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SECTION 0 Outline

Outline

* Wanting quantum
* Being quantum
* Doing quantum

e Building quantum




SECTION 1 Wanting quantum

SOLVING HARD PROBLEMS FASTER

Optimization
problems
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SECTION 1 Wanting quantum

Moore's Law

A plot (logarithmic scale) of MOS transistor counts for microprocessors against dates of introduction,
nearly doubling every two years.
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SECTION 2 Being quantum

What’s a quantum computer?

Classical Bit

» Superpositions allow to perform calculations on
many states at the same time.
» Quantum algorithms with exponential speed-

One out of 2N possible permutations

Quantum Bit up.
* But: Once we measure the superposition state, it

collapse to one of its states.
* We can use interference effects to keep the right
answetr.

Both O and 1 All of 2" possible permutations

Photo courtesy of https://medium.com/gntm/gntm-entering-the-era-of-quantum-computing



SECTION 2 Being quantum

Waves
antinode
Crest Crest N
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Photo courtesy of https://study.com/learn/lesson/how-to-find-  Photo courtesy of https://soundenthai.com/standing-wave/
period-of-a-wave.html



SECTION 2 Being quantum

Waves

Superposition

Photo courtesy of https://i.makeagif.com/media/12-14-
2015/iJmqgBd.mp4

Interference
Add together Cancel each other Slit plate 1 Slit plate 2
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Light
source

Photo courtesy of https://www.breakingatom.com/learn-
the-periodic-table/the-history-of-the-atomic-model-wave-
particle-duality



SECTION 2 Being quantum

Dirac notation & density matrices

It used to describe quantum states: Let a, b are 2-dimensional vector with complex entries.
> ket: |a) = (ao)
a

_l_
> bra: (b] = |b)* = (20) = (b b})
> bra-ket: (bla) = agby” + aib; = {a|b)* € C (inner product)

agby”  agby

> ket-bra: b| = . .
et-bra: |a)(b| (a1bo a1b,

) (2x2 matrix)



SECTION 2 Being quantum

Dirac notation & density matrices

The pure states are |0) = ((1)), 1) = (2), which are orthogonal: (0|1) = 1.0+ 0.1 =0

OO)

oxol =0 = (3 o) mar=Qon=(] ?

Poo
p = (
Pio P11

Po1

) = Puol0X01 + oy |0)(11 + Pygl 1(0] + Py [1)(1]

All guantum states can be described by density matrices.

1
All quantum states are normalized, i.e., {(y|y) = 1, e.g., |y) = % ([0) + |1) = <\/1§>

V2

A density matrix is pure, if P = |y)(y/|, otherwise it is mixed.

>P=((1)
-
e

0
1 0

0 1
1

-1

0 O
0 1

) =2 0X01 + [1)(1]) - Mixed

~1) = 3310)(01 = 10)(1] = [1)(0] + [1)(1]) =3 (10) = [1))(10) — 1)) - Pure

= 10)(0] - Pure,P = () =|1)(1] > Pure




SECTION 2 Being quantum

Measurement

We choose orthogonal base to describe and measure quantum states (projective measurement).

* During a measurement onto the basis {|0), |1)}, the states will collapse into either state |0) or
|1), as those are the eigenstates of g, we call this a Z-measurement.

e Other different bases are:
> |+) = % (10) + [1)), |-) = \/—17 (]|0) — |1)), corresponding to the eigenstates of o,

> |+i) = % (10) + i|1)), |—i) = % (10) —i]1)), corresponding to the eigenstates of g,

|0)

iy



SECTION 2 Being quantum

Measurement

* Bornrule: the probability that a state |\y) collapses during a project measurement onto the basis {IX),

‘XJ-> } to the state |X) is given by P(X) = |[(X|y)|4, X, P (X,) =1
 Examples:

> |y) = % (IO) - \/fll)) is measured in the basis {|0), |1)}:

P(0) = (0\%(|0>+x/§\1>)2 - %<0|0>+%<0|1>‘2 =1 5 py=2

> |y) = % (]|0) — [1)) is measured in the basis {|+), |—)}:

P(H) = [HWE = |50y + 11) =100 — 11| = 21€010) = (012) + (110) — (1[1))]? = 0 — expected as (+]-) = 0,
P(—) = (—I-)? =1

11



SECTION 2 Being quantum

Bloch sphere

. . 0 o .
* We can write any normalized pure state as |y) = cos> |0) + e'¢ sm% |1), where ¢ € [0, 27]

describes the relative phase and 6 € [0, r] determines the probability to measure |0), |1):

P(|0)) = coszg, P(|1)) = sin? §

e All normalized pure states can be illustrated on the surface of a sphere with radius |r| = 1, which

we call the Bloch sphere.

sin 6 cos @
 The coordinates of such a state are given by the Bloch vector: T = | sin 8 sin ¢

cos @




SECTION 2 Being quantum

Quantum circuits: single qubit gates

e Circuit model: sequence of building block that carry out computations, called gates.

 Quantum gates are represented by unitary matrices, A unitary matrix is a square matrix of complex
numbers, whose inverse is equal to its conjugate transpose.

* Single qubit gates

Hadamard _E_ % [ } _11 ]H creates superposition
rotation around X-axisbym —— Pauli-X _Z_ [(1] (1]] < bit flip
rotation around Y-axisby r > Pauli-Y [y [S _03] < bit & phase flip
rotation around Z-axis by m > Pauli-Z 7| [(1] _01] <— phase flip
Phase —E| — [(1] S] < used to change from Z to Y-basis
/8 —|7|— [é eigm]

13



SECTION 2 Being quantum

Quantum circuits: single qubit gates

- = 0 4 e
by (4 0) lox1| « [1%0O|

Ly b lov= (f >) (g) (;) 115, ﬁ,l47=‘(tox4l+|m1}-l4>)~lw<%g + ol =10

- by (AO) loXo| ~ |1xA1|
Bal->: (loxOI |1X4I) (o> - W)

< (1 O). A1) -
bl (0-1) T {/I) 7 (-1) i} ' 2. [[o‘; 4-[4')) |+7
~ Hedamasd aml—t o one Qf the mosd fn(mr&nJ ﬂmLs fsr yaamlam c-rcu-v/.r

He & (37) = & (1oxof +loxai ¢ kol - )

A
L Hloy = :-. 1 4) {;)-E. (4):147 HM'>=- (loxohfaw{-mwl l'lmlj H>: -(Jo>-lf>) [->
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SECTION 2 Being quantum

Quantum circuits: two-qubit gates

* Classical example: XOR

); n x®Y irreversible: given the output, we cannot recover the input.

e But as quantum theory is unitary, we only consider unitary and therefore reversible gates

* Quantum example: CNOT gate

a b a b Quantum circuits can perform all function
o that can be calculated classically.

o | O

16



SECTION 2 Being quantum

Quantum circuits: multipartite quantum states

* We use tensor product to describe multiple states:

> el = ()8 (1) = [«
azb-

0
» Example: system A is in state |1), and system B is in state |0)g = (2)@((1)) = (2), states of this form are called

0
uncorrelated.

> But there are also bipartite states that cannot be written as |y),®|vy),. These states are correlated and

1
sometimes even entangled (very strong correlation), e.g. |\|j>1(330) = iz (100)a5 + |11)4p) = % <8>, it so called

1
Bell state, used for teleportation, cryptography, Bell tests, etc.

17



SECTION 2 Being quantum

Entanglement

* If a pure state|y)gon system A,B cannot be written as |y),®]|),, it is entangled.

* These are four so called Bell states that are maximally entangled and build on orthonormal basis:

> [y00) = 5 (100) +11),

> |y01) == = (101) +10)),

> ') =7 (100) ~ 11)),
> |yit) = = (101) - [10)).

18



SECTION 2 Being quantum

Entanglement

 C(Creation of Bell states:

ql[O] .
ql[1] é

[90a1)yp Ho = —=(100) + [10)) CNOTo3 > =(100) + [11)) = [y?®),
90a1)yy Ho = 7=(101) + [11)) CNOTo3 = —=(101) + 110)) = [u™),
|d0d1),, Ho % (100) = [10)) CNOTy; - \% (100) = [11)) = |y1?),
|d0d1),, Ho~ \/% (101) = [11)) CNOTy; - \/% (101) = 10)) = |y*?)

19




SECTION 3 Doing quantum

Teleportation

e Goal:
> Alice want to send her (unknown) state |¢) = |0) + B|1) to Bob.

» She can only send him two classical bits though.
» They both share the maximally entangled state Iw)goé)) = iz (100) a5 + |11)4R).

* |nitial states of the total system:

| 62 & Y2, ",f% (x100034q + sl oM >gyy + B 110075 *F‘M“)”%)
] ff[ (1e03,, 1 W3, ) o (0% + pid>s) * (104754 +H007,,) ol «l137p10,)
+ (160759 - 14155, J@ (0%~ Bl4>8) + (1005 - Ho%s) & [ “%'ﬁm’s)]
<A 1Y, 0165 + | ¥">yp0 (6 1$>)

+ l—q,u)m o (5} H))E) + |1F44>5ﬁ 8 (b‘x(?'; H»B)]

Photo courtesy of : IBM quantum summer school 2019

D

i
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SECTION 3 Doing quantum

Teleportation
* Protocol:
rotoco @
Jbs> Betd
ﬂe'ce meas . )

b oS e

1. Alie f’eﬁrma neas .
on S& R ca the Beld bascs,

- -

ﬁ l Ox 6-?.‘:"‘"" l 477'8 3. 8, agolies by 6xd %o hs
?ab.ﬁ and qes /¢>!
1. Alice's measasement ~ Bob's shie 3.Bob ofples = Bb's firal shic
1¥°°> | d>g 00 A I$5g
[ Y G ld>g o1 6o "
K V)FY H’>g 10 b2 "
[y 4y 652 Iy 14 5,6 “

Alice’s state collapsed during the measurement, so she doesn’t have the initial state |¢); anymore.

This is expected due to the no-cloning theorem, as she cannot copy her state, but just send her state

to Bob when destroying her own.

Photo courtesy of : IBM quantum summer school 2019
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SECTION 3 Doing quantum

Teleportation

e Quantum circuit:

two classical bits

)
: _— -
The qubit she is trying to : i :
send Bob. -~ Ao ' : |
Alice’s qubit — Qg1 —. : : :
| | |
Bob’s qubit g -
| i i 00 — Do nothing
_01 — Apply X gate
cre 10 — Apply Z gate
11 — Apply ZX gate

crx

0x1

22



SECTION 3 Doing quantum

Superdense coding

 Superdense coding is a procedure that allows someone to send two classical bits to another party
using just a single qubit of communication.
 Take advantage of quantum mechanics to more efficiently transmit classical information.
 Word “coding” means there are 2 essential processes, encoding and decoding:
» encoding: classical state = quantum state,

» decoding: quantum state = classical state.

Transmit one qubit Transmit two classical bits
using two classical bits. using one qubit.

23



SECTION 3 Doing quantum

Superdense coding

* Superdense coding includes 4 steps:
» preparation,

» encoding message,

0/1 0/1
» transmission, “ i
> deCOding message' Preparation DeCOding message
transmission
qlO] . . .
9 q[1] é é .

24



SECTION 3 Doing quantum

Superdense coding

Step 2: encoding message

» A encodes the classical state in the qubit by applying gate(s).

Message | Applied Gate State Result

00 I (/00) + [11)) 00
(|10} +01)) 01 .
(100) —[11)) 10 .
—5 (110) —[01)) 1 . . 1

01 X

0/1 0/1 0 -

L

V2

L

V2

1

V2

T I

25



SECTION 3 Doing quantum

Superdense coding

e Test the circuit which encodes message “11” and run on “ibm_oslo”.

9 1.00 0953
w 0.75
@
=
o
qlO] 3 050
&
ql[1] 0.25
0.00 0004 % 0017
8 S S ~

26



SECTION 3 Doing quantum

Quantum programming using Qiskit
e Half adder circuit for input 11

Encode the two
input bits here

- \H

I
: e 0+0 =00 (in decimal, this is 0+0 = 0)
qlf1] |0} ~n—L .
| | Algorithmgoes | | e 0+1=01 (in decimal, thisis 0+1 = 1)
af21 o) —I— here I
e 1+0 =01 (in decimal, thisis 1+0 =1
ar3] loy ——h— 1/ ( )
el e 141 =10 (in decimal, this is 1+1 = 2)

A

N

c2 1

Extract the two
output bits here

27



SECTION 3 Doing quantum

Quantum programming using Qiskit
e Half adder circuit for input 11
gc_ha = QuantumCircuit(4,2)

# encode inputs in gqubits @ and 1

do _. x qgc_ha.x{@) # For a=8, remove the this line. For a=1, Lleave it.

qc_ha.x(1) # For b=8, remove the this line. For b=1, Lleave it.
gc_ha.barrier()

# use cnots to write the XOR of the inputs on qubit 2
qc_ha.cx(e,2)

a1

q gc_ha.cx(1,2)

gc_ha.barrier()
ds # extract outputs

gc_ha.measure(2,8) # extract XOR value
c gc_ha.measure(3,8)

qc_ha.draw(output="mpl")

28



SECTION 3 Doing quantum

Quantum programming using Qiskit

e Half adder circuit for input 11

o i .
a - *
a2
a3
C

gc_ha = QuantumCircuit(4,2)
# encode inputs in qubits @
qc_ha.x(@) # For a=@,
qc_ha.x(1) # For b=0,
qc_ha.barriexr()

# wse cnots to write the XOR of the inputs on qubi
qc_ha.cx(0,2)

qc_ha.cx(1,2)

and 1

For a=1, leave 1it.

line. 1
For b=1, leave

line.

remove the this

remove the

ey
77
i L=

this

~+

2

# use ccx to write the AND of the inputs on qubit 3
gc_ha.ccx(®,1,3)

gqc_ha.barriex()

# extract outputs

qc_ha.measure(2,0) # extract XOR value
qc_ha.measure(3,1) # extract AND value

qc_ha.draw()

29




SECTION 3 Doing quantum

Assignment I: Basic Quantum Computing
* Required:
» Go to https://colab.research.google.com/
» Sign in with Gmail
» Download source codes at t.ly/PIGh5 and upload files “Lab-1.ipynb”, “Lab-2.ipynb” and “Lab-

3.ipynb” into Colab.

» Install required library for each assignment by typing the following:
o pip install qiskit
o pip install giskit-aer
o pip install pylatexenc
o pip install giskit-ibm-runtime (only Lab-2.ipynb and Lab-3.ipynb)
* Assignments:

» Lab-1: Operations on single qubit and multiple qubits gates by IBM Quantum.

» Lab-2: Quantum circuits by IBM Quantum.
» Lab-3: Superdense coding.

30



SECTION 3 Doing quantum

Quantum algorithms

Deutsch-Jozsa algorithm
» We are given a hidden Boolean function f, which takes as input a string of bits, and returns either

O or 1, thatis:

fUxp,x1,x2,... 1) = 0or 1, where x,is0or ]

» The property of the given Boolean function is that it is guaranteed to either be balanced (returns 1
for half of the input domain and O for the other half) or constant (0 on all inputs or 1 on all inputs).

» Our task is to determine whether the given function is balanced or constant.

31



SECTION 3 Doing quantum

Quantum algorithms

Deutsch-Jozsa algorithm
» For classical solution, we need to ask the oracle at least twice, but if we get twice the same output,
we need to ask again. At most to query is (N/2)+1, where N is number of state.
» For quantum solution, need only one query. If the output is the zero bit string, we know that the
oracle is constant. If it is any other bit string, we know that it is balanced.
» We have the function f implemented as a quantum oracle, which maps the state |x)|y) to

| x| yDf(x)), where @ is addition modulo 2.

1 2 .
: : ? @ In the case where the function is constant, then the co-efficient of
0®m) A gon . x ] pren ] 0)#7", . (=1)7(#) /27 is equal to +1... as this has amplitude 1,
: . : : then we measure [0)" with probability one.
I / I I @ In the case where the function is balanced then
1) H : vy y®f(x) : : S (—1)f@) /27 = 0, and so we will never measure |0)*".
| | |

32



SECTION 3 Doing quantum

Quantum algorithms

Deutsch-Jozsa algorithm

» We can encode any mathematical function as a unitary matrix.

» Deutsch’s algorithm was the first algorithm that demonstrated a quantum advantage: specifically, a

reduction in query complexity compared to the classical case.

» The Deutsch-Jozsa algorithm generalises Deutsch’s algorithm and reveals the possibility of

exponential speed-ups using quantum computers.

@ In the case where the function is constant, then the co-efficient of

|0®n) S H@n

v y® f(x)

HE"

—~ 0)®", S (=1)f(®) /27 is equal to £1... as this has amplitude 1,

then we measure [0)" with probability one.

@ In the case where the function is balanced then

I oy

S (—1)f@) /27 = 0, and so we will never measure |0)*".

33



SECTION 3 Doing quantum

Quantum algorithms

Grover’s algorithm
> It can be used to solve unstructured search problems in roughly VN steps, where N is the amount
of data.
» This algorithm can speed up an unstructured search problem quadratically using the amplitude

amplification trick.

N=2"

34



SECTION 3 Doing quantum

Quantum algorithms

Operation of searching data by Grover’s algorithm for 2 qubits:

L(j00)+01)+]10)+[11))

12 & 172 ] V 12z mean: %| DD =+ Dl _|]E| +|1]_ |

[;100),101),]111) =

AN
|
/-~

v TN\
. . \2 "2 2"2)_
Invert iteration m= = —
4 4
L4 1
2
1

llO—l 1 1—1
i|>—4 i

35



SECTION 3 Doing quantum

Quantum algorithms

Operation of searching data by Grover’s algorithm for 4 qubits:

e OO

0 T O O T

mean:

[ T 1111111111115

“4r4
11/16
1 i 11 R R0 101811 1snme
[y 177128
i+ 11 11it 111111 13ne
- |
!,-11/16
3
! s1/64
i 1 0 B 1 % § 3§ 3§ &% 1 5/64

. . T N .
Grover iterations = Z X ? times,

N is the number of data (states) and
t is the number of target solutions.

Try it out at t.ly/PIGh5 and upload files
“Grover's algorithm.ipynb” into Colab.

36



https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn
https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

SECTION 3 Doing quantum

Quantum algorithms

Grover’s algorithm

» The example of Grover's algorithm for 3 qubits with two marked states |101) and |110).

. . T [N
Grover iterations ™ Z ?

Init @acle Amplification \
0) HHZ ZiH—/X—ZM— X ;
| l |
0) H - T H A Xt X [ H
0) H e THH XX H /

Photo courtesy of https://qiskit.org/textbook/ch-algorithms/grover.html
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SECTION 3 Doing quantum =

Quantum algorithms

Grover’s algorithm %ﬁm 14— )+ [x+ 1) N—1))

!

Invert amplitude of
Initialize the system to the optimum and re-
o\ Apply oracle
the superposition state compute the average
of amplitude

1 Grover iteration N-1 New amplitude:
——(|0)+]|1)+...|N—1)) . L_Z 1
VN Nb maximum at TN el li new =m—(l; —m)
E E 1 M-l - 2m - ll
4.t Optimum "=N = " mis new average of amplitude.
success
prob max?
0 1 2 3 4 N-1
Y%s
The optimum is at index “a”,
Define Tagging Function : Perform the
f(x)=0, x#a measurement
fix)=1, x=a

38



SECTION 2 Quantum technology trends

Quantum technology trends

ATIMELINE OF QUANTUM COMPUTING

.
RS
ERE
-~
e W
| R
N § J—
By 4
N 4B
-
_ A
==
EEEF
—
PHENOMENOLOGICAL PHASE REALIZATION PHASE SYSTEM PHASE COMMERCIAL PHASE
1950s - 1990s 1990s - 2000s 2010s 2015 - 2025 2025 and beyond
Primarily theoretical Establishment of Development of quantum System-level engineering Production use of quantum
research, with limited fundamental mechanisms processors and rudimentary for practical quantum computing systems to solve
physical experimentation with physical apparatus quantum computers computers real-world problems
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SECTION 4 Building quantum

Quantum technology trends

L8 180 296 489 681 945 4

102 11012

1010 {1010

{4 -

QUANTUM COMPUTER
8

B -
100 200 300 400 500 600 700 800 900 1000
Problem size (bits)

THAN PC. \
O Y\ g\
- GOOGLE |

10%

110°

10

QMC and SA single-core annealing time (j:s)

D-Wave

w»
w

]‘fiﬂﬂ%ﬁ

D-Wave annealing time (y:s)



SECTION 4 Building quantum

IBM’s 1,121-Qubit Condor

41



SECTION 4 Building quantum

IBM Quantum System Two

42



SECTION 4 Building quantum

Qubit technologies

Organization
Total Number =97 7 23 17 9 12 16 6 7

Alibaba/CAS X
Alpine Quantum Technologies X
Archer Exploration X
Atom Computing X
Bleximo X
CEA-Leti / Inac X
Centre for Quantum Computation &
Cc ication Technology

Chalmers University of Technology X X
ColdQuanta X
Duke University X X
D-Wave X
EeroQ X
Google X X
Griffith Univ./Univ. Of Q land X
Honeywell X
IBM X
1D Quantique X
Institut d'Optique X
Intel X X
lonQ X
1QM Finland X
Korea Institute of Science & Technology X
MDR X X
Microsoft X
MIT Lincoln Lab X X X X
MIT/Univ. of Innsbruck X
NEC X
NextGenQ X
Niels Bohr Institute X
Nokia Bell Labs X
Northrop Grumman X
NQIT X

Source : https://quantumcomputingreport.com/scorecards/qubit-technology/
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