems like 3-SAT. As we approach 5-SAT and beyond, the 
size of the search space grows exponentially, demanding more 
qubits, deeper quantum circuits, and greater coherence times 
than current hardware can support. Furthermore, encoding large 
SAT instances into quantum oracles becomes increasingly 
complex, and error rates compound with circuit depth, further 
diminishing practical performance. Addressing these issues will 

be critical to realizing the full potential of Grover’s Algorithm 
for real-world applications. Research into error mitigation, more 
compact oracle representations, and hybrid quantum-classical 
strategies may be key to overcoming these scalability limitations 
soon. 
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