Def Innerproduct

$$\equiv$$
 (Insert +) \circ (ApplyToAll \times) \circ Transpose

Or, in abbreviated form:

Def IP
$$\equiv (/+)\circ(\alpha \times)\circ$$
Trans.

```
\begin{array}{ll} \text{IP:} <<1,2,3>, <6,5,4>> = \\ \text{Definition of IP} & \Rightarrow (/+) \circ (\alpha \times) \circ \text{Trans:} <<1,2,3>, <6,5,4>> \\ \text{Effect of composition,} \circ & \Rightarrow (/+) : ((\alpha \times) : (\text{Trans:} \\ & <<1,2,3>, <6,5,4>>)) \\ \text{Applying Transpose} & \Rightarrow (/+) : ((\alpha \times) : <<1,6>, <2,5>, <3,4>>) \\ \text{Effect of ApplyToAll,} \alpha & \Rightarrow (/+) : <<1,6>, ×: <2,5>, ×: <3,4>> \\ \text{Applying } \times & \Rightarrow (/+) : <6,10,12> \\ \text{Effect of Insert,} / & \Rightarrow +: <6, +: <10,12>> \\ \text{Applying + again} & \Rightarrow 28 \\ \end{array}
```

11.2 Description

An FP system comprises the following:

- 1) a set O of objects;
- 2) a set F of functions f that map objects into objects;
- 3) an operation, application;
- 4) a set F of functional forms; these are used to combine existing functions, or objects, to form new functions in F:
- a set D of definitions that define some functions in F and assign a name to each.

Selector functions

$$1: x \equiv x = \langle x_1, \dots, x_n \rangle \rightarrow x_1; \perp$$

and for any positive integer s

$$s:x \equiv x = \langle x_1, ..., x_n \rangle \& n \geq s \to x_s; \perp$$

Thus, for example, $3: \langle A,B,C \rangle = C$ and $2: \langle A \rangle = \bot$. Note that the function symbols 1, 2, etc. are distinct from the atoms 1, 2, etc.

Tail

tl:
$$x = x = \langle x_1 \rangle \rightarrow \phi$$
;
 $x = \langle x_1, \dots, x_n \rangle \& n \ge 2 \rightarrow \langle x_2, \dots, x_n \rangle$; \perp

Identity

id: x = x

Atom

atom: $x \equiv x$ is an atom $\rightarrow T$; $x \neq \bot \rightarrow F$; \bot

Equals

eq:
$$x = x = \langle y, z \rangle \& y = z \to T; x = \langle y, z \rangle \& y \neq z \to F; \bot$$

Nul

$$\text{null}: x \equiv x = \phi \rightarrow T; x \neq \bot \rightarrow F; \bot$$

Reverse

reverse:
$$x = x = \phi \rightarrow \phi$$
;

$$x = \langle x_1, \dots, x_n \rangle \rightarrow \langle x_n, \dots, x_1 \rangle; \perp$$

Distribute from left; distribute from right

distl:
$$x \equiv x = \langle y, \phi \rangle \rightarrow \phi$$
;

$$x=>\to<,\ldots,>;\perp$$

distr:
$$x = x = \langle \phi, y \rangle \rightarrow \phi$$
;

$$x = << y_1, ..., y_n >, z > \rightarrow << y_1, z >, ..., < y_n, z >>; \bot$$

Length

length:
$$x = x = \langle x_1, ..., x_n \rangle \rightarrow n$$
; $x = \phi \rightarrow 0$; \perp

Add, subtract, multiply, and divide

$$+:x \equiv x=\langle y,z\rangle \& y,z \text{ are numbers} \rightarrow y+z; \perp$$

$$-:x \equiv x = \langle y,z \rangle \& y,z \text{ are numbers} \rightarrow y-z; \perp$$

$$\times : x \equiv x = \langle y, z \rangle \& y, z \text{ are numbers} \rightarrow y \times z; \perp$$

$$\div: x \equiv x = \langle y, z \rangle \& y, z \text{ are numbers} \rightarrow y \div z; \perp$$

(where
$$y \div 0 = \bot$$
)

Transpose

trans:
$$x = x = \langle \phi, ..., \phi \rangle \rightarrow \phi$$
;

$$x = \langle x_1, \dots, x_n \rangle \rightarrow \langle y_1, \dots, y_m \rangle; \perp$$

where

$$x_i = \langle x_{il}, ..., x_{im} \rangle$$
 and

$$y_j = \langle x_{lj}, ..., x_{nj} \rangle$$
, $1 \le i \le n$, $1 \le j \le m$.

And, or, not

and:
$$x \equiv x = \langle T, T \rangle \rightarrow T$$
;

$$x= \lor x= \lor x= \to F; \bot$$

etc.

Append left; append right

apndl:
$$x \equiv x = \langle y, \phi \rangle \rightarrow \langle y \rangle$$
;

$$x=\langle y,\langle z_1,\ldots,z_n\rangle \rangle \rightarrow \langle y,z_1,\ldots,z_n\rangle;\perp$$

apndr:
$$x = x = \langle \phi, z \rangle \rightarrow \langle z \rangle$$
;

$$x = \langle \langle y_1, \dots, y_n \rangle, z \rangle \rightarrow \langle y_1, \dots, y_n, z \rangle; \perp$$

Right selectors; Right tail

$$1r: x \equiv x = \langle x_1, \dots, x_n \rangle \rightarrow x_n; \perp$$

$$2r: x = x = \langle x_1, ..., x_n \rangle \& n \geq 2 \rightarrow x_{n-1}; \perp$$

etc.

$$tlr: x = x = \langle x_1 \rangle \rightarrow \phi;$$

$$x = \langle x_1, ..., x_n \rangle \& n \ge 2 \rightarrow \langle x_1, ..., x_{n-1} \rangle; \perp$$

Rotate left; rotate right

rotl:
$$x \equiv x = \phi \rightarrow \phi$$
; $x = \langle x_1 \rangle \rightarrow \langle x_1 \rangle$;

$$x = \langle x_1, ..., x_n \rangle \& n \ge 2 \rightarrow \langle x_2, ..., x_n, x_1 \rangle; \bot$$

etc.

Functional Form

Composition

$$(f \circ g): x \equiv f:(g:x)$$

Construction

 $[f_1, ..., f_n]: x \equiv \langle f_1; x, ..., f_n: x \rangle$ (Recall that since $\langle ..., \bot, ... \rangle = \bot$ and all functions are \bot -preserving, so is $[f_1, ..., f_n]$.)

Condition

$$(p \rightarrow f; g): x \equiv (p:x) = T \rightarrow f: x; (p:x) = F \rightarrow g: x; \perp$$

Constant (Here x is an object parameter.)

$$\bar{x}: y = y = \bot \rightarrow \bot; x$$

Insert

$$/f: x = x = < x_1 > \to x_1; x = < x_1, ..., x_n > & n \ge 2$$

 $\to f: < x_1, /f: < x_2, ..., x_n > >; \bot$

If f has a unique right unit $u_f \neq \bot$, where $f: \langle x, u_f \rangle \in \{x, \bot\}$ for all objects x, then the above definition is extended: $f: \phi = u_f$. Thus

Apply to all

$$\alpha f: x \equiv x = \phi \rightarrow \phi;$$

$$x=< x_1, \ldots, x_n > \rightarrow < f: x_1, \ldots, f: x_n > ; \bot$$

Binary to unary (x is an object parameter)

$$(\mathbf{bu} f x): y \equiv f: \langle x, y \rangle$$

Thus

$$(bu + 1): x = 1 + x$$

While

(while
$$p f$$
): $x = p: x = T \rightarrow$ (while $p f$): $(f:x)$;
 $p: x = F \rightarrow x$; \bot

Definition

Def last \equiv null \circ tl \rightarrow 1; last \circ tl

last: $\langle I,2\rangle$: last: $\langle I,2\rangle$ = definition of last \Rightarrow (nullotl \rightarrow 1; lastotl): $\langle I,2\rangle$ action of the form $(p\rightarrow f;g)$ \Rightarrow lastotl: $\langle I,2\rangle$

since null ot1: <1,2> = null: <2> = F action of the form $f \circ g$ \Rightarrow last: (t1:<1,2>) \Rightarrow last: <2>

definition of primitive tail \Rightarrow last:<2> \Rightarrow (null otl \rightarrow 1; last otl):<2>

action of the form $(p \rightarrow f; g)$ $\Rightarrow 1: <2>$

since null otl: $\langle 2 \rangle = \text{null} : \phi = T$ definition of selector 1 $\Rightarrow 2$

Def
$$! = eq0 \rightarrow \bar{l}; \times \circ [id, !\circ sub1]$$

where

Def eq0 = eq
$$\circ$$
[id, $\bar{0}$]
Def sub1 = $-\circ$ [id, $\bar{1}$]

Here are some of the intermediate expressions an FP system would obtain in evaluating !: 2:

$$!:2 \Rightarrow (eq0 \rightarrow \bar{I}; \times \circ [id, !\circ sub1]):2$$

$$\Rightarrow \times \circ [id, !\circ sub1]:2$$

$$\Rightarrow \times : < id:2, !\circ sub1:2 > \Rightarrow \times : <2, !:1 >$$

$$\Rightarrow \times : <2, \times : <1, !:0 >>$$

$$\Rightarrow \times : <2, \times : <1, !:0 >>$$

$$\Rightarrow \times : <2, \times : <1, !>>$$

$$\Rightarrow \times : <2, I >> \Rightarrow 2.$$

11.3.2 Inner product. We have seen earlier how this definition works.

Def IP
$$\equiv (/+)\circ(\alpha \times)\circ trans$$

11.3.3 Matrix multiply. This matrix multiplication program yields the product of any pair $\langle m,n \rangle$ of conformable matrices, where each matrix m is represented as the sequence of its rows:

$$m = \langle m_1, ..., m_r \rangle$$

where $m_i = \langle m_{i1}, ..., m_{is} \rangle$ for $i = 1, ..., r$.
Def $MM = (\alpha \alpha IP) \circ (\alpha \text{distl}) \circ \text{distr} \circ [1, \text{ trans} \circ 2]$

Laws of the algebra of programs

$$[f,g] \circ h \equiv [f \circ h, g \circ h]$$

```
PROPOSITION: For all functions f, g, and h and all objects x, ([f,g] \circ h): x = [f \circ h, g \circ h]: x.

PROOF:
([f,g] \circ h): x = [f,g]: (h:x)
by definition of composition
= \langle f: (h:x), g: (h:x) \rangle
by definition of construction
= \langle (f \circ h): x, (g \circ h): x \rangle
by definition of composition
= [f \circ h, g \circ h]: x
by definition of construction \square
```

Proofs of some law

```
apndl \circ [f \circ g, \alpha f \circ h] \equiv \alpha f \circ \text{apndl} \circ [g,h]
PROOF. We show that, for every object x, both of the
above functions yield the same result.
Case 1. h:x is neither a sequence nor \phi.
Then both sides yield \perp when applied to x.
Case 2. h:x = \phi. Then
apndlo[f \circ g, \alpha f \circ h]: x
        = apndl: \langle f \circ g : x, \phi \rangle = \langle f : (g : x) \rangle
\alpha f \circ \operatorname{apndl} \circ [g,h]: x
        = \alpha f \circ \text{apndl}: \langle g:x, \phi \rangle = \alpha f : \langle g:x \rangle
        = < f:(g:x) >
Case 3. h:x = \langle y_1, ..., y_n \rangle. Then
apndlo[f \circ g, \alpha f \circ h]: x
        = apndl: \langle f \circ g : x, \alpha f : \langle y_1, \dots, y_n \rangle \rangle
        = < f:(g:x), f:y_1, ..., f:y_n >
\alpha f \circ \text{apndl} \circ [g,h]: x
       = \alpha f \circ \text{apndl}: \langle g:x, \langle y_1, \dots, y_n \rangle \rangle
       = \alpha f: \langle g:x, y_1, \dots, y_n \rangle
= \langle f:(g:x), f:y_1, \dots, f:y_n \rangle
```

Proposition 2

Pair & not∘null∘ l →→

$$apndl \circ [[1^2, 2], distr \circ [t \ l \circ 1, 2]] \equiv distr$$

where f & g is the function: and $\circ [f, g]$, and $f^2 \equiv f \circ f$. PROOF. We show that both sides produce the same result when applied to any pair $\langle x,y \rangle$, where $x \neq \phi$, as per the stated qualification.

CASE 1. x is an atom or \bot . Then distr: $\langle x,y \rangle = \bot$, since $x \neq \phi$. The left side also yields \bot when applied to $\langle x,y \rangle$, since tlo 1: $\langle x,y \rangle = \bot$ and all functions are \bot -preserving. CASE 2. $x = \langle x_1, ..., x_n \rangle$. Then

apndl
$$\circ$$
[[1², 2], distr \circ [tl \circ 1, 2]]:< x , y >
= apndl: <<1: x , y >, distr: x, y >>
= apndl: << x_1 , y >, ϕ > = << x_1 , y >> if tl: $x = \phi$
= apndl: << x_1 , y >, << x_2 , y >, ..., < x_n , y >>>
if tl: $x \neq \phi$
= << x_1 , y >, ..., < x_n , y >>
= distr: < x , y >