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• Wanting quantum

• Being quantum

• Doing quantum

• Building quantum 



SOLVING HARD PROBLEMS FASTER
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Optimization 
problems



Moore's Law
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A plot (logarithmic scale) of MOS transistor counts for microprocessors against dates of introduction, 
nearly doubling every two years.

Photo courtesy of https://miro.medium.com/v2/resize:fit:720/format:webp/1*y1c5erN37iuC2zD_JSHGuA.png



What’s a quantum computer?
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• Superpositions allow to perform calculations on 
many states at the same time.
➢ Quantum algorithms with exponential speed-

up.
• But: Once we measure the superposition state, it 

collapse to one of its states.
• We can use interference effects to keep the right 

answer.

Photo courtesy of https://medium.com/qntm/qntm-entering-the-era-of-quantum-computing 
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Photo courtesy of https://soundenthai.com/standing-wave/Photo courtesy of https://study.com/learn/lesson/how-to-find-
period-of-a-wave.html



Waves
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Photo courtesy of https://www.breakingatom.com/learn-
the-periodic-table/the-history-of-the-atomic-model-wave-

particle-duality

Photo courtesy of https://i.makeagif.com/media/12-14-
2015/iJmqBd.mp4 

Superposition Interference



Dirac notation & density matrices
SECTION 2  Being quantum

8

It used to describe quantum states: Let a, b are 2-dimensional vector with complex entries.

➢ ket: ۧȁ𝑎 = 𝑎0
𝑎1

➢ bra: ۦ ȁ𝑏 = ۧȁ𝑏 + = 𝑏0
𝑏1

+
= (𝑏0

∗ 𝑏1
∗)

➢ bra-ket: 𝑏 𝑎 = 𝑎0𝑏0
∗ + 𝑎1𝑏1

∗ = 𝑎 𝑏 ∗ ∈ ∁ (inner product)

➢ ket-bra: ȁ ۧ𝑎 ۦ ȁ𝑏 =
𝑎0𝑏0

∗ 𝑎0𝑏1
∗

𝑎1𝑏0
∗ 𝑎1𝑏1

∗   (2x2 matrix)



Dirac notation & density matrices
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• The pure states are ۧȁ0 = 1
0

, ۧȁ1 = 0
1

, which are orthogonal: 0 1 = 1.0 + 0.1 = 0

• ȁ ۧ0 ۦ ȁ0 = 1
0

(1 )0 =
1 0
0 0

, ȁ ۧ1 ۦ ȁ1 = 0
1

(0 )1 =
0 0
0 1

•  =
00 01

10 11
= 00ȁ ۧ0 ۦ ȁ0 + 01ȁ ۧ0 ۦ ȁ1 + 10ȁ ۧ1 ۦ ȁ0 + 11ȁ ۧ1 ۦ ȁ1

• All quantum states can be described by density matrices.

• All quantum states are normalized, i.e.,   = 1, e.g., ȁ ۧ =
1

2
ȁ ۧ0 + ȁ ۧ1 =

1

2
1

2

• A density matrix is pure, if  = ȁ ۧ ۦ ȁ , otherwise it is mixed.

➢  =
1 0
0 0

= ȁ ۧ0 ۦ ȁ0 → Pure,  =
0 0
0 1

= ȁ ۧ1 ۦ ȁ1 → Pure

➢  =
1

2

1 0
0 1

=
1

2
(ȁ ۧ0 ۦ ȁ0 + ȁ ۧ1 ۦ ȁ1 ) → Mixed

➢  =
1

2

1 −1
−1 1

=
1

2
ȁ ۧ0 ۦ ȁ0 − ȁ ۧ0 ۦ ȁ1 − ȁ ۧ1 ۦ ȁ0 + ȁ ۧ1 ۦ ȁ1 =

1

2
( ۧȁ0 − ۧȁ1 )( ۧȁ0 − ۧȁ1 ) → Pure



Measurement
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• We choose orthogonal base to describe and measure quantum states (projective measurement).

• During a measurement onto the basis ۧȁ0 , ۧȁ1 , the states will collapse into either state ۧȁ0  or 

ۧȁ1 , as those are the eigenstates of 𝜎𝑍, we call this a Z-measurement.

• Other different bases are:

➢ ۧȁ+ =
1

2
( ۧȁ0 + ۧȁ1 ), ۧȁ− =

1

2
( ۧȁ0 − ۧȁ1 ), corresponding to the eigenstates of 𝜎𝑥, 

➢ ۧȁ+𝑖 =
1

2
( ۧȁ0 + ۧ𝑖ȁ1 ), ۧȁ−𝑖 =

1

2
( ۧȁ0 − ۧ𝑖ȁ1 ), corresponding to the eigenstates of 𝜎𝑦.



Measurement
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• Born rule: the probability that a state ۧȁ  collapses during a project measurement onto the basis ቄ

ቅ

ۧȁX ,

 ቚ X⊥  to the state ۧȁX  is given by P X = X  2, σ𝑖 P X𝑖 = 1

• Examples:

➢ ۧȁ =
1

3
ۧȁ0 + 2 ۧȁ1  is measured in the basis ۧȁ0 , ۧȁ1 :

 P 0 = 0
1

3
ۧ(ȁ0 + 2 1 )2 =

1

3
0 0 +

2

3
0 1

2

=
1

3
 →  P 1 =

2

3

➢ ۧȁ =
1

2
ۧȁ0 − ۧȁ1  is measured in the basis ۧȁ+ , ۧȁ− :

 P + = +  2 =
1

2
ۧ(ȁ0 + ۧȁ1 )

1

2
ۧ(ȁ0 − ۧȁ1 )

2
=

1

4
0 0 − 0 1 + 1 0 − 1 1 2 = 0 → expected as + − = 0,

 P − = − − 2 = 1



Bloch sphere
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• We can write any normalized pure state as ۧȁ = cos
𝜃

2
ۧȁ0 + 𝑒𝑖𝜑 sin

𝜃

2
ۧȁ1 , where 𝜑 ∈ 0, 2𝜋  

describes the relative phase and θ ∈ 0, 𝜋  determines the probability to measure ۧȁ0 , ۧȁ1 : 

P ۧȁ0 = cos2 𝜃

2
, P ۧȁ1 = sin2 𝜃

2
.

• All normalized pure states can be illustrated on the surface of a sphere with radius റr = 1, which 

we call the Bloch sphere.

• The coordinates of such a state are given by the Bloch vector: റr =
sin 𝜃 cos 𝜑
sin 𝜃 sin 𝜑

cos 𝜃



Quantum circuits: single qubit gates
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• Circuit model: sequence of building block that carry out computations, called gates.

• Quantum gates are represented by unitary matrices, A unitary matrix is a square matrix of complex 
numbers, whose inverse is equal to its conjugate transpose.

• Single qubit gates

algorithminput output

bit flip

phase flip

bit & phase flip

rotation around X-axis by 𝜋

rotation around Z-axis by 𝜋

rotation around Y-axis by 𝜋

creates superposition

used to change from Z to Y-basis



Quantum circuits: single qubit gates
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Quantum circuits: multiple-qubit gates
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Quantum circuits: two-qubit gates
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• Classical example: XOR

• But as quantum theory is unitary, we only consider unitary and therefore reversible gates

• Quantum example: CNOT gate

XOR
X

Y
XY irreversible: given the output, we cannot recover the input. 

Quantum circuits can perform all function 
that can be calculated classically.



Quantum circuits: multipartite quantum states
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• We use tensor product to describe multiple states: 

➢ ۧȁa  ۧȁb = 𝑎1
𝑎2


𝑏1
𝑏2

=
𝑎1𝑏1
𝑎1𝑏2
𝑎2𝑏1
𝑎2𝑏2

➢ Example: system A is in state ۧȁ1 A and system B is in state ۧȁ0 B = 0
1


1
0

=
0
0
1
0

, states of this form are called 

uncorrelated. 

➢ But there are also bipartite states that cannot be written as ۧȁ 𝑎 ۧȁ 𝑏. These states are correlated and 

sometimes even entangled (very strong correlation), e.g. ۧȁ AB
(00)

=
1

2
( ۧȁ00 AB + ۧȁ11 AB) =

1

2

1
0
0
1

, it so called 

Bell state, used for teleportation, cryptography, Bell tests, etc.



Entanglement
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• If a pure state ۧȁ ABon system A,B cannot be written as ۧȁ 𝑎 ۧȁ 𝑏, it is entangled.

• These are four so called Bell states that are maximally entangled and build on orthonormal basis:

➢ ห ൿ𝟎𝟎 ≔
𝟏

𝟐
ۧȁ00 + ۧȁ11 ,

➢ ห ൿ𝟎𝟏 ≔
𝟏

𝟐
ۧȁ01 + ۧȁ10 ,

➢ ห ൿ𝟏𝟎 ≔
𝟏

𝟐
ۧȁ00 − ۧȁ11 ,

➢ ห ൿ𝟏𝟏 ≔
𝟏

𝟐
ۧȁ01 − ۧȁ10 .



Entanglement
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• Creation of Bell states:

ൿหq0q1 00
 𝐻0 →

𝟏

𝟐
ۧȁ00 + ۧȁ10  𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ00 + ۧȁ11 = ห ൿ𝟎𝟎 ,

ൿหq0q1 01
 𝐻0 →

𝟏

𝟐
ۧȁ01 + ۧȁ11  𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ01 + ۧȁ10 = ห ൿ𝟎𝟏 ,

ൿหq0q1 10
 𝐻0 →

𝟏

𝟐
ۧȁ00 − ۧȁ10  𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ00 − ۧȁ11 = ห ൿ𝟏𝟎 ,

ൿหq0q1 11
 𝐻0 →

𝟏

𝟐
ۧȁ01 − ۧȁ11  𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ01 − ۧȁ10 = ห ൿ𝟏𝟏



Teleportation
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• Goal:

➢ Alice want to send her (unknown) state ۧȁ s ≔ α ۧȁ0 s + β ۧȁ1 s to Bob.

➢ She can only send him two classical bits though. 

➢ They both share the maximally entangled state ۧȁ AB
(00)

=
1

2
( ۧȁ00 AB + ۧȁ11 AB).

• Initial states of the total system:

Photo courtesy of : IBM quantum summer school 2019 



Teleportation
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• Protocol:

• Alice’s state collapsed during the measurement, so she doesn’t have the initial state ۧȁ s anymore. 
This is expected due to the no-cloning theorem, as she cannot copy her state, but just send her state 
to Bob when destroying her own.

Photo courtesy of : IBM quantum summer school 2019 



Teleportation
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• Quantum circuit:

Alice’s qubit

Bob’s qubit

The qubit she is trying to 
send Bob.

two classical bits

00 → Do nothing
01 → Apply X gate
10 → Apply Z gate
11 → Apply ZX gate



Superdense coding
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• Superdense coding is a procedure that allows someone to send two classical bits to another party 

using just a single qubit of communication.

• Take advantage of quantum mechanics to more efficiently transmit classical information.

• Word “coding” means there are 2 essential processes, encoding and decoding:

➢ encoding: classical state → quantum state,

➢ decoding: quantum state → classical state.

Teleportation Superdense Coding

Transmit one qubit 
using two classical bits.

Transmit two classical bits
using one qubit.



Superdense coding
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• Superdense coding includes 4 steps: 

➢ preparation, 

➢ encoding message, 

➢ transmission,

➢ decoding message.



Superdense coding
SECTION 3  Doing quantum

25

Step 2: encoding message 

➢ A encodes the classical state in the qubit by applying gate(s).



Superdense coding
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• Test the circuit which encodes message “11” and run on “ibm_oslo”.



Quantum programming using Qiskit
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• Half adder circuit for input 11

• 0+0 = 00 (in decimal, this is 0+0 = 0)

• 0+1 = 01 (in decimal, this is 0+1 = 1)

• 1+0 = 01 (in decimal, this is 1+0 = 1)

• 1+1 = 10 (in decimal, this is 1+1 = 2)



Quantum programming using Qiskit
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• Half adder circuit for input 11



Quantum programming using Qiskit
SECTION 3  Doing quantum
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• Half adder circuit for input 11



Assignment I: Basic Quantum Computing
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• Required:

➢ Go to https://colab.research.google.com/

➢ Sign in with Gmail

➢ Download source codes at t.ly/PIGh5 and upload files “Lab-1.ipynb”, “Lab-2.ipynb” and “Lab-

3.ipynb” into Colab.

➢ Install required library for each assignment by typing the following:

o pip install qiskit
o pip install qiskit-aer
o pip install pylatexenc
o pip install qiskit-ibm-runtime (only Lab-2.ipynb and Lab-3.ipynb)

• Assignments:

➢ Lab-1: Operations on single qubit and multiple qubits gates by IBM Quantum.

➢ Lab-2: Quantum circuits by IBM Quantum.
➢ Lab-3: Superdense coding.
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Deutsch-Jozsa algorithm

➢ We are given a hidden Boolean function  𝑓 , which takes as input a string of bits, and returns either  

0  or  1 , that is:

➢ The property of the given Boolean function is that it is guaranteed to either be balanced (returns 1 

for half of the input domain and 0 for the other half) or constant (0 on all inputs or 1 on all inputs).

➢ Our task is to determine whether the given function is balanced or constant.



Quantum algorithms
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Deutsch-Jozsa algorithm

➢ For classical solution, we need to ask the oracle at least twice, but if we get twice the same output, 

we need to ask again. At most to query is (N/2)+1, where N is number of state.

➢ For quantum solution, need only one query. If the output is the zero bit string, we know that the 

oracle is constant. If it is any other bit string, we know that it is balanced.

➢ We have the function 𝑓 implemented as a quantum oracle, which maps the state  |𝑥ۧ|𝑦ۧ to 

|𝑥ۧ|𝑦⊕𝑓(𝑥)ۧ , where ⊕ is addition modulo 2.



Quantum algorithms
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Deutsch-Jozsa algorithm

➢ We can encode any mathematical function as a unitary matrix.

➢ Deutsch’s algorithm was the first algorithm that demonstrated a quantum advantage: specifically, a 

reduction in query complexity compared to the classical case.

➢ The Deutsch-Jozsa algorithm generalises Deutsch’s algorithm and reveals the possibility of 

exponential speed-ups using quantum computers.



Quantum algorithms
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Grover’s algorithm

➢ It can be used to solve unstructured search problems in roughly 𝑁 steps, where N is the amount 

of data. 

➢ This algorithm can speed up an unstructured search problem quadratically using the amplitude 

amplification trick.

4 6 8 W N=𝟐𝒏
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Operation of searching data by Grover’s algorithm for 2 qubits:

Oracle

Invert iteration 𝑚 =

1
2

+
1
2

−
1
2

+
1
2

4
=

1

4
 

𝑙𝑖ȁ00, ȁ01, ȁ11 =
1

4
 −

1

2
 −

1

4
= 0

𝑙𝑖ȁ10 =
1

4
 − −

1

2
 −

1

4
= 1
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Operation of searching data by Grover’s algorithm for 4 qubits:

Grover iterations = 

4

 𝑥
𝑁

𝑡
 times,

N is the number of data (states) and
t is the number of target solutions. 

Try it out at t.ly/PIGh5 and upload files 
“Grover's algorithm.ipynb” into Colab.

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn
https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn
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Grover’s algorithm

➢ The example of Grover's algorithm for 3 qubits with two marked states  |101ۧ and |110ۧ.

Grover iterations ~ 
𝜋

4

𝑁

𝑡

Photo courtesy of https://qiskit.org/textbook/ch-algorithms/grover.html
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Grover’s algorithm

Grover iteration
maximum at 

Initialize the system to 
the superposition state

Apply oracle

Invert amplitude of 
the optimum and re-
compute the average 

of amplitude 

Perform the 
measurement

No

Yes

Optimum 
success 

prob max?

New amplitude:  
𝑙𝑖_𝑛𝑒𝑤 = 𝑚 − 𝑙𝑖 − 𝑚
            = 2𝑚 − 𝑙𝑖

𝑚 is new average of amplitude.


𝟒

𝑵

𝒕

0 1 2 3 4 … N-1

The optimum is at index “a”,
Define Tagging Function :   
f(x) = 0,  x  a
f(x) = 1,  x = a 

39



Quantum technology trends
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Quantum technology trends
SECTION 4  Building quantum

40



IBM’s 1,121-Qubit Condor
SECTION 4  Building quantum
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IBM Quantum System Two
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Qubit technologies
SECTION 4  Building quantum

43Source : https://quantumcomputingreport.com/scorecards/qubit-technology/



Q & A
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