
Stack Frame Caching

Prabhas Chongstitvatana
Department of Computer Engineering, Chulalongkorn University

Bangkok 10330, Thailand
Email: prabhas@chula.ac.th

Abstract

A stack-based processor where the instruction set
acts on data resided on an evaluation stack, has its
performance bottleneck due to the limit of access to
the stack. Although the stack-based processor has
low performance, it is very low cost to implement.
This paper proposes a method to improve the
performance of a stack-based processor. A number
of fast registers are used to “cache” part of the
evaluation stack. This can be achieved without
affecting the instruction set and most of the data
path. A detailed analysis of the control steps is
given. The performance gain is around 30% of the
original processor.

Key Words: stack-based processor, micro-
architecture, stack frame caching

1. Introduction

A stack-based processor has the advantage of
simplicity. The stack-based instruction set is also
compact. This type of architecture is suitable for a
low cost embedded system. However, it has one
shortcoming, performance. Due to the nature of
stack access, only one item can be accessed at a time.
This paper proposes a simple scheme to improve the
performance of stack-based processors, called stack
frame caching. A number of fast registers are used to
cache part of stack frame. This allows concurrent
access of two items from the stack. Stack frame
caching does not require any change in the
instruction set; hence, it is applicable to wide range
of stack-based processors. The experiment shows
that the performance improvement is around 30%.

2. Reference processor

To illustrate our proposed method, a stack-based
processor will be used as a reference processor which
will be augmented with the stack frame caching. The
reference processor is due to [1]. It is a simple stack-

based processor aimed for embedded applications.
The entire stack is stored in the memory.

There are seven special purpose registers (no visible
user registers): TS, FP, SP, NX, FF, IR and PC. TS
caches the top of stack value (Fig. 2).

TS top of stack
FP frame pointer
SP stack pointer
NX temp register
FF temp register
IR instruction register
PC program counter

The program counter, PC, can be updated
independent of other registers. This allows fetching
an instruction in one cycle. The data path consists of
one ALU connected to the register bank. The output
of ALU, tbus, goes back to the register bank. The
memory is interfaced to the processor through the bus
interface unit (BIU). The BIU interfaces the data
input, din, and the data output, dout, to the memory
data bus. din is selected from TS or FP. The input of
the register bank, bus, is multiplexed from tbus,
dbus and PC. The address bus, abus, is multiplexed
from PC and tbus. The PC can be updated with
PC+1 or PC+arg or tbus. The ALU has two ports:
p1, p2 and can perform usual arithmetic and logic
functions. There are two flags: Zero, and Sign.

Using 2-phase clock enables read-modify-write of
registers in one cycle. Reading from registers and
memory will be on the positive edge and writing to
registers will be on the negative edge. The basic
cycles are:

• read-modify-write registers
• register transfer
• memory read
• memory write

Register access

The basic read-modify-write starts at the positive
edge of the clock. The data are read from the
registers into the ALU ports through the multiplexor
x and y. The ALU outputs the result to tbus. At the
negative edge, tbus is fed back to the input of
registers, bus, through the multiplexor b and is
latched into the designated register.

Read-modify-write a register

pos edge: R -> alu -> tbus
neg edge: tbus -> R

Register transfer

pos edge: R1 -> tbus
neg edge: tbus -> R2

A number of changes have been made to improve the
performance of the reference processor.

1) The instruction format is a fixed length 32-bit

with 8-bit opcode and 24-bit argument. This
allows fast instruction fetch.

2) The data width is increased to 32 bits to match
with the instruction width.

Control steps notation

The notation used in describing an execution step is
as follows.

src->dest

denotes the event that transfer data from a source to a
destination where source and destination can be a
wire or a register. A wire represents a connection or
the input/output of a component.

alu(p1 op p2)->dest

denotes the ALU performing the “op” on its two
input ports, p1 and p2, and its output is connected to
dest, where dest can be a wire or a register.

mR(ads)->dest
src->mW(ads)

mR denotes memory read with the address from the
source ads, the data is transferred to dest. mW
denotes memory write with the data sets to the
source, src, and the address is ads. src and dest
can be a wire or a register. The concurrent events are
specified by writing them on the same line. Each
event is separated from other event by “,”. The order

of events in the same line is unimportant because
they occur in the same clock cycle. However, some
event occurs on the positive edge of the clock, some
event occurs on the negative edge of the clock.
Reading from registers and memory will be on
positive edge and writing to registers will be on
negative edge.

src->dest, mR(ads)->dest, ...

We have a shorthand notation for SP.

sp-1 is alu(sp-1)->sp
sp+1 is alu(sp+1)->sp

Let the shorthand notation of push/pop be

push x is
 sp+1->sp
 x->mW(sp)

pop x is
 mR(sp)->x
 sp-1->sp

3. Stack frame caching

Almost all instructions of stack-based processors
perform push and pop. This is because two reasons.
The first reason is that it is the nature of the stack-
based instruction set to access data from the
evaluation stack. The second reason is that the top of
stack is cached in TS, therefore there is a lot of traffic
between TS and the stack segment. In the reference
processor, push and pop do one memory access and
use ALU to do increment/decrement SP. The most
frequently used instruction is “get” (loading a local
variable from the stack frame to top of stack register).
ALU is used to calculate the address of variable to be
loaded from the stack frame which is stored in the
memory, address = FP-arg, where arg is the
reference of the local variable. It has the following
control steps.

<get>
sp+1
ts->mW(sp)
alu(fp-arg)->tbus, mR(tbus)->ts

There are two key ideas to improve the performance.

1) The operations push/pop can be done in one
cycle if SP can be incremented/decremented
independent of ALU and they can achieve
pre-increment and post-decrement at the
proper negative-edge of the clock.

2) To improve “get”, the local variable must be
stored in a register instead of memory as
push/pop also access memory. If it is done
properly “get” will take just one cycle.

Let v[.] denotes the caching register bank. It is
connected to TS in the data path (see Fig. 2). Using
the caching register bank will allow accessing a local
variable and TS at the same time. The “get” can be
done in one cycle.

<get>
$1 push ts, $2 v[arg]->ts

Where $1 denotes positive-edge and $2 denotes
negative-edge, v[.] is the cache register. The old
value TS is pushed into memory at $1, before the new
value from v[arg] is written to TS at $2.

Push/pop

To push a register to memory in one cycle, the
“sp+1” must appear at the address bus from the
beginning of $1, TS is presented to data bus at the
same time, at the beginning of $2 memory write
signal is ended (it is assumed that the value is written
into memory here), the value of “sp+1” is also
written to SP at this time. With the new scheme,
push becomes

$1 sp+1->abus, ts->dbus, $2 mW(abus),
sp+1->sp

Popping a register can be done in one cycle. The
value “sp” is presented to the address bus at $1. The
memory is read. At $2, the data is latched to a
register, at the same time, “sp-1” is written to SP
(post-decrement). pop becomes

$1 sp->abus, mR(abus)->dbus,$2 dbus->
x, sp-1->sp

With this new push/pop, most instructions will be
faster. For example, “push a literal” takes only
one cycle for execution.

<lit>
$1 push ts, $2 arg->ts

“load” cannot be done in one cycle as it reads the
memory twice, the first one to push TS, the second
one for getting the value. Therefore “load” takes 2
cycles.

<load>
push ts
mR(arg)->ts

All the binary operations now take 2 cycles.

<bop>
pop ff
alu(ts op ff)->ts

Implementing the SP unit

To perform increment/decrement on SP in concurrent
with other ALU operations, SP must be a separate
unit. The SP unit performs pre-increment at $1, post-
decrement at $2, and loads a value from bus at $2.
There is a feed forward path from the adder “sp+1”
to achieve the pre-increment. All multiplexors are
asserted at $1, latching the register SP is at $2
(Fig.1).

Figure 1 The SP unit

Stack frame

A number of registers are used to cache a part of
stack frame. The stack frame remains unchanged
from the original design. The local variables,
lv1..lvn, are cached into v[1]..v[n] the cache
registers. When the context is changed by
call/ret, these registers are affected. Before a new
activation record is created the old cached registers
must be written back to the current activation record.
And vice versa, upon returned from a call, after the
activation record is deleted and the old one restored,
the cache registers must be refreshed (re-cached)
from the activation record. The pseudo code
call/ret are as follows.

<call>
* save v to the current stack frame
 push ts (flush stack)
 create a new frame
 save fp' and return address
* cache v from the new frame
 update sp

<ret>
 restore return address, sp
 restore the old frame
* cache v of this current frame (restore old v)
 if it is “ret” pop ts

sp

+/−

bus

 1

sp + 1

The lines with * are the additional work that must be
done to do stack frame caching. The control steps for
call/ret for saving/caching v[.] are as follows.

<save v>
alu(fp-n)->fp
vn->mW(fp), alu(fp+1)->fp
...
v1->mW(fp), alu(fp+1)->fp

<cache v>
alu(fp-n)->fp
mR(fp)->vn, alu(fp+1)->fp
...
mR(fp)->v1, alu(fp+1)->fp

If the size of caching register is n then the extra cycle
in call/ret instruction is O(3(n+1)).

The simple analysis of the previous section has the
worst case additional running time for using stack
frame caching in O(3(n+1)) cycles. However, it is
not the case that a function call will use all v
registers. Let maxv be the number of v registers, fs
be the size of activation record. If the size of
activation record is less than maxv then only
v[1]..v[fs] must be saved/cached. Let u be
max(fs, maxv); it is stored in the register U. The U
register is used to skip a number of control steps to
achieve this effect. The control signal “skipu” sets
the next control step to mpc+(maxv-u), where mpc is
the current control step. Assume the size of caching
register is 4 (maxv = 4). The control steps below
show the part to save v registers at the function call.

<save v>
alu(fp-u)->fp, skipu
v[4]->mW(fp), fp+1->fp
v[3]->mW(fp), fp+1->fp
v[2]->mW(fp), fp+1->fp
v[1]->mW(fp), fp+1->fp

Caching v registers can be achieved similarly. In
fact, when calling a function, not even u registers
need to be cached, only the passing parameters (p)
need to be cached from the evaluation stack (it is a
save when p < u). However, it becomes too complex
to do in a simple control unit such as this due to the
ordering the variables. Therefore, a tradeoff has been
made not to exploit this fact.

The “call” instruction saves the return address to TS
and saves v registers. The “fun” creates the new
activation record and caches the passing parameters
from the evaluation stack to v registers.

<call>
; store ret ads on ts
ts->mW(sp+1), sp+1->sp, pc+1 ; flush ts
pc->ts, arg->pc, if u=0 <fetch>
<save v>
alu(fp-u)->fp, skipu
v[4]->mW(fp), fp+1->fp
v[3]->mW(fp), fp+1->fp
v[2]->mW(fp), fp+1->fp
v[1]->mW(fp), fp+1->fp
<fun>
fp->mW(sp+k), sp+k->sp ; save fp, new sp
sp->fp ; new fp
u->mW(sp+1), iru->u, sp+1->sp ; push u
pc+1
<cache v>
alu(fp-u)->fp, skipu
mR(fp)->v[4], fp+1->fp
mR(fp)->v[3], fp+1->fp
mR(fp)->v[2], fp+1->fp
mR(fp)->v[1], fp+1->fp

<ret>
sp-1->ff
alu(fp=ff), ifF <r2> ; test for retv
ts->pc ; ret ads on TS
mR(sp)->u ; pop u
alu(fp-arg)->sp
mR(sp)->ts, sp-1->sp, if u=0 <r3>
; if u=0 skip cachev
mR(fp)->fp, <cachev>
<r2>
alu(fp+2)->tbus, mR(tbus)->ff
; ret ads on frame
ff->pc
alu(fp+1)->tbus, mR(tbus)->u ; pop u
alu(fp-arg)->sp, if u=0 <r3>
; skip cachev
mR(fp)->fp, <cachev>
<r3>
mR(fp)->fp, <fetch> ; restore fp

When arg > maxv, the “get” accesses normal
memory. Even in this case the step of execution is
faster due to the SP unit. When arg <= maxv, the
access in on v registers and the execution takes only
one cycle. The instruction decoder performs a check
on the argument of “get” and branches to the proper
“get x” where x is 1..maxv. The pre-increment
using “sp+1” feed-forward path can be seen.

<get>
ts->mW(sp+1), sp+1->sp ; push ts
alu(fp-arg)->tbus, mR(tbus)->ts, pc+1

<get1>
ts->mW(sp+1),v[1]->ts,sp+1->sp, pc+1

<get2>
ts->mW(sp+1),v[2]->ts,sp+1->sp, pc+1

<get3>
ts->mW(sp+1),v[3]->ts,sp+1->sp, pc+1

<get4>
ts->mW(sp+1),v[4]->ts,sp+1->sp, pc+1

“put” is similarly decoded. The post-decrement of
SP unit allows the instruction to be executed in one
cycle.

4. Performance

A number of benchmark programs are compiled
and then run on the augmented processor. Table 1
below reports the number of instruction (noi) and the
number of cycle (cycle) for each program.

“bubble” is a bubble sort program sorting an array of
20 integers, initially the value in the array is in
descending order and sort to ascending order. “hanoi”
is a program to solve Hanoi problem with 6 disks.
“matmul” is a matrix multiplication program; the
input is two matrices of the size 4 × 4. “perm” is a
program to do all permutation of {0,1,2,3}. “queen”
is a program to find all configurations of 8-queen
problem. “quick” is a quicksort program with a
similar input to “bubble”. “sieve” is a program to
find prime numbers less than 1000 using “Sieve of
Eratosthenes” algorithm. “aes” is a program to do
AES (Advanced Encryption Standard) block cipher
(128, 128) bit key. The average cycle-per-instruction
number of the reference processor is 4.3.

The average CPI of the augmented processor is 2.9.
From the table, comparing the number of clock
between the reference processor and the processor
with stack frame caching, the average ratio is 0.70.
That is, the augmented processor is 30% faster than
the reference processor.

Table 1 The performance comparison

 Ref Improved

program noi cycle noi cycle

bubble 10068 44214 10262 32090
hanoi 2312 10092 2377 7544
matmul 3043 12880 3097 9348
perm 4868 20932 4935 14663
queen 618665 2576210 620724 1717782
quick 3172 13539 3224 9551
sieve 28026 124338 28029 75204
aes 30579 131560 30724 90498

5. Related work

The most well-known stack-based instruction set
is JVM, the Java virtual machine [2]. It has many
implementations, a commercial one is from SUN,
PicoJava [3, 4, 5]. The other one from research
community is JOP [6]. PicoJava uses a form of
“register window” to cache stack frame. It also
employs “instruction folding” to merger two
instructions into one special instruction for a faster
operation. JOP uses special microcode to accelerate
the operation, it also employs pipeline. A low cost
commercial stack-based processor is also available
[7]. It aims for embedded applications. The proposed
method is quite different from these works. Stack
frame caching uses fast registers in the processor to
cache the stack values.

6. Conclusion

To improve the performance of stack-based
processors, we employ the technique of stack frame
caching. The stack frame caching relies on fast
registers to cache a part of the stack frame so that the
access to these variables takes only one cycle. The
separation of SP from the ALU path to have its own
increment/decrement, the SP unit, helps to shorten
the cycle of the push/pop values from the evaluation
stack. There are many approaches to enhance the
performance of a processor. In general, the memory
sub-system has the major impact on performance.
However, in our presentation, the speed of memory,
its access time, is assumed to be one cycle, therefore
it does not affect our design. This is not a realistic
assumption for a general purpose processor but in the
context of implementing the design on FPGA with its
internal memory block, this is correct.

7. References

[1] Burutarchanai, A., Nanthanavoot, P., Aporntewan, C.,

and Chongstitvatana, P., “A stack-based processor for
resource efficient embedded systems”, Proc. of IEEE
TENCON 2004, 21-24 November 2004, Thailand.

[2] Lindholm, T. and Yellin, F. The Java™ Virtual
Machine Specification, Addison Wesley, 1997.

[3] McGhan, H., O'Connor, M., “PicoJava: a direct
execution engine for Java bytecode”, Computer,
Vol.31, No.10, Oct. 1998, pp. 22-30.

[4] Hangal, S., O'Connor, M.,”Performance analysis and
validation of the picoJava processor”, IEEE Micro,
Volume 19, Issue 3, May-June 1999, pp. 66-72 .

[5] Jianjie, Z., Feihui, L., Yuanqing, G., Zhenwu, Y.,
Zhilian, Y., “A Java processor suitable for applications
of smart card”, Int. Conf. on ASIC, 23-25 Oct. 2001,
pp.736-739.

[6] Schoeberl, M., “JOP: A Java Optimized
Processor for Embedded Real-Time Systems”,
Thesis, Vienna University of Technology, 2005.

[7] MARC4 Atmel 4-bit single-chip microcontroller,
ATR080, document rev. 4680C-4BMCU-01/05.
www.atmel.com

Figure 2 The augmented data path

arg

1

tbus

x

FP

TS

V

FF

NX

b

tbus

SP

arg

alu

p1

p2

bus

y

M

IR

j

a

dbus

abus

SP BIU
din

U

TS

d

PC

U
dbus

iru

PC
tbus tbus

+

FP

FP

V

so si

sin

spx

z
w

vout

t

u

+/-

