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Chapter 6

Sx Processor

In this chapter, we discuss the main processor of our system, the Sx processor. It 
is a stack-based processor.  Its instruction set is S-code (see Chapter 4).  The data 
path width is 32 bits.  The control unit  uses 2-phase clock [BUR04a]. For the 
purpose  of  teaching  cycle-accurate  execution,  it  uses  a  microprogrammed 
control unit.

6.1 Data path

Sx has seven special purpose registers (no visible user registers): TS, FP, SP, NX, 
FF, IR and PC. TS caches the top of stack value (Fig. 6.1).

TS  top of stack
FP  frame pointer
SP  stack pointer
NX  temp register
FF  temp register
IR  instruction register
PC  program counter

The program counter,  PC, can be updated independent of other registers.  This 
allows fetching an instruction in one cycle.  The data path consists of one ALU 
connected to the register  bank.   The output  of  ALU,  tbus,  goes back to the 
register  bank.  The  memory  is  interfaced  to  the  processor  through  the  bus 
interface unit (BIU).  The BIU interfaces the data input, din, and the data output, 
dout, to the memory data bus. din is selected from TS or FP. The input of the 
register bank,  bus, is multiplexed from tbus,  dbus and  PC.  The address bus, 
abus, is multiplexed from PC and tbus.  The PC can be updated with PC+1 or 
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PC+arg or  tbus.  The  ALU  has  two  ports:  p1,  p2 and  can  perform  many 
functions as shown in Table 6.1. There are two flags: Zero, and Sign.

Table 6.1  The function of ALU, the inputs is a, b.  a is at the port p1. t is the 
output.

   Add: t = b + a Sub: t = b - a Mul: t = b * a Div: t = b / a
   Band: t = b & a Bor: t = b | a Bxor: t = b ^ a Not: t = ! a
   Shl: t = b << a Shr: t = b >> a Eq: t = b == a Ne: t = b != a
   Lt: t = b < a Le: t = b <= a Gt: t = b > a Ge: t = b >= a
   Inc: t = a + 1 Dec: t = a - 1 SUB2: t = a - b P1: t = a
   P2: t = b Z: t = a == 0

The instruction register, IR, has the operation code at the right-most 8-bit and the 
argument at the left-most 24-bit.  The argument field is signed extended to 32 
bits.  When the instruction requires no argument, the argument field is zero.

Using  2-phase  clock  enables  read-modify-write  of  registers  in  one  cycle. 
Reading from registers and memory will be on the positive edge and writing to 
registers will be on the negative edge. The basic cycles in the control unit are: 

 read-modify-write registers
 register transfer
 memory read
 memory write

Memory access

Before going into details of each control cycle, one important consideration is 
how the  memory  is  accessed  (read/write)  in  each  control  cycle.   A  memory 
access is assumed to take a full cycle.  The memory access time is assumed to be 
half  of  the  processor  cycle.  This  is  not  a  realistic  assumption.   Usually  the 
memory cycle time is much longer than the processor cycle time, as much as ten 

arg op

24                      8
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Figure 6.1  The Sx data path

times.  This is called “processor memory speed gap”.  However, we make this 
assumption as it simplifies our control cycle greatly.

A memory access is initiated by setting the address through abus, for a read, a 
memory read signal is asserted (mR).  The data from the memory is ready at the 
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middle of the cycle. The data from dbus is latched to a register in the middle of 
the cycle, at the negative edge of the clock.  

Figure 6.2  A memory read cycle

A memory  write  cycle  is  similar.   The  address  and  data  are  asserted  at  the 
beginning of the cycle.  The memory write signal is asserted (mW).  The data will 
be written in the memory in the middle of the cycle, at the negative edge of the 
clock.

Figure 6.3   A memory write cycle
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Register access

The basic read-modify-write starts at the positive edge of the clock.  The data are 
read from the registers into the ALU ports through the multiplexor x and y.  The 
ALU outputs the result to tbus.  At the negative edge, tbus is fed back to the 
input  of  registers,  bus,  through  the  multiplexor  b and  is  latched  into  the 
designated register.

Read-modify-write a register

pos edge: R -> alu -> tbus
neg edge: tbus -> R

Register transfer

pos edge: R1 -> tbus
neg edge: tbus -> R2

6.2 Execution cycle

The processor begins its execution cycle with fetching an instruction from the 
memory. It is complete in the first half of the cycle.  The instruction in stored in 
the instruction register (IR). It is decoded through a read-only-memory,  called 
micro-ROM, that stored the address of the microprogram control.  The control 
step  then  transfers  to  the  appropriate  microprogram  step.  At  the  end  of 
microprogram step of the instruction, the control is transferred back to fetch the 
next  instruction.  A register  transfer  language (RTL) is  used to describe  these 
steps  of  execution.   RTL notation mainly  describes  the  transfer  between two 
registers,  dest = source.   In our notation, RTL does not specify the actual 
concurrent operation beyond what that can be written as  dest =  source.  We 
will  fully  specify  the  concurrent  operations  in  the  control  unit  using  the 
microprogram notation later.  

Execution cycle in RTL

The registers in the data path are  IR,  TS,  FP,  SP,  NX,  FF,  and  PC.  In some 
operation that there are a number of arguments,  the picture of the data in the 



142

evaluation stack will be shown in this notation, {.. top of stack}.  Each operation 
is labeled as <op>.  M[.] is the memory.

A shorthand notation is used to describe two often used stack operations: push 
and pop. 

[push x]
sp = sp + 1
M[sp] = x

[pop x]
x = M[sp]
sp = sp - 1

The instruction fetch cycle is,

ir = M[pc].

An operation on the ALU is specified by the operation code field.  The opcode 
bits determine the ALU function.  The binary operations are:  add,  sub,  mul, 
div, band, bor, bxor, shl, shr, eq, ne, lt, le, gt, ge, inc, dec.  In a binary 
operation, the second argument is in the top of stack; the first argument is in the 
evaluation stack pointed to  by  SP.   Please  note  the  order  of  argument.   The 
second argument is popped to FF, and then two arguments are fed to the ALU. 
The result is stored back to TS.

<bop>
pop ff
ts = ts op ff

The unary operation affects only the TS.

<uop>
ts = op ts

The access  operations  to  local  variables  are  “get”  and  “put”.   “get”  must 
pushes  TS first  to  make  room for  the  new data  that  will  be  taken  from the 
activation record,  M[FP-arg].  “put” stores  TS to the activation record then it 
pops the evaluation stack to TS (caching the top of stack).
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<get>  
push ts
ts = M[fp-arg]

<put>
M[fp-arg] = ts
pop ts

“ld” and “st” are similar to “get” and “put” but access to the memory instead 
of the activation record. 

<ld>
push ts
ts = M[arg]

<st>   {data}
M[arg] = ts
pop ts

The “ldx”  and  “stx”  are  a  bit  more  complicate  as  they have  a  number  of 
arguments.  “ldx” takes the  base from the stack, using  FF to store it.  “stx” 
takes two arguments from the stack, the first one is  idx, and the second one is 
base.  The effective address is calculated using the ALU.

<ldx>            {base idx}
pop ff           base
ts = M[ff+ts]

<stx>            {base idx data}
pop nx           idx
pop ff           base
M[ff+nx] = ts
pop ts

The literal instruction is simply pushing the argument to TS.

<lit>
push ts
ts = arg

The control transfer operations are: unconditional jump, conditional jump, call 
and return.  “jmp” is straightforward. “jt” and “jf” inspect the zero flag, which 
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reflected  the  value  of  TS,  and  transfer  the  control  step  accordingly.  The 
evaluation stack is popped to get rid of the old TS.

<jmp>
pc = pc + arg

<jt>
if ts != 0 
  pc = pc + arg
else
  pc = pc + 1
pop ts

<jf>
if ts == 0
  pc = pc + arg
else
  pc = pc + 1
pop ts

The “call” is perhaps the most complex instruction in this instruction set.  It 
creates  a  new  activation  record  and  transfers  the  control  step  to  the  called 
function.  The new activation record is created on top of the current evaluation 
stack, overlapping the evaluation stack by the amount of the arity of the called 
function to pass the parameters. Hence, the new FP is offset from the current SP. 
This  offset  is  computed by the  compiler  and it  becomes  the  argument  of  the 
function header, the “fun” instruction.  “call” fetches the function header to get 
the offset, then uses the offset to set up a new FP location and saves the current 
FP there. The  FP and  SP are updated to the new location.  Next, it pushes the 
return address and finally jumps to the function body.

<call ads>
push ts               flush eval stack
ts = pc + 1           save ret ads to ts
nx = arg              save call ads to nx
ir = M[arg]           fetch at ads
M[fp+arg] = fp        save old fp
fp = sp = fp + arg    new fp, sp
push ts               save ret ads
pc = nx + 1           jump to body
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The “ret” instruction sets  PC to the  return address,  restores the  old  SP,  and 
restores to the previous activation record.  As it is different between returning and 
not returning a value, it is necessary to decide whether there is a return value or 
not. The condition  SP = FP indicates that the  net effect of the evaluation stack 
(the state of stack after many operations) is that the stack is back to its initial 
state, there is no value to return. The argument of “ret” is the offset to set  SP 
back. 

<ret>
pc = M[fp+1]          restore ret ads
if sp == fp           no return value
  sp = fp - arg       restore sp
  pop ts              cache top of stack
  fp = M[fp]          restore fp
else                  return a value
  sp = fp - arg
  fp = M[fp]

If  the  net  effect cannot  be  assumed  (because  some  anomaly  in  the  stack 
manipulation), then an alternative is to do flow analysis at the compile time to 
decide whether a function returns a value or not. The “ret” instruction must be 
spilt into two instructions, one without a return value and one with it.  Let it be 
“ret” and “retv”, then the following steps are their execution cycles.

<ret>
pc = M[fp+1]
sp = fp - arg
fp = M[fp]

<retv>
pc = M[fp+1]
sp = fp - arg
pop ts
fp = M[fp]

For simplicity, we assume the net effect is proper.  This assumption let us avoid 
the flow analysis in the compiler.

Microprogram

Next, we describe the actual microprogram level. The whole microprogram on Sx 
processor  is  presented  in  the  appendix  H.  The  difference  between  RTL  and 
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microprogram is that microprogram specifies the concurrent operations on the 
data  path,  including  the  signals  asserted  on  the  multiplexor  and  ALU.   The 
microprogram level exposed more details that are necessary to realise on actual 
circuits. A control signal in the microprogram can be regarded as an event that 
occurs in the data path, such events are latching a data to a register, selecting a 
multiplexor,  memory  read,  memory  write,  etc.   The  notation  used  in  writing 
microprogram is as follows.

src->dest

denotes the event that transfer data from a source to a destination where source 
and destination can be a wire or a register.  A wire represents a connection or the 
input/output of a component.  

alu(p1 op p2)->dest

denotes the ALU performing the “op” on its two input ports, p1 and p2, and its 
output is connected to dest, where dest can be a wire or a register.

mR(ads)->dest
src->mW(ads)

mR denotes  memory  read  with  the  address  from the  source  ads,  the  data  is 
transferred to dest.  mW denotes memory write with the address sets to the source 
and  the  address  is  ads.   src and  dest can  be  a  wire  or  a  register.   The 
concurrent events are specified in the microprogram by writing them on the same 
line.  Each event is separated from other event by “,”.  The order of events in the 
same line is unimportant because they occur in the same clock cycle.  However, 
some event occurs on the positive edge of the clock, some event occurs on the 
negative  edge  of  the  clock.   Reading  from registers  and  memory  will  be  on 
positive edge and writing to registers will be on negative edge.

src->dest, mR(ads)->dest, ...

The “jump” of the microprogram is achieved by loading the “next microaddress” 
bit to the microprogram counter.  It can be unconditional or conditional. The next  
address is written as <label>.  There are three “jump” events in Sx data path.

ifT      jump if ts is not zero
ifF      jump if ts is zero
decode   multiway branch according to opcode
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PC has special events.

pc+1     is increment PC by 1
pc+arg   is increment PC by arg

We have a shorthand notation for SP.

sp-1     is alu(sp-1)->sp
sp+1     is alu(sp+1)->sp

The microprogram for Sx is followed from its RTL description.  We begin with 
the instruction fetch.

<fetch>  [micro 47]
mR(pc)->ir, decode

Where decode is a control signal to look up the microprogram address according 
to the opcode field on the instruction register, IR.

Next is the binary operation.

<bop>  [micro 49]
mR(sp)->ff
sp-1
alu(ts op ff)->ts, pc+1, <fetch>

Please note that the PC is incremented at the end of the instruction cycle and then 
the microprogram is jumped back to the instruction fetch at the beginning. The 
unary operation changes the value on TS.

<uop>  [micro 53]
alu(ts op ?)->ts, pc+1, <fetch>

<get>  [micro 55]
sp+1
ts->mW(sp)
alu(fp-arg)->tbus, mR(tbus)->ts, pc+1, <fetch>

“get” pushes  TS and loads  M[FP-arg] using ALU to do the effective address 
calculation.   The  address  is  presented  to  tbus (and  then  to  abus)  and  the 
memory read signal is asserted.  The data is ready and is latched to TS.



148

<put>  [micro 59]
alu(fp-arg)->tbus, ts->mW(tbus)
mR(sp)->ts
sp-1, pc+1, <fetch>

“put” writes TS to M[fp-arg] then pops a value to TS. The SP-1 and PC+1 can 
be concurrent because SP-1 uses the ALU while PC+1 does not use ALU. PC has 
its own adder.

<ld>  [micro 64]
sp+1
ts->mW(sp)
mR(arg)->ts, pc+1, <fetch>

<st>  [micro 68]
ts->mW(arg)
mR(sp)->ts
sp-1, pc+1, <fetch>

“ld” and “st” are similar to “get” and “put” but “ld” and “st” access the 
memory using direct address from the argument of the instruction.

<ldx> [micro 70]            {ads idx}
mR(sp)->ff
sp-1
alu(ff+ts)->tbus, mR(tbus)->ts, pc+1, <fetch>

“ldx” gets the base address to FF.  The index is in TS. The effective address is 
calculated using ALU and the value is fetched from the memory.

<stx>  [micro 74]          {ads idx val}
mR(sp)->nx                pop idx to nx
sp-1                      pop ads to ff
mR(sp)->ff
alu(nx+ff)->tbus, ts->mW(tbus)
sp-1
mR(sp)->ts                cache ts
sp-1, pc+1, <fetch>
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“stx” has three arguments.  It gets the index to NX, and the base address to FF. 
The effective address is calculated using ALU.  The value in TS is stored to that 
address.  Finally, the top of stack is cached to TS.

<lit>  [micro 80]
sp+1
ts->mW(sp)
arg->ts, pc+1, <fetch>

<jmp> [micro 84]
pc+arg, <fetch>

<jt>  [micro 86]
alu(ts=0), ifT <j3>     if true, don’t jump
<j2>                    jump
pc+arg, mR(sp)->ts
sp-1, <fetch>

<jf>  [micro 92]
alu(ts=0), ifT <j2>     if true, jump
<j3>                    don’t jump
pc+1, mR(sp)->ts
sp-1, <fetch>

The  “jt”  and  “jf”  use  the  event  “ifT”  to  do  conditional  branching.   The 
branching  is  the  “goto”  style  of  programming  which  is  quite  natural  in  a 
microprogram.  It saves the microprogram space.

<call>  [micro 98]
sp+1
ts->mW(sp), pc+1                  flush stack
pc->ts
arg->tbus->nx, mR(tbus)->ir       fetch fun, nx=ads
alu(sp+arg)->tbus, fp->mW(tbus)   save old fp
alu(sp+arg)->fp->sp               new fp, sp
alu(nx+1)->pc, <fetch>

The event “arg->tbus->nx” uses ALU to pass arg through. This event saves 
the address of the called function to NX. To get the offset, the “fun” instruction is 
fetched to IR then its argument is used. There are two concurrent register writes 
in the event “alu(sp+arg)->fp->sp”. The address of the body of the function, 
NX+1, is updated to PC.
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<ret>  [micro 106]
sp->ff
alu(fp=ff), ifF <r2>
ts->pc                            do ret
alu(fp-arg)->sp
mR(sp)->ts
sp-1
mR(fp)->fp, <fetch>               restore fp
<r2>                              do retv
alu(fp+1)->tbus, mR(tbus)->ff     ret ads
ff->pc
alu(fp-arg)->sp
mR(fp)->fp, <fetch>

The “ret” tests the condition FP = SP to decide whether there is a value to return 
or not.  To do the test, SP is moved to FF to use ALU operation.  When there is 
no value to return, the return address is in TS but when there is a value to return, 
the return address is in M[FP+1]. FF is used to pass the value through PC.

<sys>  [micro 119]
<array>
<end>
trap, pc+1, <fetch>

The instructions “sys”, “array” and “end” have no implementation on the real 
processor.  They are used in the simulator.  The event “trap” is used by the 
simulator to handle these instructions.

After the microprogram is completely specified, the number of cycle taken by 
each instruction is known. They are shown in the table below.

Table 6.2  The number of cycle for each instruction
 

   bop 4 uop 3 get 4 put 4
   ld 4 st 4 ldx 4 stx 8
   lit 4 jmp 2 jt 4 jf 4
   call 8 ret 8 retv 7
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6.3 Performance

A number of benchmark programs are compiled and then run on the Sx processor 
simulator.   Table  6.3 reports  the number  of  instructions  (noi),  the number  of 
cycles (cycle) and the cycle-per-instruction number (cpi) for each program.

“bubble” is a bubble sort program sorting an array of 20  integers, initially the 
value in the array is in descending order and sort to ascending order. “hanoi” is a 
program  to  solve  Hanoi  problem  with  6  disks.   “matmul”  is  a  matrix 
multiplication program; the input is two matrices of the size 4 × 4.  “perm” is a 
program to do all  permutation of {0,1,2,3}.  “queen” is a program to find all 
configurations of 8-queen problem.  “quick” is a quicksort program with a similar 
input to “bubble”.  “sieve” is a program to find prime numbers less than 1000 
using  “Sieve  of  Eratosthenes”  algorithm.   “aes”  is  a  program  to  do  AES 
(Advanced Encryption Standard) block cipher (128, 128) bit key.  The average 
cycle-per-instruction  number  of  Sx  processor  is  4.3.   This  is  quite  good 
comparing to the stack-based processor of an earlier design [BUR04c], a 16-bit 
processor runs the same “aes” in 284108 cycles.  Sx processor completed it in 
131560 cycles, twice as fast at the same clock frequency.

Table 6.3   The performance of Sx processor

program noi cycle cpi

bubble 10068 44214 4.39
hanoi 2312 10092 4.37
matmul 3043 12880 4.23
perm 4868 20932 4.30
queen 618665 2576210 4.16
quick 3172 13539 4.27
sieve 28026 124338 4.44
aes 30579 131560 4.29
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6.4 Sx processor simulator

The design of Sx processor with the detailed design of the  data  path and its 
control unit using microprogram is complete enough to be realised on real silicon 
using  either  FPGA  (Field  Programmable  Gate  Array)  technology  or  ASIC 
(Application Specific Integrated Circuit).  However, it is much easier to study it 
using  a  simulator.   The  Sx  processor  simulator  performs  cycle-accurate 
simulation of Sx processor executing programs.  The simulator executes step-by-
step microprogram of Sx. It is used to validate the microprogram and to collect 
the performance statistics. 

Data path

The data path consists of registers, multiplexors, combinational circuits such as 
ALU and wires.   The  registers  and  wires  are  simulated  as  variables  of  type 
integer  capable of  holding 32-bit  values.   The multiplexors are simulated as  
if-then statements to update the output wires.  The simulated ALU performs the 
expected operations on its input ports and updates the flags.  The combinational 
circuits can be simulated by statements to update the output wires.

Control unit

A straightforward way to simulate the microprogram control unit is to regard the 
microprogram as  a  ROM,  a  two-dimensional  array  of  bits  (Fig.  6.4).   Each 
address is called a microprogram word.  One microprogram word is executed in 
one cycle.  Each word contains event-control bits where each bit represents an 
event in the data path.  The event that is active is 1, otherwise it is 0.  Many 
events can occur simultaneously in one cycle. Each event has its symbolic name. 
The simulation is run as event-driven.  The main simulation loop looks at each 
microprogram word and scans the event bits to find the active one then performs 
the action for that  event.   This includes the control  transfer  of  microprogram 
address which updates the microprogram counter.  The simulation loop continues 
until  the “end” instruction throws a trap with the event  “trap”.  The “trap” 
events are system specific.   They implement the input/output and other useful 
functions.
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62
  0 00000000000010000000000001000000100010000001
  1 00100001000100000000000100000010100000000010
  2 00100010000000000001000000001000000000000011
  3 10001010000001000000001000100001000000000000
  4 10000010000001000000001000100001000000000000
 . . .
 55 00010010000001000000000100100001000000000000
 56 10000010000000000000000100000100000000111001
 57 01000101000100000100000000100000100000111010
 58 10000010000000000001000000100000000000111011
 59 01000100001100000100000000000000010000111100
 60 00010010000001000000000100100001000000000000
 61 00000000000001000000000000000001000001000000

Figure 6.4    The microprogram ROM. The first line shows the length of the 
microprogram.  The first column of each line is the address of the microword.

The events are defined as follows.

multiplexor x selects {ts, fs, sp, nx}
multiplexor y selects {ff, arg}
multiplexor b selects {tbus, dbus, pc}
multiplexor d selects {fp, ts}
multiplexor a selects {pc, tbus}
multiplexor j selects {pc+1, pc+arg, tbus}
ALU events are {add, sub, inc, dec, z, eq, op, p1, p2}
load registers events are {ir, ts, fp, sp, nx, ff, pc}
memory events are {mR, mW}
next micro-address events are {ifT, ifF, decode, trap}

We use the naming convention as follows. The multiplexor has its name as a 
prefix followed by its choice, for example, mux x selects TS is written as x.ts. 
The ALU is similar, ALU performs inc is written as alu.inc. The load register 
is written with a prefix  “l” followed by the name of the register, lpc is load PC. 

The registers are IR, PC, TS, FP, SP, NX, FF. Z is the zero flag.  The wires are p1,  
p2, tbus, abus, dbus, bus, pcin. The functions IRarg(), IRop() decode the 
op and  arg field of  IR.  alu() performs ALU operations.  udecode() returns 
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the  microaddress  corresponded  to  the  current  opcode.  m2 is  the  next 
microaddress, specified as the next address field in the microprogram word.

Let mx[mpc][bit] be the microprogram ROM.  The main simulation loop is.

while (running)
  m2 = next micro address field
  for i = 0 to microwidth-1
     s = scan for active event in mx[mpc][i]
     do s
  mpc = m2

For each event in a microprogram word.  Let s be the event that is active.

switch(s){  [sx 120]
    case x.ts:     p1 = TS
    case x.fp:     p1 = FP
    case x.sp:     p1 = SP
    case x.nx:     p1 = NX
    case y.ff:    p2 = FF
    case y.arg:    p2 = IRarg()
    case alu.add:  tbus = alu(icAdd,p1,p2)
    case alu.sub:  tbus = alu(FSUB,p1,p2)
    case alu.inc:  tbus = alu(icInc,p1,p2)
    case alu.dec:  tbus = alu(icDec,p1,p2)
    case alu.z:    tbus = alu(FZ,p1,p2)
    case alu.eq:   tbus = alu(icEq,p1,p2)
    case alu.p1:   tbus = alu(FP1,p1,p2)
    case alu.p2:   tbus = alu(FP2,p1,p2)
    case alu.op:   tbus = alu(IRop(),p1,p2)
    case a.pc:    abus = PC
    case a.tbus:   abus = tbus
    case d.ts:     dbus = TS
    case d.fp:     dbus = FP
    case mR:       dbus = M[abus]
    case mW:       M[abus] = dbus
    case b.tbus:   bus = tbus
    case b.dbus:   bus = dbus
    case b.pc:     bus = PC
    case j.pc1:    pcin = PC + 1
    case j.pcarg:  pcin = PC + IRarg()
    case j.tbus:   pcin = tbus
    case lpc:      PC = pcin
    case lir:      IR = dbus
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    case lts:      TS = bus
    case lfp:      FP = bus
    case lsp:      SP = bus
    case lnx:      NX = bus
    case lff:      FF = bus
    case ifT:      m2 = (Z == 0) ? m2 : mpc+1
    case ifF:      m2 = (Z == 1) ? m2 : mpc+1
    case decode:   m2 = udecode()
    case trap:     trap(IRop(),IRarg())
}

The simulator is sequential, that is, it simulates each event one by one. Therefore 
the order of scanning the event (the bits in a microprogram word) is important to 
get the correct result.  All the positive-edge events must be updated before the 
negative-edge events.  Within the same group the input side is updated to the 
output side.  For example the read-modify-write loop of a register, the read side 
must be performed, then goes through the modify operation from input to output, 
finally the write is performed to that register.  With these rules the order of events 
are:

mux x, mux y, alu,
mux a, mux d, mR, mW,
mux b, mux j,
load registers,
ifT, ifF, decode, trap.

6.5 Lab session

A tool is provided to write a microprogram. The “mgen” tool takes the input file 
as a microprogram specification and outputs the microprogram ROM as shown in 
Fig  6.4.  The  microprogram  must  be  written  in  the  following  form.   The 
specification composed of two sections, the first section is the signal definition 
and the second section is the microprogram.  The signal definition lists all the 
events,  the order of the event  is important  as a simple implementation of the 
simulator will simulate each event according to this order (see Exercise 6.7). This 
can be relaxed in  the  alternative implementation.   Here  is  an example  of  the 
signal definition, the section starts with “.s”. The line started with “..” is the 
comment line.  
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.. sx microprogram v 1.0  [micro 1]

..

.s
x.ts
x.fp
x.sp
...
alu.add
alu.sub
...
.. load registers
lir
lts
lfp
lsp
lnx
lff
lpc
mR
mW
.. next micro ads
ifT
ifF
decode
trap

After the signal definition the next section is the microprogram section.  Each 
line consists of,

[:label]  event* [/label] ;

A line starts with a label “:label”, follows by events and the next micro-address 
label “/label”, and ends with “;”.  The starting label and the micro-address 
label  are  optional.  The microprogram section starts  with “.m” and ends  with 
“.e”.  Here is an example.

.m        [micro 45]
:fetch
  a.pc mR lir decode ;
:bop
  x.sp alu.p1 a.tbus mR b.dbus lff ;
  x.sp alu.dec b.tbus lsp ;
  x.ts y.ff alu.op b.tbus lts j.pc1 lpc /fetch ;
...
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:jmp
  j.pcarg lpc /fetch ;
:jt
  x.ts alu.z ifT /j3 ;
:j2
  j.pcarg lpc x.sp alu.p1 a.tbus mR b.dbus lts ;
  x.sp alu.dec b.tbus lsp /fetch ;
:jf
  x.ts alu.z ifT /j2 ;
:j3
  j.pc1 lpc x.sp alu.p1 a.tbus mR b.dbus lts ;
  x.sp alu.dec b.tbus lsp /fetch ;
:end
  trap j.pc1 lpc /fetch ;
.e

The microprogram word for “fetch” can be read as, mux a selects PC (to be the 
address  of  the  memory  operation),  memory  read,  load  IR,  jump  to  the 
corresponding  micro-address.   The  “bop”  reads  as  SP goes  through ALU to 
tbus, mux a selects tbus (to be the address of the memory operation), memory 
read, mux b selects dbus (to be the input of registers), load register FF. Then, SP 
goes through ALU to do -1 and back to bus to write to SP.  Then, mux x selects 
TS, mux y selects FF, ALU performs a function according to the opcode, mux b 
selects tbus (to be the input of registers), load register TS, at the same time, PC 
is updated +1, then jump to “fetch”, the instruction fetch.
 

How to microprogram  Sx

To write  microprogram for  Sx,  the  microprogram specification  is  in  the  file 
“mspec.txt”.   “mgen” transforms the specification to a ROM file.  Store it in the 
name “mpgm.txt”.   The source for “mgen” can be found in sx0.zip package.

c:> mgen < mspec.txt > mpgm.txt

Here is what “mpgm.txt” looked like.

62
  0 00000000000010000000000001000000100010000001
  1 00100001000100000000000100000010100000000010
  2 00100010000000000001000000001000000000000011
  3 10001010000001000000001000100001000000000000
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  4 10000010000001000000001000100001000000000000
 . . .
 55 00010010000001000000000100100001000000000000
 56 10000010000000000000000100000100000000111001
 57 01000101000100000100000000100000100000111010
 58 10000010000000000001000000100000000000111011
 59 01000100001100000100000000000000010000111100
 60 00010010000001000000000100100001000000000000
 61 00000000000001000000000000000001000001000000

A few right most bits are the next microprogram address.  “mgen” also generates 
binding of symbolic names to numeric values which are used in the simulator, 
“mspec.h”.  This is it:

#define s_x_ts 0
#define s_x_fp 1
#define s_x_sp 2
#define s_x_nx 3
#define s_y_ff 4
. . .
#define a_fetch 0
#define a_bop 1
#define a_uop 4
#define a_get 5
#define a_put 8
#define a_popts 9
#define a_ld 11
. . .
#define a_end 61
#define MCWIDTH 38
#define MAWIDTH 6
#define MLEN 62

The event  names  prefixed  “s_”  are  the  signal  events,  prefixed  “a_”  are  the 
address of the label of microprogram.  The MCWIDTH  is the number of the control 
bits.  The MAWIDTH is the number of bit of the microprogram address field.  The 
MLEN is the number of microprogram word.  “mgen” also generates a listing file 
“mlist.txt”.  It is used for debugging.

The next step is to convert this micro-ROM into an event-list.  “sxgen” combines 
“mgen” and conversion to event-list.  (If you are using sx1, sx2 simulator, sxgen 
is inside the simulator, you don’t have to do it explicitly).  “sxgen” reads the files 
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“mpgm.txt”  and  “mspec.h”  then  generates  “sxbit.h”  which  must  be  compiled 
with the simulator.

c:> sxgen < mspec.txt

The “sxbit.h” contains the binding, the op-decoder-rom (udop[]),  the pointer to 
event-list  (mw[]),  the event-list  itself  (mx[])  and finally the next-address-rom 
(nxt[]).

#define s_x_ts 0
#define s_x_fp 1
. . .
#define a_sys 51
#define a_array 51
#define a_end 51
#define MCWIDTH 38
#define MAWIDTH 6
#define MLEN 52

int udop[] = {
0, 1, 1, 1, 1, 1, 1, 1, 4, 1, 
1, 1, 1, 1, 1, 1, 1, 0, 15, 18, 
40, 0, 51, 51, 5, 8, 11, 14, 26, 27, 
30, 23, 33, 0, 0, 0, 51, 0, 0, 0, 0 };

int mw[] = {
0, 5, 12, 17, 25, 32, 37, 43, 53, 60, 
67, 74, 79, 85, 94, 100, 107, 112, 122, 129, 
134, 141, 148, 153, 158, 164, 171, 174, 178, 187, 
192, 196, 205, 210, 215, 223, 226, 234, 241, 248, 
253, 258, 263, 268, 274, 281, 286, 293, 300, 305, 
311, 318, 0 };

int mx[] = {
12, 32, 25, 36, -1,
2, 23, 11, 32, 7, 30, -1,
2, 19, 6, 28, -1,
0, 4, 22, 6, 13, 31, 26, -1,
. . .
1, 5, 17, 6, 28, -1,
1, 23, 11, 32, 7, 27, -1,
13, 31, 37, -1,
0 };



161

int nxt[] = {
1, 2, 3, 0, 0, 6, 7, 0, 9, 10, 
0, 12, 13, 0, 9, 16, 17, 0, 19, 20, 
21, 22, 9, 24, 25, 0, 0, 31, 29, 0, 
28, 32, 0, 34, 35, 36, 37, 38, 39, 0, 
41, 47, 43, 44, 45, 46, 0, 48, 49, 50, 
0, 0, 0 };

You must recompile the simulator to include your new signal definitions, or new 
instruction labels.  The processor simulator takes a proper object file as input and 
run it.  If it is sx0, the processor is run in a batch mode.  For sx1 and sx2 they 
run in interactive mode.  You can ask for help by typing “h”.  The following 
session is sx0 running quicksort.

6.6 Summary

In this chapter we have learnt the detailed design of a stack-based processor that 
can execute S-code instructions directly.  This processor is the basic component 
of our hardware system.  The data path is quite simple.  The processor is aimed 
for clarity.   It is simple enough to be studied and to be modified without due 
complexity by students.  At the same time, it retained the flavour of reality that 
the design is complete enough to be realised as a real processor.  The control unit 
has  been  detailed  down  to  the  cycle-by-cycle  execution  of  an  instruction. 
Microprogram represents the specification of the execution behaviour.  Writing a 
microprogram starts with a RTL description which concerns only the registers 
transfer.  Then, the specification is refined to a microprogram level which also 

D:\sx\test>sx qs.obj
load program, last address 203
DP 1000
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4820 instructions, 20231 clocks, CPI 4.20

D:\sx\test>
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concerns  concurrency  of  operations.   With  microprogram fully  specified,  the 
number of cycle taken by each instruction can be calculated.    The algorithm to 
simulate the processor has been presented.   The processor simulator is event-
driven.  The microprogram is regarded as events occur in the data path. 

In the laboratory session, we learn how to write a concrete microprogram.  Tools 
are given to convert this concrete specification into a data structure suitable for 
simulation.  The processor simulator itself has been described in details enough 
that  students  can  modify  it  to  include  other  instructions  and/or  additional 
features.  We shall see in the next chapter how to improve the performance of this 
Sx processor.

6.7 Further reading

Stack-based processors have been a popular architecture in the past due to their 
simplicity and their compatibility with structured programming paradigm around 
1970-1980.  Burroughs has developed many commercial machines based on this 
type of architecture (Burroughs B5500) [BUR68].  For more recent discussion of 
stack-based processors see Koopman [KOO89] which discussed the strength of 
this  architecture  including  a  comprehensive  survey  of  many  stack-based 
processors.  The weakness of stack architecture lies in its performance.  As RISC 
type of processors [PAT82] [PAT85] [HEN84] [STA88] becomes popular during 
1980-1990, it dominates all the market with its high performance.  Nowadays, all 
processors are register-based.  We shall discuss the use of registers in the next 
chapter.

References

[BUR68]  Burroughs  B5500  Electronic  Information  Processing  System: 
Operation manual.  Burroughs Corp. Detroit, 1968.

[BUR04a]  Burutarchanai, A., and Chongstitvatana, P., “Design of a two-phased 
clocked  control  unit  for  performance  enhancement  of  a  stack  processor”, 
National  Computer  Science  and  Engineering  Conference,  Thailand,  21-22 
Sept. 2004, pp.114-119. 

[BUR04b]  Burutarchanai,  A.,  Kotrajaras,  V. and Chongstitvatana, P.,  “A fast 
instruction fetch unit for an embedded stack processor”, Proc. of Int. Conf. 



163

on  Information  and  Communication  Technologies,  Thailand,  18-19 
November 2004. 

[BUR04c]  Burutarchanai,  A.,  Nanthanavoot,  P.,  Aporntewan,  C.,  and 
Chongstitvatana,  P.,  “A  stack-based  processor  for  resource  efficient 
embedded systems”,  Proc.  of  IEEE TENCON, Thailand,  21-24 November 
2004.

[HEN84]  Hennessy,  J.,  “VLSI  Processor  Architecture”,  IEEE  Trans.  on 
Computers, December 1984.

[KOO89]  Koopman, J., Stack Computers: the new wave, Ellis Horwood, 1989.

[PAT82]  Patterson, D., and Sequin, C., “A VLSI RISC”, Computer, Septermber, 
1982.

[PAT85]  Patterson, D., “Reduced Instruction Set Computers”, Communications 
of the ACM, January, 1985.

[STA88] Stallings, W., “Reduced instruction set computer architecture”, Proc. of 
the IEEE, vol. 76, no. 1, January 1988, pp. 38-55.

Exercises

6.1 Compile and run Sx-kit 

6.2 Write three benchmark programs in nut: hanoi, matmul,  (bubble, quick 
already existed in Sx-kit) run it under sx-simulator to test the correctness. 

6.3 Modify the simulator to count the frequency of each instruction.  Run the 
above benchmarks to find out the dynamic instruction count.

6.4 Write additional microprogram for the instruction “inc” and “dec”.

6.5 The  combination  of  test-and-jump  occurs  frequently  in  the  program. 
Write  new  instructions,  such  as,  jump-if-less-than,  jump-if-
equal etc.  Modify the code generator to output the new instructions. 
Measure their effectiveness.

6.6 Suggest some way to improve the speed of Sx processor.  
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6.7 A  simple  implementation  of  the  processor  simulator  is  to  scan  the 
microprogram ROM and execute  the  active  event  directly.   The  next 
micro-address  is  also  converted  into  an  integer.   This  makes  the 
processor  simulator  5  to  10  times  slower  than  the  implementation 
illustrated in the section laboratory session in this chapter.   Do it  and 
compare the speed.
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