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Chapter 5

Processor Design: S1 a simple CPU

To illustrate how a processor can be designed, we will describe the design of a
simple hypothetical CPU called S1. S1 contains all the important elements of a
real processor. It is aimed to be as simple as possible so that students can
understand it easily. The architectural description of S1, its organization
(structure), its instruction set (ISA) and its behaviour (microsteps), is small
enough to fit into a few pages. A simulator of S1 at an instruction level is also
provided. Studying how the simulator work will enable students to modify and
design their own processors.

S1 is a 16-bit processor.  The instruction format is 16-bit fixed length.  The
address space is 10-bit, i.e. 1024 16-bit words.   It is a load/store architecture.  It
has 8 general purpose registers (R0..R7).

Figure 5.1  S1 microarchitecture
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The register bank has one write port, two read ports (2 operands can be read and
move to ALU in one cycle).  The datapath is 16 bits.  The ALU can perform
{add, cmp, inc, sub1} and stores the output in a temporary T register.  The
instruction register IR stores the instruction to be decoded.  IR is also connected
to the control unit CU.  The interface units to the memory consisted of a memory
address register (MAR), and a memory data register (MDR).  The program
counter PC stores the current instruction address and can be incremented by 1 for
the next instruction.

Instruction format
There are one long format (L-format) and one short format (S-format) for
instructions.  The opcode is 3 bits.  This is not enough for all types of operations.
One way to increase the number of opcode is to use "extended opcode".  In S-
format, the operands are registers, only 9 bits are used (op:3, r1:3, r2:3), therefore
there are enough room for more bits to encode the extended opcode.  One opcode
(7) denotes the extension of opcode from L-format to S-format.  Another 4 bits is
used (xop) to be the extended opcode.  This is adequate for this simple machine
and still have some room for an extension of its instruction set (such as floating-
point operations).

The instruction has two formats.  A field in an instruction is denoted
name:length.

1 L-format :  op r, ads

op:3 r0:3  ads:10
  15..13 12..10    9..0             bit position

2 S-format : 7 xop r1, r2

op:3 xop:4 r1:3 r2:3  u:3
  15..13  12..9  8..6  5..3   2..0  bit position

Instruction set

opcode  mnenomics                       meaning

0  ld M, r  M -> r load from memory
1  st r, M  r -> M  store to memory
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2  jmp c, ads  jump conditional
3  call  ads  push(PC), goto ads
7  xop

xop
0  mv r1,r2  r1 -> r2 move reg-reg
1  ld (r1),r2  (r1) -> r2 load indirect
2  st r1,(r2) r1 -> (r2) store indirect
3  add r1,r2 r1 + r2 -> r1
4  cmp r1,r2 compare, affect Z,S
5  inc r1 increment r1
6  ret pop(PC)

where r 0..7 , conditional code c 0..6 is: 0 always, 1 Z, 2 NZ, 3 LT, 4 LE, 5 GE, 6
GT, M is the address 0..1023.

The instruction 0..3 use the L-format which has 3-bit opcode (i.e. at most 8
instructions) when the opcode is 7 the instruction use S-format which extend the
operational code for another 4 bits (i.e. has maximum 16 extended instructions).
There are only two addressing modes: register-register and load/store M to access
the memory.  There are no immediate or index addressing.  (This is left as an
exercise to add more addressing mode to S1).  The jump instruction has
conditions: unconditional, equal, not equal, less than, less than or equal, greater
than or equal, greater than, which is determined by the condition code S sign-bit,
and Z zero-bit.

S1 microarchitecture

We study the operation of a hypothetical CPU in details, at the level of events
happening every clock cycle when the CPU executes an instruction. Our
description is in the form of Register Transfer Language (RTL) which represent
the event of data movement inside a processor. Naturally, the description at this
level of abstraction involves time. Each line of event happens in one unit of time
(clock). We call this description "microstep".

Pc state

IR<0:15>
PC<0:15>
MAR<0:15>
MDR<0:15>
R[0:7]<0:15>
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Z, S  zero, sign bit
Run

Mp state

M[0:1023]<0:15>

S1 microsteps

Notation
// comment
dest = source // data move from source to destination
e1 ; e2 // event e1 and e2 occur on the same time
M[a] // memory at the address a
IR:a // bit field specified by a of IR
<name> // label of sequence of operations
op( ) // ALU function

// running a program
PC = 0
Run --> ( <ifetch>

    <execute> )

<ifetch>
MAR = PC
MDR = M[MAR]  // mem read
IR = MDR ; PC = PC + 1

<execute> := ( // instruction decoding
(op = 0) --> <load>
(op = 1) --> <store>
(op = 2) --> <jump>
(op = 3) --> <call>
(op = 7) --> <extend>
)

<extend> := ( // extended instruction decoding
(xop = 0) --> <move>
(xop = 1) --> <loadr>
(xop = 2) --> <storer>
(xop = 3) --> <add>
(xop = 4) --> <compare>
(xop = 5) --> <increment>
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(xop = 6) --> <return>
)

<load>
MAR = IR:ADS
MDR = M[MAR]
R[IR:R0] = MDR

<store>
MAR = IR:ADS
MDR = R[IR:R0]
M[MAR] = MDR // mem write

<loadr>
MAR = R[IR:R1]
MDR = M[MAR]
R[IR:R2] = MDR

<storer>
MDR = R[IR:R2]
MAR = R[IR:R1]
M[MAR] = MDR

<move>
T = R[IR:R1]
R[IR:R2] = T

<add>
T = add(R[IR:R1], R[IR:R2])
R[IR:R1] = T

<compare>
CC = cmp(R[IR:R1], R[IR:R2]) // condition code set

<increment>
T = add1(R[IR:R1])
R[IR:R1] = T

<jump>
if testCC(IR:R0) // testCC( ) tests the IR:R0 against CC
then PC = IR:ADS

<call>
T = add1(R[7])
R[7] = T
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MAR = R[7] // sp+1 then put to stack
MDR = PC
M[MAR] = MDR
PC = IR:ADS

<return>
MAR = R[7]
MDR = M[MAR] // get item then sp ?1
PC = MDR
T = sub1(R[7])
R[7] = T

The instruction fetch can be faster by combining the PC + 1 with reading the
instruction from the memory.

<ifetch2>
MAR = PC
IR = MDR = M[MAR]; PC = PC + 1

We made a number of assumptions here.  The register bank is two read ports, one
write port, reading and writing must not be on the same clock.  Therefore it takes
two clocks to move data between registers.  The memory access is completed in
one clock (assuming it has cache hit).

TIMING of S1 unit clock.  Assume the instruction fetch takes 3 clocks and the
instruction decode take 0 clock.

Table 5.1  S1 timing

instruction clock
ld 6
st 6
jmp taken 5
jmp not-taken 4
call 9
mv r r 5
ld (r) r 6
st r (r) 6
add 5
cmp 4
inc 5
ret 8
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Call and return take the longest time in the instruction set. Calling a subroutine
can be made faster by inventing a new instruction that does not keep the return
address in the stack (and hence the memory) but keeping it in a register instead.
Jump and link (JAL) just saves the return address in a specified register and jump
to the subroutine. Jump Register (JR) then does the reverse. It does the job of the
"return" instruction. The register that stored return address must be saved to the
memory (i.e. manage by the programmer) if the call to subroutine is nested. This
will reduce the clock to 5 for "jal" and 4 for "jr". This shows that using
registers can be much faster than using memory.

jal r, ads store PC in r and jump to ads
jr r jump back to (r)

<jal>
R[IR:R1] = PC
PC = IR:ADS

<jr>
PC = R[IR:R1]

Example of an assembly program for S1. Find sum of an array : sum a[0] .. a[N]

In a high level language

sum = 0
i = 0
while ( i < N )

sum = sum + a[i]
i = i + 1

In S1 assembly language (with the translation to base-10 machine code, each
field in an instruction is encoded as a number)

.ORG 0 // address code
ld ZERO r0 0 0 0 20
st r0 SUM 1 1 0 21
st r0 I  2 1 0 22
ld N r1 3 0 1 23
ld I r3 4 0 3 22

loop cmp r3 r1 5 7 4 3
jmp GE endw 6 2 5 16
ld BASE r2 7 0 2 24
add r2 r3 8 7 3 2 3
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ld (r2) r4 9 7 2 2 4
ld SUM r5  10 0 5 21
add r5 r4 11 7 3 5 4
st r5 SUM  12 1 5 21
inc r3 13 7 5 3 0
st r3 I 14 1 3 22
jmp loop 15 2 0 5

endw ld SUM r0  16 0 0 21
call print 17 3 0 1001
call stop 18 3 0 1000

.ORG 20 // data
ZERO 0 20 0
SUM 0 21 0
I 0 22 0
N 100 23 100
BASE 25 24 25
a[0]  25 a[0]
a[1] 26 a[1]
... ...

S1 runs this program in 1110 instruction with 5963 clocks, CPI = 5.37

How to run the S1 simulator

The input file is an object file with the name "in.obj".  The simulator will start
and load "in.obj" and execute starting from PC=0 until stop with the instruction
call 1000.

An object file has the following format

a ads set PC to ads
i op r ads instruction op
i 7 xop r1 r2 instruction xop
w data set that address to value "data"
t set trace mode on
d start nbyte dump memory n byte
e end of object file

Be careful, the input routine is not robust. A malformed input line can caused
unpredictable result. The input loop is limited to 1000 words (to prevent infinite
loop ).
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Control unit of S1
This section shows how to implement the control unit of S1 both hardwired and
using microprogram.

Hardwired S1

The state diagram of S1 hardwired control unit (Figure 5.2) simply follows the
microsteps.  Each line of microstep is a state (assume decoding is done by a
combinational circuit and it happens at the end of the instruction fetch without
taking extra cycle, this can be achieved using a table lookup in a ROM).   The
number of cycle for each instruction will in exactly the same as the timing
calculated from the microsteps (Table 5.1).

Some improvement can be made to the above design. To increase the speed the
number of state for each instruction must be reduced. To reduce the complexity
of the circuit, state should be shared wherever possible.

Reduce the number of state

   <store>
1. MAR = IR:ADS
2. MDR = R[IR:R0]
3. M[MAR] = MDR

   <storer>
1. MAR = R[IR:R2]
2. MDR = R[IR:R1]
3. M[MAR] = MDR

The above states (1 and 2 of both instructions) cannot be merged as both MAR
and MDR is on the same internal bus , therefore can not be accessed at the same
time. If two internal bus are available then these states can be merged into one
(the register bank already has two read ports) and the number of cycle is reduced.
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Figure 5.2  State diagram of S1 hardwired control unit

   <store>
1. MAR = IR:ADS; MDR = R[IR:R0]
2. M[MAR] = MDR

   <storer>
1. MAR = R[IR:R2]; MDR = R[IR:R1]
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2. M[MAR] = MDR

Share state

   <load>
1. MAR = IR:ADS
2. MDR = M[MAR]
3. R[IR:R0] = MDR

   <loadr>
1. MAR = R[IR:R1]
2. MDR = M[MAR]
3. R[IR:R2] = MDR

The states 3 of both instructions can be shared if R0 == R2. We can do that by
changing the opcode format to use fixed field encoding. Moving the field R2 to
the same field as R0, bit 12? 10, and move the field xop to the back.   Charing two
states reduces the number of states, which reduces the complexity of the circuits.

L-format

op:3 r0:3  ads:10
 15..13 12..10    9..0             bit position

S-format

op:3 r2:3 r1:3 xop:4  u:3
15..13 12..10 9..7  6..3   2..0   bit position

Figure 5.3  states of <load> and <loadr> after sharing
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   <add>
1. T = add(R[IR:R1], R[IR:R2])
2. R[IR:R1] = T

   <increment>
1. T = add1(R[IR:R1])
2. R[IR:R1] = T

Another example of sharing states, for "add" and "inc", the states 2 of both
instructions can be shared.

Microprogram control unit for S1

We use a single format microword. The fields are as follows :

Dest, Src : specify destination and source for internal bus.
SelR : selecting registers in register file.
Mctl : memory control for read/write.
ALU : specify function of ALU and latch the result to T register.
Misc : other control signal such as PC + 1.
Cond : for testing condition for jump to other microword.
Goto : next address.

Dest = { MAR, IR, R, MDR, T, PC }
Src = { MAR, IR, R, MDR, PC, IR:ADS }
SelR = { IR:R0, IR:R1, IR:R2, IR:R12 }
ALU = { PASS1, ADD, SUB, ADD1 }
Mctl = { RD, WR }
Misc = { PC+1 }
Cond = { MRDY, Decode, U, testCC }

Dest Src SelR ALU Mclt Misc Cond Goto

Figure 5.4  The format of a microword

Where MRDY is the memory ready signal (ignore in the simulator, assume no
wait), Decode is a combination circuit that set microPC correctly to the
appropriate address of the microprogram for the opcode,  U is unconditional,
testCC  checks conditional code against the condition in the opcode (IR:R0) if the
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condition is false then jump to ifetch.  Totally there are 29 microwords to
implement the instruction set of S1.

Table 5.2  S1 microprogram

Loc Label Dest Src SelR ALU Mctl Misc Cond Goto note
0 ifetch MAR PC
1 w0 RD MRDY w0
2 IR MDR PC+1 Decode
3 load MAR IR:ADS
4 w1 RD MRDY w1
5 R MDR IR:R0 U ifetch
6 store MAR IR:ADS
7 MDR R IR:R0
8 w2 WR MRDY w2
9 U ifetch
10 loadr MAR R IR:R1
11 w3 RD MRDY w3
12 R MDR IR:R2 U ifetch
13 storer MAR R IR:R2
14 MDR R IR:R1
15 w4 WR MRDY w4
16 U ifetch
17 mov IR:R12 PASS1
18 R T IR:R2 U ifetch
19 add IR:R12 ADD
20 T T IR:R1 U ifetch
21 cmp IR:R12 SUB U ifetch set CC
22 inc IR:R12 ADD1
23 R T IR:R1 U ifetch
24 jmp testCC ifetch cc false
25 PC IR:ADS U ifetch jump
26 jal R PC IR:R0
27 PC IR:ADS U ifetch
28 jr PC R IR:R1 U ifetch

The memory read/write step has "wait for memory ready" state. Because the use
of cache memory, one can assume 0 clock waiting for memory ready when cache
hits and more than 10 clocks for a miss penalty.

Let us go through the execution of one instruction.  The instruction fetch starts
with
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0: MAR = PC

Dest and Src of the internal bus MAR and PC, then wait for memory to fill in
MDR.

1: MDR = M[MAR]

Memory read (reading the current instruction), after memory cycle has
completed,

2: IR = MDR ; PC = PC + 1

move the instruction to IR, increment PC, then branch to each instruction
depends on IR:OP and IR:XOP (we will elaborate on this instruction decoding
mechanism later). Suppose the instruction is "load", the microprogram go to
location 2 (load) and the following sequence occurs

3: MAR = IR:ADS

then waiting for memory then
4: MDR = M[MAR]
5: R[IR:R0] = MDR

The register is selected by IR:R0 and Dest and Src of internal bus are R and
MDR. After completion, the microprogram branches back to instruction fetch
(specified by the next address field).

For ALU instruction, for example, "add" the following sequence occurs after the
instruction fetch, go to location 19 :

19: T = ADD(R[IR:R1], R[IR:R2])

the registers are selected and read: IR:R1, IR:R2; to ALU and ALU function
ADD is activated. The result from ALU is latched to T register. Then the result is
written to back to register selected by IR:R1 and the microprogram branches back
to the instruction fetch.

20: R[IR:R1] = T

Totally the microprogram is 29 words. Each microword is in fact composed of
the control bits that control the signals in the datapath. We will assign the bits to
each field of microword as follows :

bit 0..4 Dest : 5 bits for write to R, PC, IR, MAR, MDR.
bit 5..10 Src : 6 bits for read from R, PC, IR, MAR, MDR, T.
bit 11..14 SelR : 4 bits for selecting IR:R0, IR:R1, IR:R2, IR:R1,R2
bit 15..18 ALU : 4 bits for ALU function : PASS1, ADD, SUB, ADD 1.
bit 19..20 Mclt : 2 bits for Mread, Mwrite
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bit 21 Misc : 1 bit for PC + 1.
bit 22..25 Cond : 4 bits for jump control : Uncond, Mrdy, testCC, Decode.
bit 26..30 Goto : 5 bits, micro store has 29 addresses therefore 5 bits to

address each of them.

So for the unencoded microword, the microword for S1 is 31-bit long. The
instruction decoding, to branch to each microprogram sequence for each
instruction, can be achieved by using IR:OP concatenate with IR:XOP (3 bits and
4 bits) to point to a jump table which contain the location of microword in the
microprogram.

Figure 5.5 Scheme for decoding opcode in ifetch

Table 5.3  Timing for microprogrammed S1

instruction  clock
ld 6
st 7
jmp uncond 5
jmp taken 5
jmp not-taken 4
jal 5
mv 5
ld (r) r 6
st r (r) 7
add 5
inc 5
cmp 4
jr 4

To reduce the width of the microword, each field can be encoded as follows :

Dest : 5 signals, 3 bits.
Src : 6 signals, 3 bits.
SelR : 4 signals, 3 bits (including NONE)
ALU : 4 signals, 3 bits.
Mctl : 2 bits
Misc : 1 bit.
Cond : 4 signals, 3 bits
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Goto : only 6 distinct locations to jump to : ifetch, w0, w1, w2, w3, w4 ?  hence
3 bits.

Totally the encoded or vertical microprogram for S1 is 21-bit long.

Dest:5 Src:6 SelR:4 ALU:4 Mclt:2 Misc:1 Cond:4 Goto:5

a) unencoded microword (31 bits)

Dest:3 Src:3 SelR:3 ALU:3 Mclt:2 Misc:1 Cond:4 Goto:3

b) encoded microword (21 bits)

Figure 5.6 Comparing unencoded and encoded microword for S1

Calculating CPI

Using the program benchmark GCC (a C compiler) we record the following
instruction mix :

Table 5.4  GCC benchmark instruction mix

load  21%
store  12%
ALU  37%
set  6%
jump (uncond)  2%
jump taken  12%
jump not-taken  10%

CPI for S1 with hardwired control unit will be 5.23
(6 ?   .21 + 6 ?   .12 + 5 ?   .37 + 5 ?   .06 + 5 ?   .02 + 5 ?   .12 + 4 ?  .10)
CPI for S1 with microprogram control unit will be 5.35
(6 ?   .21 + 7 ?   .12 + 5 ?   .37 + 5 ?   .06 + 5 ?   .02 + 5 ?   .12 + 4 ?   .10)

Microprogram takes the time longer for "store", therefore its CPI is slightly
higher. For the simulation run of "sum.asm" program CPI hardwired = 5.37, and
CPI microprogram = 5.46
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S1 microprogram simulator package

The package included the simulator of the S1 microprogrammed control unit and
the microprogram generator, which takes the readable specification of
microprogram and generates bit pattern for the micromemory.  It is compiled and
tested under Turbo C v2.0.  The list of files is:

s1m.h, s1m.c, supportm.c simulator files
mpgm.txt microprogram file used by s1m.c
in.obj test machine code
mgen.c, hash.c microprogram generator
mspec.txt input microprogram in human readable text
s1mx.txt explain S1 instruction set and microprogram

format.

To generate a microprogram, run mgen.exe, it takes input from mspec.txt and
outputs a microprogram  in the form that s1m.exe can read. (see mpgm.txt)

S1 microprogram bit position and coding form

bit  field             signal

0 dest r
1 pc
2 ir
3 mar
4 mdr
5 src r
6 pc
7 ir
8 mar
9 mdr
10 t
11 selr ir:r0
12 ir:r1
13 ir:r2
14 ir:r1,r2
15 alu pass1
16 add
17 sub
18 add1
19 mctl rd



18

20 wr
21 misc pc+1
22 cond u
23 mrdy
24 testcc
25 decode
26 goto 5 bits 26..30

How to use mgen.c to generate microprogram

Mgen takes input from microprogram specification which is a readable text that a
human programmer wrote. Mgen is a simple macro processor that substitutes
symbolic names with numeric values (set microprogram bits).

The output is in the form :

nn
aaaa xxxxxxxxxxxxxxxxxxx
....

where nn is the number of microword, aaaa is address and xxxxx... is  the
microprogram bit. xxx... begins at the column 5.

Input to mgen is in a simple form as follows :

.w N // width of microword N bits

.a B E // bit position of Goto field, B start, E
end
.s // start symbolic name section
name bit // "name" is the signal at "bit" position
...
.m // start microprogram section
:label name name ... /label ;  // each microword
 ...
.e // end of microprogram spec.

Within the microprogram section the label begin with ":" and the "name" is the
name of signal (to be translated in to a number).  The symbol  /label destinates
the label in Goto field.  Each microword (a line of microprogram) must ends with
";".
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Example  The microprogram for S1 from the file "mspec.txt" is illustrated
(comment shows here for explanation, no comments are allowed in mspec.txt).

.w 31 // width 31 bits

.a 26 30 // Goto start at bit 26 end at 30

.s // symbol section
dr 0 // dest R bit 0
dpc 1 // dest PC bit 1
...
sub 17 // alu sub bit 17
add1 18
mrd 19 // memory read bit 19
mwr 20
pc+1 21
u 22 // Cond uncond bit 22
mrdy 23
testcc 24
decode 25
.m // microprogram section
:ifetch dmar spc ; // <ifetch> MAR = PC
:w0 mrd mrdy /w0 ; // MDR = M[MAR]; MREAD MRDY w0
dir smdr pc+1 decode ; // IR = MDR; PC = PC + 1 DECODE
:load dmar sir:ads ; // <load> MAR = IR:ADS
:w1 mrd mrdy /w1 ;
dr smdr ir:r0 u /ifetch ;
...
.e // end

This is the output (from mpgm.txt )
29
0 0001001000000000000000000000000
1 0000000000000000000100010000001
2 0010000001000000000001000100000
3 0001000100000000000000000000000
4 0000000000000000000100010000100
5 1000000001010000000000100000000
6 0001000100000000000000000000000
....
27 0100000100000000000000100000000
28 0100010000001000000000100000000
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S1m microprogram simulator reads this microprogram (mpgm.txt) to instantiate
its micromemory.  S1m runs the same machine code program as S1, such as the
program sum in "in.obj" which performs sum(a[0]..a[n]). The "in.obj" executed
1109 instructions 6054 clocks with CPI = 5.46

<Web material>


