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Computer Architecture and Engineering
Lecture 7: Divide, Floating Point, Pentium Bug

September 17, 1997

Dave Patterson (http.cs.berkeley.edu/~patterson)

lecture slides: http://www-inst.eecs.berkeley.edu/~cs152/
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Outline of Today’s Lecture

° Recap of Last Lecture and Introduction of Today’s Lecture (4 min.)

° Divide (20 min.)

° Questions and Administrative Matters (2 min.)

° Floating-Point  (25 min.)

° Questions and Break (5 min.)

° Pentium Bug [Patterson] (25min.)
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Recap of Last Lecture: Summary

° Intro to VHDL

• entity = symbol, architecture ~ schematic, signals = wires

• behavior can be higher level

• x <= boolean_expression(A,B,C,D);

° On-line Design Notebook

• Open a window with editor, or our tool, => cut&paste

° Multiply: successive refinement to see final design 

• 32-bit Adder, 64-bit shift register, 32-bit Multiplicand Register

• Booth’s algorithm to handle signed multiplies

• There are algorithms that calculate many bits of multiply per cycle 
(see exercises 4.36  to 4.39 in COD)

° Shifter: well...

° What’s Missing from MIPS is Divide & Floating Point Arithmetic: 
Next time the Pentium Bug
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Recap: VHDL combinational example

ENTITY nandnor is

  GENERIC (delay: TIME := 1ns);

  PORT (a,b: IN VLBIT; x,y: OUT VLBIT)

END nandnore

ARCHITECTURE behavioral OF nandnor is

BEGIN

  x <= a NOR b AFTER delay;

  y <= a NAND b AFTER delay;

END behavioral;
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Review: MULTIPLY HARDWARE Version 3

° 32-bit Multiplicand reg, 32-bit ALU, 
64-bit Product reg (shift right),  (0-bit Multiplier reg)

Product (Multiplier)

Multiplicand

32-bit ALU

Write
Control

32 bits

64 bits

Shift Right“HI” “LO”
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Review: Booth’s Algorithm Insight

Current Bit Bit to the Right Explanation Example

1 0 Beginning of a run of 1s 0001111000

1 1 Middle of a run of 1s 0001111000

0 1 End of a run of 1s 0001111000

0 0 Middle of a run of 0s 0001111000

Originally for Speed since shift faster than add for his machine

0 1 1 1 1 0
beginning of runend of run

middle of run
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Review: Combinational Shifter from MUXes

° What comes in the MSBs?

° How many levels for 32-bit shifter?

° What if we use 4-1 Muxes ?

1 0sel

A B

D

Basic Building Block

8-bit right shifter

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

S2 S1 S0A0A1A2A3A4A5A6A7

R0R1R2R3R4R5R6R7



cs 152  l7 Divide,FP.8  DAP ©UCB 1997

Funnel Shifter

XY

R° Shift A by i bits 
(sa= shift right amount)

° Logical:       Y = 0,  X=A, sa=i

° Arithmetic? Y = _,  X=_, sa=_

° Rotate?        Y = _,  X=_, sa=_

° Left shifts?   Y = _,  X=_, sa=_

Instead Extract 32 bits of 64.

Shift Right

Shift Right

32 32

32

Y X

R
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Barrel  Shifter

Technology-dependent solutions: transistor per switch

D3

D2

D1

D0

A6

A5

A4

A3 A2 A1 A0

SR0SR1SR2SR3
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Divide: Paper & Pencil

    1001 Quotient

Divisor 1000   1001010 Dividend
–1000
    10
    101
    1010
   –1000
      10 Remainder (or Modulo result)

See how big a number can be subtracted, creating quotient 
bit on each step

Binary => 1 * divisor or 0 * divisor

Dividend = Quotient x Divisor + Remainder
=> | Dividend | = | Quotient | + | Divisor |

3 versions of divide, successive refinement



cs 152  l7 Divide,FP.11  DAP ©UCB 1997

DIVIDE HARDWARE Version 1

° 64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg, 
32-bit Quotient reg

Remainder

Quotient

Divisor

64-bit ALU

Shift Right

Shift Left

Write
Control

32 bits

64 bits

64 bits
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2b. Restore the original value by adding the 
Divisor register to the Remainder register, &
place the sum in the Remainder register. Also
shift the Quotient register to the left, setting 
the new least significant bit to 0.

Divide Algorithm Version 1
°Takes n+1 steps for n-bit Quotient & Rem.

Remainder         Quotient Divisor
0000 0111  0000 0010 0000

Test 
Remainder

Remainder < 0Remainder ≥ 0

1. Subtract the Divisor register from the 
Remainder register, and place the result 
in the Remainder register.

2a. Shift the 
Quotient register 
to the left setting 
the new rightmost
 bit to 1.

3. Shift the Divisor register right1 bit.

Done

 Yes: n+1 repetitions (n = 4 here)

Start: Place Dividend in Remainder

n+1
repetition?

 No: < n+1 repetitions
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Observations on Divide Version 1

° 1/2 bits in divisor always 0
=> 1/2 of 64-bit adder is wasted
 => 1/2 of divisor is wasted

° Instead of shifting divisor to right, 
shift remainder to left?

° 1st step cannot produce a 1 in quotient bit 
(otherwise too big)
 => switch order to shift first and then subtract, 
can save 1 iteration
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DIVIDE HARDWARE Version 2

° 32-bit Divisor reg, 32-bit ALU, 64-bit Remainder reg, 
32-bit Quotient reg

Remainder

Quotient

Divisor

32-bit ALU

Shift Left

Write
Control

32 bits

32 bits

64 bits

Shift Left
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Divide Algorithm Version 2
Remainder          Quotient   Divisor
0000 0111  0000  0010 

3b. Restore the original value by adding the Divisor 
register to the left half of the Remainderregister, 
&place the sum in the left half of the Remainder 
register. Also shift the Quotient register to the left, 
setting the new least significant bit to 0.

Test 
Remainder

Remainder < 0Remainder ≥ 0

2. Subtract the Divisor register from the 
left half of the Remainder register, & place the 
result in the left half of the Remainder register.

3a. Shift the 
Quotient register 
to the left setting 
the new rightmost
 bit to 1.

1. Shift the Remainder register left 1 bit.

Done

 Yes: n repetitions (n = 4 here)

 nth
repetition?

 No: < n repetitions

Start: Place Dividend in Remainder
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Observations on Divide Version 2

° Eliminate Quotient register by combining with Remainder as shifted left

• Start by shifting the Remainder left as before. 

• Thereafter loop contains only two steps because the shifting of the 
Remainder register shifts both the remainder in the left half and the 
quotient in the right half 

• The consequence of combining the two registers together and the 
new order of the operations in the loop is that the remainder will 
shifted left one time too many.

•  Thus the final correction step must shift back only the remainder in 
the left half of the register
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DIVIDE HARDWARE Version 3

° 32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg, 
(0-bit Quotient reg)

Remainder (Quotient)

Divisor

32-bit ALU

Write
Control

32 bits

64 bits

Shift Left“HI” “LO”
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Divide Algorithm Version 3
Remainder  Divisor
0000 0111 0010

3b. Restore the original value by adding the Divisor 
register to the left half of the Remainderregister, 
&place the sum in the left half of the Remainder 
register. Also shift the Remainder register to the 
left, setting the new least significant bit to 0.

Test 
Remainder

Remainder < 0Remainder ≥ 0

2. Subtract the Divisor register from the 
left half of the Remainder register, & place the 
result in the left half of the Remainder register.

3a. Shift the 
Remainder register 
to the left setting 
the new rightmost
 bit to 1.

1. Shift the Remainder register left 1 bit.

Done. Shift left half of Remainder right 1 bit.

 Yes: n repetitions (n = 4 here)

 nth
repetition?

 No: < n repetitions

Start: Place Dividend in Remainder
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Observations on Divide Version 3

° Same Hardware as Multiply: just need ALU to add or subtract, and 63-bit 
register to shift left or shift right

° Hi and Lo registers in MIPS combine to act as 64-bit register for multiply 
and divide

° Signed Divides: Simplest is to remember signs, make positive, and 
complement quotient and remainder if necessary

• Note: Dividend and Remainder must have same sign

• Note: Quotient negated if Divisor sign & Dividend sign disagree
e.g., –7 ÷ 2 = –3, remainder = –1

° Possible for quotient to be too large: if divide 64-bit interger by 1, 
quotient is 64 bits (“called saturation”)
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Administrative Matters

° Midterm Wednesday 10/1

° Revise deadlines (so that can dicuss in section): 
Book exercises Fridays at noon
Labs on Tuesdays at noon

° Finishing Chapter 4 today, moving to Chapter 5 Friday

° ALU + notebook, teams of 2 next lab
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Floating-Point
° What can be represented in N bits?

° Unsigned 0 to 2

° 2s Complement - 2 to 2 - 1

° 1s Complement -2+1 to 2-1

° Excess M  -M to 2 - M - 1

•     (E = e + M)

°  BCD 0 to 10 - 1

° But, what about?

• very large numbers? 9,349,398,989,787,762,244,859,087,678

• very small number? 0.0000000000000000000000045691

• rationals  2/3

•  irrationals √ 2

•  transcendentals e, π

N

N-1 N-1

N-1 N-1

N

N/4
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Recall Scientific Notation

6.02 x 10                               1.673 x 10
23 -24

exponent

radix (base)Mantissa

decimal point

Sign, magnitude

Sign, magnitude

IEEE F.P.      ± 1.M x 2
e - 127

° Issues:

• Arithmetic (+, -, *, / )

• Representation, Normal form

• Range and Precision

• Rounding

• Exceptions (e.g., divide by zero, overflow, underflow)

• Errors

•  Properties  ( negation, inversion, if A ≠ B then A - B ≠ 0 )
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Review from Prerequisties: Floating-Point Arithmetic
Representation of floating point numbers in IEEE 754 standard:

      single precision
1 8 23

sign

exponent:
excess 127
binary integer

mantissa:
sign + magnitude, normalized
binary significand w/ hidden
integer bit:  1.M

actual exponent is
e = E - 127

S E M

N = (-1)   2           (1.M)
S E-127

0 < E < 255

0 = 0 00000000 0 . . . 0             -1.5 = 1 01111111 10 . . . 0

Magnitude of numbers that can be represented is in the range:

2
-126

(1.0) to 2
127

(2 - 223)

which is approximately:

1.8 x 10
-38

to 3.40 x 10 
38

(integer comparison valid on IEEE Fl.Pt. numbers of same sign!)
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Basic Addition Algorithm
For addition (or subtraction) this translates into the following steps:

(1)  compute Ye - Xe (getting ready to align binary point)

(2)  right shift Xm that many positions to form Xm 2

(3)  compute Xm 2            + Ym

if representation demands normalization, then a normalization step
      follows:

(4)  left shift result, decrement result exponent (e.g., 0.001xx…)
      right shift result, increment result exponent (e.g., 101.1xx…)
      continue until MSB of data is 1   (NOTE: Hidden bit in IEEE Standard)

(5)  doubly biased exponent must be corrected:

      Xe = 7
      Ye = -3
      Excess 8
                       extra subtraction step of the bias amount

(6)  if result is 0 mantissa, may need to set the exponent to zero by
           special step

Xe-Ye

Xe-Ye

Xe = 1111
Ye = 0101
       10100

= 15
=   5
   20

= 7 + 8
= -3 + 8
   4 + 8 + 8
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Extra Bits for rounding

"Floating Point numbers are like piles of sand; every time you move one 
you lose a little sand, but you pick up a little dirt."

How many extra bits?   

IEEE: As if computed the result exactly and rounded.

Addition:

1.xxxxx 1.xxxxx 1.xxxxx

    + 1.xxxxx 0.001xxxxx 0.01xxxxx

        1x.xxxxy               1.xxxxxyyy              1x.xxxxyyy
post-normalization          pre-normalization          pre and post

° Guard Digits: digits to the right of the first p digits of significand to 
guard against loss of digits – can later be shifted left into first P places 
during normalization.

° Addition: carry-out shifted in

° Subtraction: borrow digit and guard

° Multiplication: carry and guard,   Division requires guard
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Rounding Digits

normalized result, but some non-zero digits to the right of the
      significand -->  the number should be rounded

E.g., B = 10, p = 3: 0  2  1.69

0  0  7.85

0  2  1.61

=  1.6900  * 10

= -  .0785 * 10

=   1.6115 * 10

2-bias

2-bias

2-bias
-

one round digit must be carried to the right of the guard digit so that 
      after a normalizing left shift, the result can be rounded, according
      to the value of the round digit

IEEE Standard:
      four rounding modes:   round to nearest  (default)

round towards plus infinity
round towards minus infinity
round towards 0

round to nearest:
      round digit < B/2  then truncate
                          > B/2  then round up (add 1 to ULP: unit in last place)
                          = B/2  then round to nearest even digit

      it can be shown that this strategy minimizes the mean error
      introduced by rounding
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Sticky Bit
Additional bit to the right of the round digit to better fine tune rounding

d0 . d1 d2 d3 . . . dp-1  0  0  0
  0 .   0    0   X . . .   X     X X  S
                                       X X  S

+
Sticky bit:  set to 1 if any 1 bits fall off
      the end of the round digit

d0 . d1 d2 d3 . . . dp-1  0  0  0
  0 .   0    0   X . . .   X     X X  0

X X 0
-

d0 . d1 d2 d3 . . . dp-1  0  0  0
  0 .   0    0   X . . .   X     X X  1-

generates a borrow

Rounding Summary:

Radix 2 minimizes wobble in precision

Normal operations in +,-,*,/ require one carry/borrow bit + one guard digit

One round digit needed for correct rounding

Sticky bit needed when round digit is B/2 for max accuracy

Rounding to nearest has mean error = 0 if uniform distribution of digits
      are assumed
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Denormalized Numbers

0 2 2 2-bias 1-bias 2-bias

B = 2, p = 4
normal numbers with hidden bit -->

denorm
gap

The gap between 0 and the next representable number is much larger
      than the gaps between nearby representable numbers.

IEEE standard uses denormalized numbers to fill in the gap, making the
      distances between numbers near 0 more alike.

0 2 2 2-bias 1-bias 2-bias

p bits of
precision

p-1
bits of

precision

same spacing, half as many values!

NOTE:  PDP-11, VAX cannot represent subnormal numbers.  These
             machines underflow to zero instead.
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Infinity and NaNs
result of operation overflows, i.e., is larger than the largest number that
      can be represented

overflow is not the same as divide by zero (raises a different exception)

+/- infinity S  1 . . . 1  0 . . . 0

It may make sense to do further computations with infinity
      e.g.,  X/0  >  Y may be a valid comparison

Not a number, but not infinity (e.q. sqrt(-4))
      invalid operation exception (unless operation is = or =)

NaN S  1 . . . 1  non-zero

NaNs propagate: f(NaN) = NaN

HW decides what goes here
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Pentium Bug

° Pentium FP Divider uses algorithm to generate multiple bits per steps

• FPU uses most significant bits of divisor & dividend/remainder to 
guess next 2 bits of quotient

• Guess is taken from lookup table: -2, -1,0,+1,+2 (if previous guess 
too large a reminder, quotient is adjusted in subsequent pass of -2)

• Guess is multiplied by divisor and subtracted from remainder to 
generate a new remainder

• Called SRT division after 3 people who came up with idea

° Pentium table uses 7 bits of remainder + 4 bits of divisor = 211 entries

° 5 entries of divisors omitted: 1.0001, 1.0100, 1.0111, 1.1010, 1.1101 from 
PLA (fix is just add 5 entries back into PLA: cost $200,000)

° Self correcting nature of SRT => string of 1s must follow error

• e.g., 1011 1111 1111 1111 1111 1011 1000 0010 0011 0111 1011 0100 
(2.99999892918)

° Since indexed also by divisor/remainder bits, sometimes bug doesn’t 
show even with dangerous divisor value
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Pentium bug appearance

° First 11 bits to right of decimal point always correct: bits 12 to 52 where 
bug can occur (4th to 15th decimal digits)

° FP divisors near integers 3, 9, 15, 21, 27 are dangerous ones:

• 3.0 >  d ≥ 3.0 - 36 x 2–22 , 9.0 > d ≥ 9.0 - 36 x 2–20

• 15.0 > d ≥ 15.0 - 36 x 2–20 , 21.0 > d ≥ 21.0 - 36 x 2–19

° 0.333333 x 9 could be problem

° In Microsoft Excel, try (4,195,835 / 3,145,727) * 3,145,727 

• = 4,195,835 => not a Pentium with bug

• = 4,195,579 => Pentium with bug
(assuming Excel doesn’t already have SW bug patch)

• Rarely noticed since error in 5th significant digit

• Success of IEEE standard made discovery possible: 
≈ all computers should get same answer
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Pentium Bug Time line

° June 1994: Intel discovers bug in Pentium: takes months to make 
change,  reverify, put into production: plans good chips in January 1995 
4 to 5 million Pentiums produced with bug

° Scientist suspects errors and posts on Internet in September 1994

° Nov. 22 Intel Press release: “Can make errors in 9th digit ... Most 
engineers and financial analysts need only 4 of 5 digits. Theoretical 
mathematician should be concerned. ...  So far only heard from one.”

° Intel claims happens once in 27,000 years for typical spread sheet user:

• 1000 divides/day x error rate assuming numbers random

° Dec 12: IBM claims happens once per 24 days: Bans Pentium sales

• 5000 divides/second x 15 minutes = 4,200,000 divides/day

• IBM statement: http://www.ibm.com/Features/pentium.html

• Intel said it regards IBM's decision to halt shipments of its  Pentium 
processor-based systems as unwarranted.
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Pentium jokes

° Q:  What's another name for the "Intel Inside" sticker they put on 
Pentiums?

 A:  Warning label.

° Q: Have you heard the new name Intel has chosen for the Pentium?  

 A: the Intel Inacura.

° Q:  According to Intel, the Pentium conforms to the IEEE standards for 
floating point arithmetic.  If you fly in aircraft designed using a Pentium, 
what is the correct pronunciation of "IEEE"?

 A:   Aaaaaaaiiiiiiiiieeeeeeeeeeeee!

° TWO OF TOP TEN NEW INTEL SLOGANS FOR THE PENTIUM

 9.9999973251   It's a FLAW, Dammit, not a Bug

 7.9999414610   Nearly 300 Correct Opcodes
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Pentium conclusion: Dec. 21, 1994 $500M write-off
“To owners of Pentium processor-based computers and the PC community:

  We at Intel wish to sincerely apologize for our handling of the  recently
publicized Pentium processor flaw.

  The Intel Inside symbol means that your computer has a  microprocessor 
second to none in quality and performance.  Thousands  of Intel employees 
work very hard to ensure that this is true.  But  no microprocessor is ever 
perfect.

  What Intel continues to believe is technically an extremely  minor problem 
has taken on a life of its own.  Although Intel firmly  stands behind the 
quality of the current version of the Pentium  processor, we recognize that 
many users have concerns.

  We want to resolve these concerns.

  Intel will exchange the current version of the Pentium processor  for an
updated version, in which this floating-point divide flaw is  corrected, for
any owner who requests it, free of charge anytime  during the life of their
computer.  Just call 1-800-628-8686.”

Sincerely,
Andrew S. Grove           Craig R. Barrett             Gordon E. Moore
President /CEO             Executive Vice President     Chairman of the Board

&COO
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Summary

° Pentium: Difference between bugs that board designers must know 
about and bugs that potentially affect all users 

• Why not make public complete description of bugs in later 
category? 

•        $200,000 cost in June to repair design

• $500,000,000 loss in December in profits to replace bad parts

• How much to repair Intel’s reputation?

° What is technologists responsibility in disclosing bugs?

° Bits have no inherent meaning: operations determine whether they are 
really ASCII characters, integers, floating point numbers

° Divide can use same hardware as multiply: Hi & Lo registers in MIPS

° Floating point basically follows paper and pencil method of scientific 
notation using integer algorithms for multiply and divide of significands

° IEEE 754 requires good rounding; special values for NaN, Infinity


