
137

Chapter 6

Sx Processor

In this chapter, we discuss the main processor of our system, the Sx processor. It
is a stack-based processor. Its instruction set is S-code (see Chapter 4). The data
path width is 32 bits. The control unit uses 2-phase clock [BUR04a]. For the
purpose of teaching cycle-accurate execution, it uses a microprogrammed
control unit.

6.1 Data path

Sx has seven special purpose registers (no visible user registers): TS, FP, SP, NX,
FF, IR and PC. TS caches the top of stack value (Fig. 6.1).

TS top of stack
FP frame pointer
SP stack pointer
NX temp register
FF temp register
IR instruction register
PC program counter

The program counter, PC, can be updated independent of other registers. This
allows fetching an instruction in one cycle. The data path consists of one ALU
connected to the register bank. The output of ALU, tbus, goes back to the
register bank. The memory is interfaced to the processor through the bus
interface unit (BIU). The BIU interfaces the data input, din, and the data output,
dout, to the memory data bus. din is selected from TS or FP. The input of the
register bank, bus, is multiplexed from tbus, dbus and PC. The address bus,
abus, is multiplexed from PC and tbus. The PC can be updated with PC+1 or

138

PC+arg or tbus. The ALU has two ports: p1, p2 and can perform many
functions as shown in Table 6.1. There are two flags: Zero, and Sign.

Table 6.1 The function of ALU, the inputs is a, b. a is at the port p1. t is the
output.

 Add: t = b + a Sub: t = b - a Mul: t = b * a Div: t = b / a
 Band: t = b & a Bor: t = b | a Bxor: t = b ^ a Not: t = ! a
 Shl: t = b << a Shr: t = b >> a Eq: t = b == a Ne: t = b != a
 Lt: t = b < a Le: t = b <= a Gt: t = b > a Ge: t = b >= a
 Inc: t = a + 1 Dec: t = a - 1 SUB2: t = a - b P1: t = a
 P2: t = b Z: t = a == 0

The instruction register, IR, has the operation code at the right-most 8-bit and the
argument at the left-most 24-bit. The argument field is signed extended to 32
bits. When the instruction requires no argument, the argument field is zero.

Using 2-phase clock enables read-modify-write of registers in one cycle.
Reading from registers and memory will be on the positive edge and writing to
registers will be on the negative edge. The basic cycles in the control unit are:

 read-modify-write registers
 register transfer
 memory read
 memory write

Memory access

Before going into details of each control cycle, one important consideration is
how the memory is accessed (read/write) in each control cycle. A memory
access is assumed to take a full cycle. The memory access time is assumed to be
half of the processor cycle. This is not a realistic assumption. Usually the
memory cycle time is much longer than the processor cycle time, as much as ten

arg op

24 8

139

Figure 6.1 The Sx data path

times. This is called “processor memory speed gap”. However, we make this
assumption as it simplifies our control cycle greatly.

A memory access is initiated by setting the address through abus, for a read, a
memory read signal is asserted (mR). The data from the memory is ready at the

arg

1

M

BIU

SP

FP

TS

IR

PC

FF

NX

ja

b

tbustbus

tbus

dbus din

PC

arg

abus

alu

TS

FP

+

p1

p2

bus

x

y

d

140

middle of the cycle. The data from dbus is latched to a register in the middle of
the cycle, at the negative edge of the clock.

Figure 6.2 A memory read cycle

A memory write cycle is similar. The address and data are asserted at the
beginning of the cycle. The memory write signal is asserted (mW). The data will
be written in the memory in the middle of the cycle, at the negative edge of the
clock.

Figure 6.3 A memory write cycle

processor clock cycle

data valid here, dbus

memory read signal

address valid, abus

cycle

processor clock cycle

data is written here

data valid for writing

address valid

cycle

memory write signal

141

Register access

The basic read-modify-write starts at the positive edge of the clock. The data are
read from the registers into the ALU ports through the multiplexor x and y. The
ALU outputs the result to tbus. At the negative edge, tbus is fed back to the
input of registers, bus, through the multiplexor b and is latched into the
designated register.

Read-modify-write a register

pos edge: R -> alu -> tbus
neg edge: tbus -> R

Register transfer

pos edge: R1 -> tbus
neg edge: tbus -> R2

6.2 Execution cycle

The processor begins its execution cycle with fetching an instruction from the
memory. It is complete in the first half of the cycle. The instruction in stored in
the instruction register (IR). It is decoded through a read-only-memory, called
micro-ROM, that stored the address of the microprogram control. The control
step then transfers to the appropriate microprogram step. At the end of
microprogram step of the instruction, the control is transferred back to fetch the
next instruction. A register transfer language (RTL) is used to describe these
steps of execution. RTL notation mainly describes the transfer between two
registers, dest = source. In our notation, RTL does not specify the actual
concurrent operation beyond what that can be written as dest = source. We
will fully specify the concurrent operations in the control unit using the
microprogram notation later.

Execution cycle in RTL

The registers in the data path are IR, TS, FP, SP, NX, FF, and PC. In some
operation that there are a number of arguments, the picture of the data in the

142

evaluation stack will be shown in this notation, {.. top of stack}. Each operation
is labeled as <op>. M[.] is the memory.

A shorthand notation is used to describe two often used stack operations: push
and pop.

[push x]
sp = sp + 1
M[sp] = x

[pop x]
x = M[sp]
sp = sp - 1

The instruction fetch cycle is,

ir = M[pc].

An operation on the ALU is specified by the operation code field. The opcode
bits determine the ALU function. The binary operations are: add, sub, mul,
div, band, bor, bxor, shl, shr, eq, ne, lt, le, gt, ge, inc, dec. In a binary
operation, the second argument is in the top of stack; the first argument is in the
evaluation stack pointed to by SP. Please note the order of argument. The
second argument is popped to FF, and then two arguments are fed to the ALU.
The result is stored back to TS.

<bop>
pop ff
ts = ts op ff

The unary operation affects only the TS.

<uop>
ts = op ts

The access operations to local variables are “get” and “put”. “get” must
pushes TS first to make room for the new data that will be taken from the
activation record, M[FP-arg]. “put” stores TS to the activation record then it
pops the evaluation stack to TS (caching the top of stack).

143

<get>
push ts
ts = M[fp-arg]

<put>
M[fp-arg] = ts
pop ts

“ld” and “st” are similar to “get” and “put” but access to the memory instead
of the activation record.

<ld>
push ts
ts = M[arg]

<st> {data}
M[arg] = ts
pop ts

The “ldx” and “stx” are a bit more complicate as they have a number of
arguments. “ldx” takes the base from the stack, using FF to store it. “stx”
takes two arguments from the stack, the first one is idx, and the second one is
base. The effective address is calculated using the ALU.

<ldx> {base idx}
pop ff base
ts = M[ff+ts]

<stx> {base idx data}
pop nx idx
pop ff base
M[ff+nx] = ts
pop ts

The literal instruction is simply pushing the argument to TS.

<lit>
push ts
ts = arg

The control transfer operations are: unconditional jump, conditional jump, call
and return. “jmp” is straightforward. “jt” and “jf” inspect the zero flag, which

144

reflected the value of TS, and transfer the control step accordingly. The
evaluation stack is popped to get rid of the old TS.

<jmp>
pc = pc + arg

<jt>
if ts != 0
 pc = pc + arg
else
 pc = pc + 1
pop ts

<jf>
if ts == 0
 pc = pc + arg
else
 pc = pc + 1
pop ts

The “call” is perhaps the most complex instruction in this instruction set. It
creates a new activation record and transfers the control step to the called
function. The new activation record is created on top of the current evaluation
stack, overlapping the evaluation stack by the amount of the arity of the called
function to pass the parameters. Hence, the new FP is offset from the current SP.
This offset is computed by the compiler and it becomes the argument of the
function header, the “fun” instruction. “call” fetches the function header to get
the offset, then uses the offset to set up a new FP location and saves the current
FP there. The FP and SP are updated to the new location. Next, it pushes the
return address and finally jumps to the function body.

<call ads>
push ts flush eval stack
ts = pc + 1 save ret ads to ts
nx = arg save call ads to nx
ir = M[arg] fetch at ads
M[fp+arg] = fp save old fp
fp = sp = fp + arg new fp, sp
push ts save ret ads
pc = nx + 1 jump to body

145

The “ret” instruction sets PC to the return address, restores the old SP, and
restores to the previous activation record. As it is different between returning and
not returning a value, it is necessary to decide whether there is a return value or
not. The condition SP = FP indicates that the net effect of the evaluation stack
(the state of stack after many operations) is that the stack is back to its initial
state, there is no value to return. The argument of “ret” is the offset to set SP
back.

<ret>
pc = M[fp+1] restore ret ads
if sp == fp no return value
 sp = fp - arg restore sp
 pop ts cache top of stack
 fp = M[fp] restore fp
else return a value
 sp = fp - arg
 fp = M[fp]

If the net effect cannot be assumed (because some anomaly in the stack
manipulation), then an alternative is to do flow analysis at the compile time to
decide whether a function returns a value or not. The “ret” instruction must be
spilt into two instructions, one without a return value and one with it. Let it be
“ret” and “retv”, then the following steps are their execution cycles.

<ret>
pc = M[fp+1]
sp = fp - arg
fp = M[fp]

<retv>
pc = M[fp+1]
sp = fp - arg
pop ts
fp = M[fp]

For simplicity, we assume the net effect is proper. This assumption let us avoid
the flow analysis in the compiler.

Microprogram

Next, we describe the actual microprogram level. The whole microprogram on Sx
processor is presented in the appendix H. The difference between RTL and

146

microprogram is that microprogram specifies the concurrent operations on the
data path, including the signals asserted on the multiplexor and ALU. The
microprogram level exposed more details that are necessary to realise on actual
circuits. A control signal in the microprogram can be regarded as an event that
occurs in the data path, such events are latching a data to a register, selecting a
multiplexor, memory read, memory write, etc. The notation used in writing
microprogram is as follows.

src->dest

denotes the event that transfer data from a source to a destination where source
and destination can be a wire or a register. A wire represents a connection or the
input/output of a component.

alu(p1 op p2)->dest

denotes the ALU performing the “op” on its two input ports, p1 and p2, and its
output is connected to dest, where dest can be a wire or a register.

mR(ads)->dest
src->mW(ads)

mR denotes memory read with the address from the source ads, the data is
transferred to dest. mW denotes memory write with the address sets to the source
and the address is ads. src and dest can be a wire or a register. The
concurrent events are specified in the microprogram by writing them on the same
line. Each event is separated from other event by “,”. The order of events in the
same line is unimportant because they occur in the same clock cycle. However,
some event occurs on the positive edge of the clock, some event occurs on the
negative edge of the clock. Reading from registers and memory will be on
positive edge and writing to registers will be on negative edge.

src->dest, mR(ads)->dest, ...

The “jump” of the microprogram is achieved by loading the “next microaddress”
bit to the microprogram counter. It can be unconditional or conditional. The next
address is written as <label>. There are three “jump” events in Sx data path.

ifT jump if ts is not zero
ifF jump if ts is zero
decode multiway branch according to opcode

147

PC has special events.

pc+1 is increment PC by 1
pc+arg is increment PC by arg

We have a shorthand notation for SP.

sp-1 is alu(sp-1)->sp
sp+1 is alu(sp+1)->sp

The microprogram for Sx is followed from its RTL description. We begin with
the instruction fetch.

<fetch> [micro 47]
mR(pc)->ir, decode

Where decode is a control signal to look up the microprogram address according
to the opcode field on the instruction register, IR.

Next is the binary operation.

<bop> [micro 49]
mR(sp)->ff
sp-1
alu(ts op ff)->ts, pc+1, <fetch>

Please note that the PC is incremented at the end of the instruction cycle and then
the microprogram is jumped back to the instruction fetch at the beginning. The
unary operation changes the value on TS.

<uop> [micro 53]
alu(ts op ?)->ts, pc+1, <fetch>

<get> [micro 55]
sp+1
ts->mW(sp)
alu(fp-arg)->tbus, mR(tbus)->ts, pc+1, <fetch>

“get” pushes TS and loads M[FP-arg] using ALU to do the effective address
calculation. The address is presented to tbus (and then to abus) and the
memory read signal is asserted. The data is ready and is latched to TS.

148

<put> [micro 59]
alu(fp-arg)->tbus, ts->mW(tbus)
mR(sp)->ts
sp-1, pc+1, <fetch>

“put” writes TS to M[fp-arg] then pops a value to TS. The SP-1 and PC+1 can
be concurrent because SP-1 uses the ALU while PC+1 does not use ALU. PC has
its own adder.

<ld> [micro 64]
sp+1
ts->mW(sp)
mR(arg)->ts, pc+1, <fetch>

<st> [micro 68]
ts->mW(arg)
mR(sp)->ts
sp-1, pc+1, <fetch>

“ld” and “st” are similar to “get” and “put” but “ld” and “st” access the
memory using direct address from the argument of the instruction.

<ldx> [micro 70] {ads idx}
mR(sp)->ff
sp-1
alu(ff+ts)->tbus, mR(tbus)->ts, pc+1, <fetch>

“ldx” gets the base address to FF. The index is in TS. The effective address is
calculated using ALU and the value is fetched from the memory.

<stx> [micro 74] {ads idx val}
mR(sp)->nx pop idx to nx
sp-1 pop ads to ff
mR(sp)->ff
alu(nx+ff)->tbus, ts->mW(tbus)
sp-1
mR(sp)->ts cache ts
sp-1, pc+1, <fetch>

149

“stx” has three arguments. It gets the index to NX, and the base address to FF.
The effective address is calculated using ALU. The value in TS is stored to that
address. Finally, the top of stack is cached to TS.

<lit> [micro 80]
sp+1
ts->mW(sp)
arg->ts, pc+1, <fetch>

<jmp> [micro 84]
pc+arg, <fetch>

<jt> [micro 86]
alu(ts=0), ifT <j3> if true, don’t jump
<j2> jump
pc+arg, mR(sp)->ts
sp-1, <fetch>

<jf> [micro 92]
alu(ts=0), ifT <j2> if true, jump
<j3> don’t jump
pc+1, mR(sp)->ts
sp-1, <fetch>

The “jt” and “jf” use the event “ifT” to do conditional branching. The
branching is the “goto” style of programming which is quite natural in a
microprogram. It saves the microprogram space.

<call> [micro 98]
sp+1
ts->mW(sp), pc+1 flush stack
pc->ts
arg->tbus->nx, mR(tbus)->ir fetch fun, nx=ads
alu(sp+arg)->tbus, fp->mW(tbus) save old fp
alu(sp+arg)->fp->sp new fp, sp
alu(nx+1)->pc, <fetch>

The event “arg->tbus->nx” uses ALU to pass arg through. This event saves
the address of the called function to NX. To get the offset, the “fun” instruction is
fetched to IR then its argument is used. There are two concurrent register writes
in the event “alu(sp+arg)->fp->sp”. The address of the body of the function,
NX+1, is updated to PC.

150

151

<ret> [micro 106]
sp->ff
alu(fp=ff), ifF <r2>
ts->pc do ret
alu(fp-arg)->sp
mR(sp)->ts
sp-1
mR(fp)->fp, <fetch> restore fp
<r2> do retv
alu(fp+1)->tbus, mR(tbus)->ff ret ads
ff->pc
alu(fp-arg)->sp
mR(fp)->fp, <fetch>

The “ret” tests the condition FP = SP to decide whether there is a value to return
or not. To do the test, SP is moved to FF to use ALU operation. When there is
no value to return, the return address is in TS but when there is a value to return,
the return address is in M[FP+1]. FF is used to pass the value through PC.

<sys> [micro 119]
<array>
<end>
trap, pc+1, <fetch>

The instructions “sys”, “array” and “end” have no implementation on the real
processor. They are used in the simulator. The event “trap” is used by the
simulator to handle these instructions.

After the microprogram is completely specified, the number of cycle taken by
each instruction is known. They are shown in the table below.

Table 6.2 The number of cycle for each instruction

 bop 4 uop 3 get 4 put 4
 ld 4 st 4 ldx 4 stx 8
 lit 4 jmp 2 jt 4 jf 4
 call 8 ret 8 retv 7

152

6.3 Performance

A number of benchmark programs are compiled and then run on the Sx processor
simulator. Table 6.3 reports the number of instructions (noi), the number of
cycles (cycle) and the cycle-per-instruction number (cpi) for each program.

“bubble” is a bubble sort program sorting an array of 20 integers, initially the
value in the array is in descending order and sort to ascending order. “hanoi” is a
program to solve Hanoi problem with 6 disks. “matmul” is a matrix
multiplication program; the input is two matrices of the size 4 × 4. “perm” is a
program to do all permutation of {0,1,2,3}. “queen” is a program to find all
configurations of 8-queen problem. “quick” is a quicksort program with a similar
input to “bubble”. “sieve” is a program to find prime numbers less than 1000
using “Sieve of Eratosthenes” algorithm. “aes” is a program to do AES
(Advanced Encryption Standard) block cipher (128, 128) bit key. The average
cycle-per-instruction number of Sx processor is 4.3. This is quite good
comparing to the stack-based processor of an earlier design [BUR04c], a 16-bit
processor runs the same “aes” in 284108 cycles. Sx processor completed it in
131560 cycles, twice as fast at the same clock frequency.

Table 6.3 The performance of Sx processor

program noi cycle cpi

bubble 10068 44214 4.39
hanoi 2312 10092 4.37
matmul 3043 12880 4.23
perm 4868 20932 4.30
queen 618665 2576210 4.16
quick 3172 13539 4.27
sieve 28026 124338 4.44
aes 30579 131560 4.29

153

6.4 Sx processor simulator

The design of Sx processor with the detailed design of the data path and its
control unit using microprogram is complete enough to be realised on real silicon
using either FPGA (Field Programmable Gate Array) technology or ASIC
(Application Specific Integrated Circuit). However, it is much easier to study it
using a simulator. The Sx processor simulator performs cycle-accurate
simulation of Sx processor executing programs. The simulator executes step-by-
step microprogram of Sx. It is used to validate the microprogram and to collect
the performance statistics.

Data path

The data path consists of registers, multiplexors, combinational circuits such as
ALU and wires. The registers and wires are simulated as variables of type
integer capable of holding 32-bit values. The multiplexors are simulated as
if-then statements to update the output wires. The simulated ALU performs the
expected operations on its input ports and updates the flags. The combinational
circuits can be simulated by statements to update the output wires.

Control unit

A straightforward way to simulate the microprogram control unit is to regard the
microprogram as a ROM, a two-dimensional array of bits (Fig. 6.4). Each
address is called a microprogram word. One microprogram word is executed in
one cycle. Each word contains event-control bits where each bit represents an
event in the data path. The event that is active is 1, otherwise it is 0. Many
events can occur simultaneously in one cycle. Each event has its symbolic name.
The simulation is run as event-driven. The main simulation loop looks at each
microprogram word and scans the event bits to find the active one then performs
the action for that event. This includes the control transfer of microprogram
address which updates the microprogram counter. The simulation loop continues
until the “end” instruction throws a trap with the event “trap”. The “trap”
events are system specific. They implement the input/output and other useful
functions.

154

62
 0 00000000000010000000000001000000100010000001
 1 00100001000100000000000100000010100000000010
 2 00100010000000000001000000001000000000000011
 3 10001010000001000000001000100001000000000000
 4 10000010000001000000001000100001000000000000
 . . .
 55 00010010000001000000000100100001000000000000
 56 10000010000000000000000100000100000000111001
 57 01000101000100000100000000100000100000111010
 58 10000010000000000001000000100000000000111011
 59 01000100001100000100000000000000010000111100
 60 00010010000001000000000100100001000000000000
 61 00000000000001000000000000000001000001000000

Figure 6.4 The microprogram ROM. The first line shows the length of the
microprogram. The first column of each line is the address of the microword.

The events are defined as follows.

multiplexor x selects {ts, fs, sp, nx}
multiplexor y selects {ff, arg}
multiplexor b selects {tbus, dbus, pc}
multiplexor d selects {fp, ts}
multiplexor a selects {pc, tbus}
multiplexor j selects {pc+1, pc+arg, tbus}
ALU events are {add, sub, inc, dec, z, eq, op, p1, p2}
load registers events are {ir, ts, fp, sp, nx, ff, pc}
memory events are {mR, mW}
next micro-address events are {ifT, ifF, decode, trap}

We use the naming convention as follows. The multiplexor has its name as a
prefix followed by its choice, for example, mux x selects TS is written as x.ts.
The ALU is similar, ALU performs inc is written as alu.inc. The load register
is written with a prefix “l” followed by the name of the register, lpc is load PC.

The registers are IR, PC, TS, FP, SP, NX, FF. Z is the zero flag. The wires are p1,
p2, tbus, abus, dbus, bus, pcin. The functions IRarg(), IRop() decode the
op and arg field of IR. alu() performs ALU operations. udecode() returns

155

the microaddress corresponded to the current opcode. m2 is the next
microaddress, specified as the next address field in the microprogram word.

Let mx[mpc][bit] be the microprogram ROM. The main simulation loop is.

while (running)
 m2 = next micro address field
 for i = 0 to microwidth-1
 s = scan for active event in mx[mpc][i]
 do s
 mpc = m2

For each event in a microprogram word. Let s be the event that is active.

switch(s){ [sx 120]
 case x.ts: p1 = TS
 case x.fp: p1 = FP
 case x.sp: p1 = SP
 case x.nx: p1 = NX
 case y.ff: p2 = FF
 case y.arg: p2 = IRarg()
 case alu.add: tbus = alu(icAdd,p1,p2)
 case alu.sub: tbus = alu(FSUB,p1,p2)
 case alu.inc: tbus = alu(icInc,p1,p2)
 case alu.dec: tbus = alu(icDec,p1,p2)
 case alu.z: tbus = alu(FZ,p1,p2)
 case alu.eq: tbus = alu(icEq,p1,p2)
 case alu.p1: tbus = alu(FP1,p1,p2)
 case alu.p2: tbus = alu(FP2,p1,p2)
 case alu.op: tbus = alu(IRop(),p1,p2)
 case a.pc: abus = PC
 case a.tbus: abus = tbus
 case d.ts: dbus = TS
 case d.fp: dbus = FP
 case mR: dbus = M[abus]
 case mW: M[abus] = dbus
 case b.tbus: bus = tbus
 case b.dbus: bus = dbus
 case b.pc: bus = PC
 case j.pc1: pcin = PC + 1
 case j.pcarg: pcin = PC + IRarg()
 case j.tbus: pcin = tbus
 case lpc: PC = pcin
 case lir: IR = dbus

156

 case lts: TS = bus
 case lfp: FP = bus
 case lsp: SP = bus
 case lnx: NX = bus
 case lff: FF = bus
 case ifT: m2 = (Z == 0) ? m2 : mpc+1
 case ifF: m2 = (Z == 1) ? m2 : mpc+1
 case decode: m2 = udecode()
 case trap: trap(IRop(),IRarg())
}

The simulator is sequential, that is, it simulates each event one by one. Therefore
the order of scanning the event (the bits in a microprogram word) is important to
get the correct result. All the positive-edge events must be updated before the
negative-edge events. Within the same group the input side is updated to the
output side. For example the read-modify-write loop of a register, the read side
must be performed, then goes through the modify operation from input to output,
finally the write is performed to that register. With these rules the order of events
are:

mux x, mux y, alu,
mux a, mux d, mR, mW,
mux b, mux j,
load registers,
ifT, ifF, decode, trap.

6.5 Lab session

A tool is provided to write a microprogram. The “mgen” tool takes the input file
as a microprogram specification and outputs the microprogram ROM as shown in
Fig 6.4. The microprogram must be written in the following form. The
specification composed of two sections, the first section is the signal definition
and the second section is the microprogram. The signal definition lists all the
events, the order of the event is important as a simple implementation of the
simulator will simulate each event according to this order (see Exercise 6.7). This
can be relaxed in the alternative implementation. Here is an example of the
signal definition, the section starts with “.s”. The line started with “..” is the
comment line.

157

.. sx microprogram v 1.0 [micro 1]

..

.s
x.ts
x.fp
x.sp
...
alu.add
alu.sub
...
.. load registers
lir
lts
lfp
lsp
lnx
lff
lpc
mR
mW
.. next micro ads
ifT
ifF
decode
trap

After the signal definition the next section is the microprogram section. Each
line consists of,

[:label] event* [/label] ;

A line starts with a label “:label”, follows by events and the next micro-address
label “/label”, and ends with “;”. The starting label and the micro-address
label are optional. The microprogram section starts with “.m” and ends with
“.e”. Here is an example.

.m [micro 45]
:fetch
 a.pc mR lir decode ;
:bop
 x.sp alu.p1 a.tbus mR b.dbus lff ;
 x.sp alu.dec b.tbus lsp ;
 x.ts y.ff alu.op b.tbus lts j.pc1 lpc /fetch ;
...

158

:jmp
 j.pcarg lpc /fetch ;
:jt
 x.ts alu.z ifT /j3 ;
:j2
 j.pcarg lpc x.sp alu.p1 a.tbus mR b.dbus lts ;
 x.sp alu.dec b.tbus lsp /fetch ;
:jf
 x.ts alu.z ifT /j2 ;
:j3
 j.pc1 lpc x.sp alu.p1 a.tbus mR b.dbus lts ;
 x.sp alu.dec b.tbus lsp /fetch ;
:end
 trap j.pc1 lpc /fetch ;
.e

The microprogram word for “fetch” can be read as, mux a selects PC (to be the
address of the memory operation), memory read, load IR, jump to the
corresponding micro-address. The “bop” reads as SP goes through ALU to
tbus, mux a selects tbus (to be the address of the memory operation), memory
read, mux b selects dbus (to be the input of registers), load register FF. Then, SP
goes through ALU to do -1 and back to bus to write to SP. Then, mux x selects
TS, mux y selects FF, ALU performs a function according to the opcode, mux b
selects tbus (to be the input of registers), load register TS, at the same time, PC
is updated +1, then jump to “fetch”, the instruction fetch.

How to microprogram Sx

To write microprogram for Sx, the microprogram specification is in the file
“mspec.txt”. “mgen” transforms the specification to a ROM file. Store it in the
name “mpgm.txt”. The source for “mgen” can be found in sx0.zip package.

c:> mgen < mspec.txt > mpgm.txt

Here is what “mpgm.txt” looked like.

62
 0 00000000000010000000000001000000100010000001
 1 00100001000100000000000100000010100000000010
 2 00100010000000000001000000001000000000000011
 3 10001010000001000000001000100001000000000000

159

 4 10000010000001000000001000100001000000000000
 . . .
 55 00010010000001000000000100100001000000000000
 56 10000010000000000000000100000100000000111001
 57 01000101000100000100000000100000100000111010
 58 10000010000000000001000000100000000000111011
 59 01000100001100000100000000000000010000111100
 60 00010010000001000000000100100001000000000000
 61 00000000000001000000000000000001000001000000

A few right most bits are the next microprogram address. “mgen” also generates
binding of symbolic names to numeric values which are used in the simulator,
“mspec.h”. This is it:

#define s_x_ts 0
#define s_x_fp 1
#define s_x_sp 2
#define s_x_nx 3
#define s_y_ff 4
. . .
#define a_fetch 0
#define a_bop 1
#define a_uop 4
#define a_get 5
#define a_put 8
#define a_popts 9
#define a_ld 11
. . .
#define a_end 61
#define MCWIDTH 38
#define MAWIDTH 6
#define MLEN 62

The event names prefixed “s_” are the signal events, prefixed “a_” are the
address of the label of microprogram. The MCWIDTH is the number of the control
bits. The MAWIDTH is the number of bit of the microprogram address field. The
MLEN is the number of microprogram word. “mgen” also generates a listing file
“mlist.txt”. It is used for debugging.

The next step is to convert this micro-ROM into an event-list. “sxgen” combines
“mgen” and conversion to event-list. (If you are using sx1, sx2 simulator, sxgen
is inside the simulator, you don’t have to do it explicitly). “sxgen” reads the files

160

“mpgm.txt” and “mspec.h” then generates “sxbit.h” which must be compiled
with the simulator.

c:> sxgen < mspec.txt

The “sxbit.h” contains the binding, the op-decoder-rom (udop[]), the pointer to
event-list (mw[]), the event-list itself (mx[]) and finally the next-address-rom
(nxt[]).

#define s_x_ts 0
#define s_x_fp 1
. . .
#define a_sys 51
#define a_array 51
#define a_end 51
#define MCWIDTH 38
#define MAWIDTH 6
#define MLEN 52

int udop[] = {
0, 1, 1, 1, 1, 1, 1, 1, 4, 1,
1, 1, 1, 1, 1, 1, 1, 0, 15, 18,
40, 0, 51, 51, 5, 8, 11, 14, 26, 27,
30, 23, 33, 0, 0, 0, 51, 0, 0, 0, 0 };

int mw[] = {
0, 5, 12, 17, 25, 32, 37, 43, 53, 60,
67, 74, 79, 85, 94, 100, 107, 112, 122, 129,
134, 141, 148, 153, 158, 164, 171, 174, 178, 187,
192, 196, 205, 210, 215, 223, 226, 234, 241, 248,
253, 258, 263, 268, 274, 281, 286, 293, 300, 305,
311, 318, 0 };

int mx[] = {
12, 32, 25, 36, -1,
2, 23, 11, 32, 7, 30, -1,
2, 19, 6, 28, -1,
0, 4, 22, 6, 13, 31, 26, -1,
. . .
1, 5, 17, 6, 28, -1,
1, 23, 11, 32, 7, 27, -1,
13, 31, 37, -1,
0 };

161

int nxt[] = {
1, 2, 3, 0, 0, 6, 7, 0, 9, 10,
0, 12, 13, 0, 9, 16, 17, 0, 19, 20,
21, 22, 9, 24, 25, 0, 0, 31, 29, 0,
28, 32, 0, 34, 35, 36, 37, 38, 39, 0,
41, 47, 43, 44, 45, 46, 0, 48, 49, 50,
0, 0, 0 };

You must recompile the simulator to include your new signal definitions, or new
instruction labels. The processor simulator takes a proper object file as input and
run it. If it is sx0, the processor is run in a batch mode. For sx1 and sx2 they
run in interactive mode. You can ask for help by typing “h”. The following
session is sx0 running quicksort.

6.6 Summary

In this chapter we have learnt the detailed design of a stack-based processor that
can execute S-code instructions directly. This processor is the basic component
of our hardware system. The data path is quite simple. The processor is aimed
for clarity. It is simple enough to be studied and to be modified without due
complexity by students. At the same time, it retained the flavour of reality that
the design is complete enough to be realised as a real processor. The control unit
has been detailed down to the cycle-by-cycle execution of an instruction.
Microprogram represents the specification of the execution behaviour. Writing a
microprogram starts with a RTL description which concerns only the registers
transfer. Then, the specification is refined to a microprogram level which also

D:\sx\test>sx qs.obj
load program, last address 203
DP 1000
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4820 instructions, 20231 clocks, CPI 4.20

D:\sx\test>

162

concerns concurrency of operations. With microprogram fully specified, the
number of cycle taken by each instruction can be calculated. The algorithm to
simulate the processor has been presented. The processor simulator is event-
driven. The microprogram is regarded as events occur in the data path.

In the laboratory session, we learn how to write a concrete microprogram. Tools
are given to convert this concrete specification into a data structure suitable for
simulation. The processor simulator itself has been described in details enough
that students can modify it to include other instructions and/or additional
features. We shall see in the next chapter how to improve the performance of this
Sx processor.

6.7 Further reading

Stack-based processors have been a popular architecture in the past due to their
simplicity and their compatibility with structured programming paradigm around
1970-1980. Burroughs has developed many commercial machines based on this
type of architecture (Burroughs B5500) [BUR68]. For more recent discussion of
stack-based processors see Koopman [KOO89] which discussed the strength of
this architecture including a comprehensive survey of many stack-based
processors. The weakness of stack architecture lies in its performance. As RISC
type of processors [PAT82] [PAT85] [HEN84] [STA88] becomes popular during
1980-1990, it dominates all the market with its high performance. Nowadays, all
processors are register-based. We shall discuss the use of registers in the next
chapter.

References

[BUR68] Burroughs B5500 Electronic Information Processing System:
Operation manual. Burroughs Corp. Detroit, 1968.

[BUR04a] Burutarchanai, A., and Chongstitvatana, P., “Design of a two-phased
clocked control unit for performance enhancement of a stack processor”,
National Computer Science and Engineering Conference, Thailand, 21-22
Sept. 2004, pp.114-119.

[BUR04b] Burutarchanai, A., Kotrajaras, V. and Chongstitvatana, P., “A fast
instruction fetch unit for an embedded stack processor”, Proc. of Int. Conf.

163

on Information and Communication Technologies, Thailand, 18-19
November 2004.

[BUR04c] Burutarchanai, A., Nanthanavoot, P., Aporntewan, C., and
Chongstitvatana, P., “A stack-based processor for resource efficient
embedded systems”, Proc. of IEEE TENCON, Thailand, 21-24 November
2004.

[HEN84] Hennessy, J., “VLSI Processor Architecture”, IEEE Trans. on
Computers, December 1984.

[KOO89] Koopman, J., Stack Computers: the new wave, Ellis Horwood, 1989.

[PAT82] Patterson, D., and Sequin, C., “A VLSI RISC”, Computer, Septermber,
1982.

[PAT85] Patterson, D., “Reduced Instruction Set Computers”, Communications
of the ACM, January, 1985.

[STA88] Stallings, W., “Reduced instruction set computer architecture”, Proc. of
the IEEE, vol. 76, no. 1, January 1988, pp. 38-55.

Exercises

6.1 Compile and run Sx-kit

6.2 Write three benchmark programs in nut: hanoi, matmul, (bubble, quick
already existed in Sx-kit) run it under sx-simulator to test the correctness.

6.3 Modify the simulator to count the frequency of each instruction. Run the
above benchmarks to find out the dynamic instruction count.

6.4 Write additional microprogram for the instruction “inc” and “dec”.

6.5 The combination of test-and-jump occurs frequently in the program.
Write new instructions, such as, jump-if-less-than, jump-if-
equal etc. Modify the code generator to output the new instructions.
Measure their effectiveness.

6.6 Suggest some way to improve the speed of Sx processor.

164

6.7 A simple implementation of the processor simulator is to scan the
microprogram ROM and execute the active event directly. The next
micro-address is also converted into an integer. This makes the
processor simulator 5 to 10 times slower than the implementation
illustrated in the section laboratory session in this chapter. Do it and
compare the speed.

165

	Chapter 6
	Sx Processor
	6.1Data path
	Memory access
	Register access

	6.2Execution cycle
	Execution cycle in RTL
	Microprogram

	6.3Performance
	6.4Sx processor simulator
	Data path
	Control unit

	6.5Lab session
	How to microprogram Sx

	6.6Summary
	6.7Further reading
	References
	Exercises

