
Understanding Quantum Computers
By Dr.Kamonluk Suksen

Outline
SECTION 0 Outline

2

• Wanting quantum

• Being quantum

• Doing quantum

• Building quantum

SOLVING HARD PROBLEMS FASTER
SECTION 1 Wanting quantum

3

Optimization
problems

Moore's Law
SECTION 1 Wanting quantum

4

A plot (logarithmic scale) of MOS transistor counts for microprocessors against dates of introduction,
nearly doubling every two years.

Photo courtesy of https://miro.medium.com/v2/resize:fit:720/format:webp/1*y1c5erN37iuC2zD_JSHGuA.png

What’s a quantum computer?
SECTION 2 Being quantum

5

• Superpositions allow to perform calculations on
many states at the same time.
➢ Quantum algorithms with exponential speed-

up.
• But: Once we measure the superposition state, it

collapse to one of its states.
• We can use interference effects to keep the right

answer.

Photo courtesy of https://medium.com/qntm/qntm-entering-the-era-of-quantum-computing

Waves
SECTION 2 Being quantum

6

Photo courtesy of https://soundenthai.com/standing-wave/Photo courtesy of https://study.com/learn/lesson/how-to-find-
period-of-a-wave.html

Waves
SECTION 2 Being quantum

7

Photo courtesy of https://www.breakingatom.com/learn-
the-periodic-table/the-history-of-the-atomic-model-wave-

particle-duality

Photo courtesy of https://i.makeagif.com/media/12-14-
2015/iJmqBd.mp4

Superposition Interference

Dirac notation & density matrices
SECTION 2 Being quantum

8

It used to describe quantum states: Let a, b are 2-dimensional vector with complex entries.

➢ ket: ۧȁ𝑎 = 𝑎0
𝑎1

➢ bra: ۦ ȁ𝑏 = ۧȁ𝑏 + = 𝑏0
𝑏1

+
= (𝑏0

∗ 𝑏1
∗)

➢ bra-ket: 𝑏 𝑎 = 𝑎0𝑏0
∗ + 𝑎1𝑏1

∗ = 𝑎 𝑏 ∗ ∈ ∁ (inner product)

➢ ket-bra: ȁ ۧ𝑎 ۦ ȁ𝑏 =
𝑎0𝑏0

∗ 𝑎0𝑏1
∗

𝑎1𝑏0
∗ 𝑎1𝑏1

∗ (2x2 matrix)

Dirac notation & density matrices
SECTION 2 Being quantum

9

• The pure states are ۧȁ0 = 1
0

, ۧȁ1 = 0
1

, which are orthogonal: 0 1 = 1.0 + 0.1 = 0

• ȁ ۧ0 ۦ ȁ0 = 1
0

(1)0 =
1 0
0 0

, ȁ ۧ1 ۦ ȁ1 = 0
1

(0)1 =
0 0
0 1

• =
00 01

10 11
= 00ȁ ۧ0 ۦ ȁ0 + 01ȁ ۧ0 ۦ ȁ1 + 10ȁ ۧ1 ۦ ȁ0 + 11ȁ ۧ1 ۦ ȁ1

• All quantum states can be described by density matrices.

• All quantum states are normalized, i.e., = 1, e.g., ȁ ۧ =
1

2
ȁ ۧ0 + ȁ ۧ1 =

1

2
1

2

• A density matrix is pure, if = ȁ ۧ ۦ ȁ , otherwise it is mixed.

➢ =
1 0
0 0

= ȁ ۧ0 ۦ ȁ0 → Pure, =
0 0
0 1

= ȁ ۧ1 ۦ ȁ1 → Pure

➢ =
1

2

1 0
0 1

=
1

2
(ȁ ۧ0 ۦ ȁ0 + ȁ ۧ1 ۦ ȁ1) → Mixed

➢ =
1

2

1 −1
−1 1

=
1

2
ȁ ۧ0 ۦ ȁ0 − ȁ ۧ0 ۦ ȁ1 − ȁ ۧ1 ۦ ȁ0 + ȁ ۧ1 ۦ ȁ1 =

1

2
(ۧȁ0 − ۧȁ1)(ۧȁ0 − ۧȁ1) → Pure

Measurement
SECTION 2 Being quantum

10

• We choose orthogonal base to describe and measure quantum states (projective measurement).

• During a measurement onto the basis ۧȁ0 , ۧȁ1 , the states will collapse into either state ۧȁ0 or

ۧȁ1 , as those are the eigenstates of 𝜎𝑍, we call this a Z-measurement.

• Other different bases are:

➢ ۧȁ+ =
1

2
(ۧȁ0 + ۧȁ1), ۧȁ− =

1

2
(ۧȁ0 − ۧȁ1), corresponding to the eigenstates of 𝜎𝑥,

➢ ۧȁ+𝑖 =
1

2
(ۧȁ0 + ۧ𝑖ȁ1), ۧȁ−𝑖 =

1

2
(ۧȁ0 − ۧ𝑖ȁ1), corresponding to the eigenstates of 𝜎𝑦.

Measurement
SECTION 2 Being quantum

11

• Born rule: the probability that a state ۧȁ collapses during a project measurement onto the basis ቄ

ቅ

ۧȁX ,

 ቚ X⊥ to the state ۧȁX is given by P X = X 2, σ𝑖 P X𝑖 = 1

• Examples:

➢ ۧȁ =
1

3
ۧȁ0 + 2 ۧȁ1 is measured in the basis ۧȁ0 , ۧȁ1 :

 P 0 = 0
1

3
ۧ(ȁ0 + 2 1)2 =

1

3
0 0 +

2

3
0 1

2

=
1

3
 → P 1 =

2

3

➢ ۧȁ =
1

2
ۧȁ0 − ۧȁ1 is measured in the basis ۧȁ+ , ۧȁ− :

 P + = + 2 =
1

2
ۧ(ȁ0 + ۧȁ1)

1

2
ۧ(ȁ0 − ۧȁ1)

2
=

1

4
0 0 − 0 1 + 1 0 − 1 1 2 = 0 → expected as + − = 0,

 P − = − − 2 = 1

Bloch sphere
SECTION 2 Being quantum

12

• We can write any normalized pure state as ۧȁ = cos
𝜃

2
ۧȁ0 + 𝑒𝑖𝜑 sin

𝜃

2
ۧȁ1 , where 𝜑 ∈ 0, 2𝜋

describes the relative phase and θ ∈ 0, 𝜋 determines the probability to measure ۧȁ0 , ۧȁ1 :

P ۧȁ0 = cos2 𝜃

2
, P ۧȁ1 = sin2 𝜃

2
.

• All normalized pure states can be illustrated on the surface of a sphere with radius റr = 1, which

we call the Bloch sphere.

• The coordinates of such a state are given by the Bloch vector: റr =
sin 𝜃 cos 𝜑
sin 𝜃 sin 𝜑

cos 𝜃

Quantum circuits: single qubit gates
SECTION 2 Being quantum

13

• Circuit model: sequence of building block that carry out computations, called gates.

• Quantum gates are represented by unitary matrices, A unitary matrix is a square matrix of complex
numbers, whose inverse is equal to its conjugate transpose.

• Single qubit gates

algorithminput output

bit flip

phase flip

bit & phase flip

rotation around X-axis by 𝜋

rotation around Z-axis by 𝜋

rotation around Y-axis by 𝜋

creates superposition

used to change from Z to Y-basis

Quantum circuits: single qubit gates
SECTION 2 Being quantum

14

Quantum circuits: multiple-qubit gates
SECTION 2 Being quantum

15

Quantum circuits: two-qubit gates
SECTION 2 Being quantum

16

• Classical example: XOR

• But as quantum theory is unitary, we only consider unitary and therefore reversible gates

• Quantum example: CNOT gate

XOR
X

Y
XY irreversible: given the output, we cannot recover the input.

Quantum circuits can perform all function
that can be calculated classically.

Quantum circuits: multipartite quantum states
SECTION 2 Being quantum

17

• We use tensor product to describe multiple states:

➢ ۧȁa ۧȁb = 𝑎1
𝑎2

𝑏1
𝑏2

=
𝑎1𝑏1
𝑎1𝑏2
𝑎2𝑏1
𝑎2𝑏2

➢ Example: system A is in state ۧȁ1 A and system B is in state ۧȁ0 B = 0
1

1
0

=
0
0
1
0

, states of this form are called

uncorrelated.

➢ But there are also bipartite states that cannot be written as ۧȁ 𝑎 ۧȁ 𝑏. These states are correlated and

sometimes even entangled (very strong correlation), e.g. ۧȁ AB
(00)

=
1

2
(ۧȁ00 AB + ۧȁ11 AB) =

1

2

1
0
0
1

, it so called

Bell state, used for teleportation, cryptography, Bell tests, etc.

Entanglement
SECTION 2 Being quantum

18

• If a pure state ۧȁ ABon system A,B cannot be written as ۧȁ 𝑎 ۧȁ 𝑏, it is entangled.

• These are four so called Bell states that are maximally entangled and build on orthonormal basis:

➢ ห ൿ𝟎𝟎 ≔
𝟏

𝟐
ۧȁ00 + ۧȁ11 ,

➢ ห ൿ𝟎𝟏 ≔
𝟏

𝟐
ۧȁ01 + ۧȁ10 ,

➢ ห ൿ𝟏𝟎 ≔
𝟏

𝟐
ۧȁ00 − ۧȁ11 ,

➢ ห ൿ𝟏𝟏 ≔
𝟏

𝟐
ۧȁ01 − ۧȁ10 .

Entanglement
SECTION 2 Being quantum

19

• Creation of Bell states:

ൿหq0q1 00
 𝐻0 →

𝟏

𝟐
ۧȁ00 + ۧȁ10 𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ00 + ۧȁ11 = ห ൿ𝟎𝟎 ,

ൿหq0q1 01
 𝐻0 →

𝟏

𝟐
ۧȁ01 + ۧȁ11 𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ01 + ۧȁ10 = ห ൿ𝟎𝟏 ,

ൿหq0q1 10
 𝐻0 →

𝟏

𝟐
ۧȁ00 − ۧȁ10 𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ00 − ۧȁ11 = ห ൿ𝟏𝟎 ,

ൿหq0q1 11
 𝐻0 →

𝟏

𝟐
ۧȁ01 − ۧȁ11 𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ01 − ۧȁ10 = ห ൿ𝟏𝟏

Teleportation
SECTION 3 Doing quantum

20

• Goal:

➢ Alice want to send her (unknown) state ۧȁ s ≔ α ۧȁ0 s + β ۧȁ1 s to Bob.

➢ She can only send him two classical bits though.

➢ They both share the maximally entangled state ۧȁ AB
(00)

=
1

2
(ۧȁ00 AB + ۧȁ11 AB).

• Initial states of the total system:

Photo courtesy of : IBM quantum summer school 2019

Teleportation
SECTION 3 Doing quantum

21

• Protocol:

• Alice’s state collapsed during the measurement, so she doesn’t have the initial state ۧȁ s anymore.
This is expected due to the no-cloning theorem, as she cannot copy her state, but just send her state
to Bob when destroying her own.

Photo courtesy of : IBM quantum summer school 2019

Teleportation
SECTION 3 Doing quantum

22

• Quantum circuit:

Alice’s qubit

Bob’s qubit

The qubit she is trying to
send Bob.

two classical bits

00 → Do nothing
01 → Apply X gate
10 → Apply Z gate
11 → Apply ZX gate

Superdense coding
SECTION 3 Doing quantum

23

• Superdense coding is a procedure that allows someone to send two classical bits to another party

using just a single qubit of communication.

• Take advantage of quantum mechanics to more efficiently transmit classical information.

• Word “coding” means there are 2 essential processes, encoding and decoding:

➢ encoding: classical state → quantum state,

➢ decoding: quantum state → classical state.

Teleportation Superdense Coding

Transmit one qubit
using two classical bits.

Transmit two classical bits
using one qubit.

Superdense coding
SECTION 3 Doing quantum

24

• Superdense coding includes 4 steps:

➢ preparation,

➢ encoding message,

➢ transmission,

➢ decoding message.

Superdense coding
SECTION 3 Doing quantum

25

Step 2: encoding message

➢ A encodes the classical state in the qubit by applying gate(s).

Superdense coding
SECTION 3 Doing quantum

26

• Test the circuit which encodes message “11” and run on “ibm_oslo”.

Quantum programming using Qiskit
SECTION 3 Doing quantum

27

• Half adder circuit for input 11

• 0+0 = 00 (in decimal, this is 0+0 = 0)

• 0+1 = 01 (in decimal, this is 0+1 = 1)

• 1+0 = 01 (in decimal, this is 1+0 = 1)

• 1+1 = 10 (in decimal, this is 1+1 = 2)

Quantum programming using Qiskit
SECTION 3 Doing quantum

28

• Half adder circuit for input 11

Quantum programming using Qiskit
SECTION 3 Doing quantum

29

• Half adder circuit for input 11

Assignment I: Basic Quantum Computing
SECTION 3 Doing quantum

30

• Required:

➢ Go to https://colab.research.google.com/

➢ Sign in with Gmail

➢ Download source codes at t.ly/PIGh5 and upload files “Lab-1.ipynb”, “Lab-2.ipynb” and “Lab-

3.ipynb” into Colab.

➢ Install required library for each assignment by typing the following:

o pip install qiskit
o pip install qiskit-aer
o pip install pylatexenc
o pip install qiskit-ibm-runtime (only Lab-2.ipynb and Lab-3.ipynb)

• Assignments:

➢ Lab-1: Operations on single qubit and multiple qubits gates by IBM Quantum.

➢ Lab-2: Quantum circuits by IBM Quantum.
➢ Lab-3: Superdense coding.

Quantum algorithms
SECTION 3 Doing quantum

31

Deutsch-Jozsa algorithm

➢ We are given a hidden Boolean function 𝑓 , which takes as input a string of bits, and returns either

0 or 1 , that is:

➢ The property of the given Boolean function is that it is guaranteed to either be balanced (returns 1

for half of the input domain and 0 for the other half) or constant (0 on all inputs or 1 on all inputs).

➢ Our task is to determine whether the given function is balanced or constant.

Quantum algorithms
SECTION 3 Doing quantum

32

Deutsch-Jozsa algorithm

➢ For classical solution, we need to ask the oracle at least twice, but if we get twice the same output,

we need to ask again. At most to query is (N/2)+1, where N is number of state.

➢ For quantum solution, need only one query. If the output is the zero bit string, we know that the

oracle is constant. If it is any other bit string, we know that it is balanced.

➢ We have the function 𝑓 implemented as a quantum oracle, which maps the state |𝑥ۧ|𝑦ۧ to

|𝑥ۧ|𝑦⊕𝑓(𝑥)ۧ , where ⊕ is addition modulo 2.

Quantum algorithms
SECTION 3 Doing quantum

33

Deutsch-Jozsa algorithm

➢ We can encode any mathematical function as a unitary matrix.

➢ Deutsch’s algorithm was the first algorithm that demonstrated a quantum advantage: specifically, a

reduction in query complexity compared to the classical case.

➢ The Deutsch-Jozsa algorithm generalises Deutsch’s algorithm and reveals the possibility of

exponential speed-ups using quantum computers.

Quantum algorithms
SECTION 3 Doing quantum

34

Grover’s algorithm

➢ It can be used to solve unstructured search problems in roughly 𝑁 steps, where N is the amount

of data.

➢ This algorithm can speed up an unstructured search problem quadratically using the amplitude

amplification trick.

4 6 8 W N=𝟐𝒏

Quantum algorithms
SECTION 3 Doing quantum

35

Operation of searching data by Grover’s algorithm for 2 qubits:

Oracle

Invert iteration 𝑚 =

1
2

+
1
2

−
1
2

+
1
2

4
=

1

4

𝑙𝑖ȁ00, ȁ01, ȁ11 =
1

4
 −

1

2
 −

1

4
= 0

𝑙𝑖ȁ10 =
1

4
 − −

1

2
 −

1

4
= 1

Quantum algorithms
SECTION 3 Doing quantum

36

Operation of searching data by Grover’s algorithm for 4 qubits:

Grover iterations =

4

 𝑥
𝑁

𝑡
 times,

N is the number of data (states) and
t is the number of target solutions.

Try it out at t.ly/PIGh5 and upload files
“Grover's algorithm.ipynb” into Colab.

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn
https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

Quantum algorithms
SECTION 3 Doing quantum

37

Grover’s algorithm

➢ The example of Grover's algorithm for 3 qubits with two marked states |101ۧ and |110ۧ.

Grover iterations ~
𝜋

4

𝑁

𝑡

Photo courtesy of https://qiskit.org/textbook/ch-algorithms/grover.html

Quantum algorithms
SECTION 3 Doing quantum

38

Grover’s algorithm

Grover iteration
maximum at

Initialize the system to
the superposition state

Apply oracle

Invert amplitude of
the optimum and re-
compute the average

of amplitude

Perform the
measurement

No

Yes

Optimum
success

prob max?

New amplitude:
𝑙𝑖_𝑛𝑒𝑤 = 𝑚 − 𝑙𝑖 − 𝑚
 = 2𝑚 − 𝑙𝑖

𝑚 is new average of amplitude.

𝟒

𝑵

𝒕

0 1 2 3 4 … N-1

The optimum is at index “a”,
Define Tagging Function :
f(x) = 0, x a
f(x) = 1, x = a

39

Quantum technology trends
SECTION 2 Quantum technology trends

39

Quantum technology trends
SECTION 4 Building quantum

40

IBM’s 1,121-Qubit Condor
SECTION 4 Building quantum

41

IBM Quantum System Two
SECTION 4 Building quantum

42

Qubit technologies
SECTION 4 Building quantum

43Source : https://quantumcomputingreport.com/scorecards/qubit-technology/

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

