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The classification of sugarcane quality by computer vision is 
important for optimizing sugar production. This research focuses 
on improving a system for sugarcane quality assessment. The 
system uses deep learning models, including MobileNetV2 and 
ResNet50V2, and incorporating synthetic data generation through 
diffusion models. The synthetic data, generated through a 
controlled blending process and segmentation-base augmentation, 
is used to enhance the system performance. The result of the study 
shows a classification accuracy of 98% across five sugarcane 
quality categories. 
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I. INTRODUCTION  
The classification of sugarcane quality by computer vision 

is essential for optimizing sugar production and ensuring fair 
trade between farmers and factories. Manual inspection 
methods, traditionally used for evaluation, often result in 
inconsistencies and human error. AI-based classification 
models offer a scalable and accurate alternative, improving 
efficiency and transparency in the industry. 

 This study enhances sugarcane quality assessment by 
utilizing deep learning models, including MobileNetV2 and 
ResNet50V2, and integrating synthetic data generated through 
diffusion models. One of the major challenges in sugarcane 
classification is the imbalance in datasets, where categories 
such as Fresh-trash, Burn-clean, and Burn-trash are 
underrepresented. This imbalance reduces classification 
reliability, particularly in real-world applications. 

To mitigate this issue, the study applies Diffusion 
Probabilistic Models (DDPM) with ControlNet-guided 
synthetic data generation. This approach produces high-
fidelity synthetic images that accurately reflect real-world 
variations. Additionally, an image blending technique 
simulates smooth transitions between quality classes, 
enhancing the model's ability to distinguish subtle differences 
between fresh and burnt, as well as clean and contaminated, 
sugarcane samples. 

Segmentation-based augmentation is a key component of 
this method. The research incorporates U-Net segmentation 
models to create detailed annotations of sugarcane 
components, ensuring synthetic data accurately mirrors actual 
field conditions. ControlNet further enhances the dataset by 

preserving critical structural details needed for accurate 
classification. 

By addressing key challenges in sugarcane classification, 
this research establishes a scalable AI-based solution for 
quality assessment. The findings provide a framework for 
broader applications in agricultural automation and 
sustainable farming practices. 

II. CONCEPTS 

A. Data Imbalance and Regional Variability 
Data imbalance is a common challenge in supervised 

learning, where certain classes are overrepresented, while 
others lack sufficient samples. This imbalance leads to model 
bias, as the classifier tends to favor the dominant classes 
during training. In sugarcane quality classification, 
underrepresented classes such as Burn-trash often result in 
reduced model accuracy, particularly for minority categories. 
To mitigate this, balancing techniques such as data 
augmentation, oversampling, and synthetic data generation 
are employed. One standard metric for evaluating imbalanced 
classification is the F1-score, which balances precision and 
recall for each class. 

𝐹1 = 2 ⋅
Precision ⋅ Recall
Precision + Recall 

 
This metric highlights the trade-offs between false 

positives and false negatives, particularly critical in scenarios 
with uneven class distributions. 

B. Diffusion Models for Synthetic Data Generation 
Diffusion models are a class of generative models that 

estimate the probability distribution of observed data through 
a forward and reverse diffusion process. These models 
progressively add Gaussian noise to input data during the 
forward process and learn to reverse this process to reconstruct 
the original data. Forward Diffusion Process: The forward 
process incrementally adds noise. 

Forward Diffusion Process, the forward process 
incrementally adds noise. Here, 𝑥! represents the noisy data 
at timestep 𝑡, and 	𝛽!	controls the variance of the noise. 
 

𝑞(𝑥!|𝑥!"#) = 𝒩8𝑥!; :1 − β!𝑥!"#, β!𝐼? 
 



Reverse Diffusion Process: The reverse process removes 
noise iteratively.  
 

𝑝"(𝑥!#$|𝑥!) = 𝒩(𝑥!#$; µ"(𝑥! , 𝑡), σ!%𝐼) 
 
The predicted noise, 𝜖&(𝑥! , 𝑡)	is used to estimate 𝜇&(𝑥! , 𝑡) 
 

µ"(𝑥! , 𝑡) =
1
3α!

5𝑥! −
β!

31 − α!8
ϵ"(𝑥! , 𝑡): 

 
Loss Function: Training aims to minimize the discrepancy 
between actual noise (𝜖) and predicted noise (𝜖&) 
 

𝐿Diffusion = 𝐸'𝟘,),![|ϵ − ϵ"(𝑥! , 𝑡)|
%] 

 
Diffusion models, such as Stable Diffusion, have proven 
effective in generating high-quality synthetic data that 
mimics real-world distributions, making them ideal for 
addressing data imbalance in sugarcane classification. 
 
C. ControlNet for Conditional Image Generation 

ControlNet enhances the functionality of diffusion 
models by providing external conditioning, such as edge 
maps or segmentation masks, to guide image generation. This 
approach allows for precise control over the generated 
images, ensuring structural fidelity and alignment with 
domain-specific requirements. Conditioning with Edge 
Maps, Canny edge maps (𝐸) are used as a conditioning vector 
to enforce structural constraints. where 𝐼 is the input image, 
and 𝐸 represents its edge-based skeleton. 
 

𝐸 = Canny(𝐼) 
 

ControlNet Integration, ControlNet integrates the 
conditioning vector into the latent diffusion process by 
freezing the weights of the pre-trained diffusion model and 
adding a trainable copy. This design maintains the 
generalization capabilities of the original model while 
enabling adaptation to new structural requirements. 
 

𝑥?!#$ = ControlNet(𝐸, 𝑥! , 𝑡) 
 

Loss Function for ControlNet, ControlNet combines the 
diffusion loss with a structural consistency loss. Here, 𝜆 
controls the trade-off between structural alignment and data 
fidelity. 
 

𝐿ControlNet = 𝐿Diffusion + 𝜆|FeatureControlNet(𝐸)
− FeatureTarget|% 

 
ControlNet is particularly valuable for generating 

synthetic sugarcane images with complex structures, such as 
varied arrangements of fresh and burnt cane, ensuring high-
quality data for model training. 
 
D. Multi-Model Diffusion for Regional Adaptation 

The Multi-Model Diffusion approach extends the 
capabilities of single diffusion models by introducing 
multiple condition-specific models to capture regional 
diversity. In Thailand’s sugar industry, regional variations in 

environmental conditions, such as lighting and dust levels, 
significantly impact data distributions. Regional Embedding, 
Regional characteristics are encoded as additional input 
conditions, this embedding enables the diffusion process to 
adapt to specific regional features. 
 

𝑥?!#$ = 𝑓(𝑥! , 𝑡,Region) 
 

Synthetic Data Pipeline, the pipeline integrates multiple 
diffusion models to generate region-specific data, ensuring 
that the training dataset captures the full spectrum of 
environmental variations. 

𝑥!#$ =
1
3α!

5𝑥! −
β!

31 − α!8
ϵ"(𝑥! , 𝑡): 

 
E. Evaluation Metrics 

The effectiveness of synthetic data generation and its 
impact on sugarcane quality classification models are 
primarily evaluated using the Confusion Matrix, which 
provides a detailed breakdown of true positives (TP), false 
positives (FP), true negatives (TN), and false negatives (FN) 
for each class. This metric is particularly useful in analyzing 
the performance of classification models on underrepresented 
classes such as Burn-trash and Fresh-trash. 

III. DATA COLLECTION 
 Data Gathering, Setup, and Equipment, Data was 
captured using IP cameras with a resolution of 4 MP (2272 
pixels width × 1704 pixels height), installed at strategic 
positions in sugarcane truck weighbridge stations, recording 
images via the RTSP protocol using an NVR and a PC Agent, 
capturing a physical area of approximately 2.50 meters 
(width) × 1.875 meters (height), with cameras mounted 
approximately 2.5 meters above the sugarcane load, 
providing clear and consistent imaging conditions for 
analysis.

 
Fig. 1. Camera Setup for Sugarcane Inspection 

Cameras include four units, C101: Auto-LPR front-view 
camera capturing license plates and truck structure.C201: 
Top-front view camera. C301: Top-middle view camera 
(primary source for this research). C401: Top-back view 
camera. Images were recorded via the RTSP protocol using an 
NVR and a PC Agent. Data Specifications A synchronized 



timestamp was used to ensure the same moment was captured 
by all four cameras for each truck. Each truck generated 4 
images, leading to a total dataset of 18,020 images, with 4,505 
images per camera. 

 
Fig. 2. Camera Setup for Sugarcane Inspection 

The classification hierarchy is illustrated in Figure 2, The 
top-level category distinguishes sugarcane and undefined 
data. Further branches classify sugarcane into fresh or burnt, 
followed by the clean or trash subclasses. 

A. Data Labelling 
Images were categorized into five classes based on 

sugarcane conditions. Class 1: Fresh-clean (fresh, clean 
sugarcane), Class 2: Fresh-trash (fresh sugarcane mixed with 
trash), Class 3: Burn-clean (clean burnt sugarcane), Class 4: 
Burn-trash (burnt sugarcane mixed with trash) and Class 5: 
Undefined (unclear). 

 
Fig. 3. Class Distribution in Train and Test Data 

Expert Labeling, Five experts annotated the data using an 
agreement-based labeling method to ensure consistency. Data 
was split into training (80%) and test (20%) sets. Class 
Distribution, The dataset contains the following distribution 
across classes (Figure 3). Five experts annotated the data 
using an agreement-based labeling method to ensure 
consistency, Data was split into training (80%) and test (20%) 
sets. 

B. Preprocessing Pipeline 
Image Normalization Pixel values were normalized to a 

range of [0, 1] to enhance model convergence. Augmentation 
Techniques, Data augmentation was applied to the training 
set to balance the class distribution and improve model 
robustness such as Shear transformations, Brightness 
adjustments, Vertical flips and Random cropping and scaling. 
Model Training, Training Dataset, Training images were 
used to develop the machine learning model, with additional 
augmentation to mitigate class imbalance, Validation 
Strategy, A validation split was used to fine-tune the model 
before testing on the unseen dataset. Evaluation Metrics, 
Classification accuracy, precision, recall, and confusion 
matrices were used to evaluate model performance across all 
classes. Camera Setup and Data Synchronization. the multi-
camera setup captures sugarcane trucks from different 
perspectives.  
 

 
Fig. 4. Data Augmentation Examples 

This ensures comprehensive data coverage and allows for 
robust classification models trained on diverse views. By 
following these steps, the research leverages robust 
methodologies for high-quality data preparation, effective 
model training, and reliable sugarcane classification 
outcomes. Image Normalization Pixel values were 
normalized to a range of [0, 1] to enhance model 
convergence. Augmentation Techniques, Data augmentation 
was applied to the training set to balance the class distribution 
and improve model robustness such as Shear transformations, 
Brightness adjustments, Vertical flips and Random cropping 
and scaling. 
 

IV. MODEL CLASSIFICATION 

A. Model Classification 
Training Dataset, Training images were used to develop 

the machine learning model, with additional augmentation to 
mitigate class imbalance. Validation Strategy, A validation 
split was used to fine-tune the model before testing on the 
unseen dataset. Evaluation Metrics, Classification accuracy, 
precision, recall, and confusion matrices were used to 
evaluate model performance across all classes. 

First Step of Classification, this section describes the 
baseline implementation and evaluation of three AI models, 
including Simple-DCNNs, Resnet50v2, and MobilenetV2, 
trained on the sugarcane dataset. The goal is to establish a 
benchmark for classification accuracy before applying data 
augmentation techniques and other optimizations. 



Training Configuration Optimizer: Adam optimizer was 
used to minimize the sparse categorical cross-entropy loss. 
Batch Size: 64 images. Epochs: Trained for 50 epochs. 
Validation Split: 20% of the training dataset was used for 
validation. Early Stopping: Implemented with a patience of 5 
epochs, monitoring validation loss. 

Performance Evaluation Simple-DCNN model 
achieved an overall accuracy of 64.8% on the test dataset. A 
confusion matrix was generated to analyze class-wise 
performance. 

 
Fig. 5. Confusion Matrix of Simple DCNNs Model 

Comparative Models The same dataset was used to train 
and evaluate ResNet50V2 and MobileNetV2 models to 
provide a comparative baseline. ResNet50V2 A pre-trained 
model with ImageNet weights was fine-tuned on the 
sugarcane dataset. Achieved higher accuracy than Simple-
DCNN, especially for complex classes like Burn-trash. 
MobileNetV2 Lightweight architecture with fewer 
parameters, making it faster for training and inference. 
Accuracy was comparable to ResNet50V2 for majority 
classes but slightly lower for minority classes. 

TABLE I.  COMPARE CLASSIFICATION MODEL 

 
a. The best result came from ImageNetv2. It has highest accuracy. 

 

B. Data Synthesis 
The data analysis revealed that the classification 

accuracy of the model was significantly lower for class2-
fresh-trash, class3-burn-clean, and class4-burn-trash 
compared to other classes. To address this imbalance and 
improve the performance of the model, additional data was 
generated using two complementary approaches: Data 
Augmentation and Data Synthesis. 

 

Fig. 6. DDPM and ControlNet-Based Diffusion Model 

Using these labels, blended images were created to 
simulate the transition across the quality spectrum: Blended 
Images of Class1-Class2: Representing fresh-clean to fresh-
trash transitions at levels 0, 10, ..., 100, where 0 indicates 
clean sugarcane and 100 indicates highly trash-filled. 
Blended Images of Class3-Class4: Representing burnt-clean 
to burnt-trash transitions at levels 0, 10, ..., 100, where 0 
indicates clean sugarcane and 100 indicates highly burnt 
components. Diffusion Process Pipeline the Diffusion 
Synthesis Process is illustrated in Figure 5. The steps include 
Input Data: Images are labeled and segmented based on 
expert annotations. Canny Edge Detection: The Canny Edge 
Detection algorithm is used to extract structural edges of 
sugarcane components. Segmentation Model (U-Net): The 
segmented edges are classified into Shape1, Shape2, and 
Shape3. Diffusion Model: A DDPM-based model, guided by 
the ControlNet, generates synthetic sugarcane images based 
on the blended image quality levels. 

 
Fig. 7. Segmented Edge (Shape1, 2, 3) 

Comparison of Augmentation and Synthesis To 
evaluate the impact of the synthetic data on model 
performance, the experiments compared results from: 
Baseline Training: Using the original dataset with standard 
augmentation. Synthesis Training: Using the original dataset 
supplemented with synthetic data. Results of classification 
accuracy for the models Simple DCNNs, ResNet50V2, and 
MobileNetV2 indicated significant improvements in 
accuracy for the previously underperforming classes.  



C. Denoising Diffusion Probabilistic Models 
Image Blending for Synthetic Data Creation Objective, 

Blend images between classes to simulate transitions and 
enrich data for underrepresented classes. Blending Strategy, 
Class 1 (Fresh-Clean) ↔ Class 2 (Fresh-Trash), Class 3 
(Burn-Clean) ↔ Class 4 (Burn-Trash). Image Augmentation, 
Gradual blending ensures smooth transitions across data 
distributions. 

 
Fig. 8. Generate High-Fidelity Synthetic Images 

Denoising Diffusion Probabilistic Models for Synthetic 
Data Refinement Purpose, to generate high-fidelity synthetic 
images for underrepresented classes (e.g., Burn-Clean and 
Burn-Trash). Process, Canny Edge Input: Edge maps from 
ControlNet serve as the guiding input for diffusion-based 
image generation. U-Net Backbone, integrated with a PPDM 
diffusion mechanism to denoise and refine synthetic images. 
Iterations: Multiple iterations were conducted to improve the 
realism of the generated images. Result, Synthetic data with 
fine details and balanced distributions. 

V. RESULTS 
Overall Accuracy Improvement, all evaluated models 

(Simple-DCNNs, ResNet50V2, MobileNetV2) showed 
higher accuracy when trained on datasets enhanced with 
synthesized data compared to augmented data. This 
demonstrates the robustness of synthetic data generated 
through Diffusion Models, ensuring high-quality and diverse 
training samples. 

TABLE II.  COMPARE SYNTHESIS DATA AND AUGMENTATION 

 
b. The best result came from After Synthesis It has higher than Augmentation accuracy. 

 
From Table II, it is evident that synthetic data 

generation using Diffusion Models provides a superior 
solution for handling limited and imbalanced datasets. The 
results highlight its potential for improving the performance 
of classification tasks in various domains. Model 
Performance of Simple-DCNNs, Accuracy improved 
significantly post-synthesis, reflecting its ability to benefit 
from better-distributed datasets, despite being a relatively 
simpler model. 

ResNet50V2, Achieved the highest improvement among the 
tested models. The architectural depth and robustness of 
ResNet50V2 enabled it to utilize synthesized data effectively. 
MobileNetV2: Showed consistent improvement, making it 
highly suitable for edge deployment scenarios due to its 
lightweight architecture and efficiency. Class-Level 
Performance of Synthesized data improved classification 
accuracy in the most challenging classes (e.g., class3-burn-
clean, class4-burn-trash). These classes typically suffered 
from imbalanced datasets or poor representation, which the 
Diffusion Model addressed effectively. 

Comparison to Augmentation Traditional augmentation 
techniques, while useful, are limited in their ability to 
diversify data meaningfully beyond transformations such as 
flipping, rotation, and scaling. Diffusion-based synthesis 
created entirely new samples, mimicking real-world 
variations, leading to better generalization and improved 
classification performance across all classes. 

VI. SUMMARY 
In this thesis, the comparison of different models 

demonstrates that MobileNetV2 achieved the best overall 
performance, particularly after the application of synthetic 
data generation using Diffusion Models. The following 
points summarize the key findings and the justification for 
selecting MobileNetV2 as the best model in this research, 
Key Strengths of the model, Accuracy of MobileNetV2 
achieved an overall accuracy of 98.0%, outperforming other 
models such as Simple-DCNNs and ResNet50V2 in 
classification tasks involving five distinct sugarcane quality 
classes. Class-Level Accuracy, Class1 (Fresh-Clean): 98.1% 
accuracy with minimal misclassification. Class2 (Fresh-
Trash): 97.1% accuracy, significantly improved by synthetic 
data. Class3 (Burn-Clean): 94.3% accuracy, addressing 
previous challenges with class imbalance. Class4 (Burn-
Trash): 98.2% accuracy, the highest among all models for this 
class. Class5 (Undefined): 99.4% accuracy, showcasing 
exceptional robustness. 
 

 
Fig. 9. Confusion Matrix of MobileNetV2 (After Synthesis) 

MobileNetV2 is identified as the best-performing model 
in this thesis due to its ability to consistently deliver high 
accuracy across all classes while maintaining computational 
efficiency. Its success highlights the importance of 
combining state-of-the-art architectures with innovative data 



augmentation techniques, such as Diffusion Models, to 
overcome challenges in data scarcity and imbalance. The 
adoption of MobileNetV2 provides a scalable and efficient 
solution for real-time sugarcane classification in industrial 
applications, effectively meeting the operational needs of 
sugar factories across Thailand. 

VII.  FUTURE WORK 

 The proposed system holds significant potential for 
widespread adoption and scalability across Thailand's sugar 
industry, beginning initially with practical deployment in 
eight leading sugar factories, and subsequently expanding to 
all factories nationwide. By effectively deploying advanced 
image classification models enhanced with synthesized data, 
the system can significantly improve operational 
transparency and fairness between farmers and factories. 
Accurate classification results ensure that farmers receive 
equitable compensation corresponding precisely to the 
quality of their sugarcane, addressing longstanding issues of 
subjectivity and inconsistency associated with manual 
assessments. Furthermore, broader implementation of this 
automated classification system can facilitate large-scale data 
collection, enabling deeper analytical insights and better-
informed agricultural practices, ultimately enhancing the 
overall productivity and sustainability of the sugar industry.  

Moreover, this research aligns directly with national 
efforts to address environmental concerns, particularly the 
critical issue of PM2.5 pollution caused predominantly by 
sugarcane burning. By providing a robust mechanism to 
reliably classify and quantify burnt and trash-contaminated 
sugarcane deliveries, the system encourages farmers and 
suppliers to reduce burning practices proactively. The 
transparent and accurate classification promotes responsible 
harvesting methods, encouraging practices such as 
mechanical harvesting or green harvesting, thus mitigating 
significant sources of air pollution. Widespread adoption of 
this technology could substantially decrease annual PM2.5 
emissions associated with agricultural burning, contributing 
positively to environmental sustainability and public health 
improvements across affected regions.  

Future extensions of this research can also explore 
integrating advanced real-time analytics and predictive 
capabilities into the existing framework. By incorporating 
predictive modeling techniques and machine learning-driven 
forecasting methods, sugar factories could anticipate delivery 
quality variations and operational requirements more 
effectively. Additionally, integrating blockchain or other 
decentralized ledger technologies could further enhance 
transparency, allowing immutable and traceable records of 
sugarcane quality assessments. Such integration would 
further reinforce fair trade practices, incentivize better 
agricultural management, and foster greater trust among 
stakeholders. Continued innovation and refinement of this 
system can thus deliver far-reaching benefits, supporting 
Thailand’s sugar industry's long-term economic growth, 
environmental responsibility, and social fairness. 
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