
cs 152 l7 Divide,FP.1 DAP ©UCB 1997

Computer Architecture and Engineering
Lecture 7: Divide, Floating Point, Pentium Bug

September 17, 1997

Dave Patterson (http.cs.berkeley.edu/~patterson)

lecture slides: http://www-inst.eecs.berkeley.edu/~cs152/

cs 152 l7 Divide,FP.2 DAP ©UCB 1997

Outline of Today’s Lecture

° Recap of Last Lecture and Introduction of Today’s Lecture (4 min.)

° Divide (20 min.)

° Questions and Administrative Matters (2 min.)

° Floating-Point (25 min.)

° Questions and Break (5 min.)

° Pentium Bug [Patterson] (25min.)

cs 152 l7 Divide,FP.3 DAP ©UCB 1997

Recap of Last Lecture: Summary

° Intro to VHDL

• entity = symbol, architecture ~ schematic, signals = wires

• behavior can be higher level

• x <= boolean_expression(A,B,C,D);

° On-line Design Notebook

• Open a window with editor, or our tool, => cut&paste

° Multiply: successive refinement to see final design

• 32-bit Adder, 64-bit shift register, 32-bit Multiplicand Register

• Booth’s algorithm to handle signed multiplies

• There are algorithms that calculate many bits of multiply per cycle
(see exercises 4.36 to 4.39 in COD)

° Shifter: well...

° What’s Missing from MIPS is Divide & Floating Point Arithmetic:
Next time the Pentium Bug

cs 152 l7 Divide,FP.4 DAP ©UCB 1997

Recap: VHDL combinational example

ENTITY nandnor is

 GENERIC (delay: TIME := 1ns);

 PORT (a,b: IN VLBIT; x,y: OUT VLBIT)

END nandnore

ARCHITECTURE behavioral OF nandnor is

BEGIN

 x <= a NOR b AFTER delay;

 y <= a NAND b AFTER delay;

END behavioral;

cs 152 l7 Divide,FP.5 DAP ©UCB 1997

Review: MULTIPLY HARDWARE Version 3

° 32-bit Multiplicand reg, 32-bit ALU,
64-bit Product reg (shift right), (0-bit Multiplier reg)

Product (Multiplier)

Multiplicand

32-bit ALU

Write
Control

32 bits

64 bits

Shift Right“HI” “LO”

cs 152 l7 Divide,FP.6 DAP ©UCB 1997

Review: Booth’s Algorithm Insight

Current Bit Bit to the Right Explanation Example

1 0 Beginning of a run of 1s 0001111000

1 1 Middle of a run of 1s 0001111000

0 1 End of a run of 1s 0001111000

0 0 Middle of a run of 0s 0001111000

Originally for Speed since shift faster than add for his machine

0 1 1 1 1 0
beginning of runend of run

middle of run

cs 152 l7 Divide,FP.7 DAP ©UCB 1997

Review: Combinational Shifter from MUXes

° What comes in the MSBs?

° How many levels for 32-bit shifter?

° What if we use 4-1 Muxes ?

1 0sel

A B

D

Basic Building Block

8-bit right shifter

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

S2 S1 S0A0A1A2A3A4A5A6A7

R0R1R2R3R4R5R6R7

cs 152 l7 Divide,FP.8 DAP ©UCB 1997

Funnel Shifter

XY

R° Shift A by i bits
(sa= shift right amount)

° Logical: Y = 0, X=A, sa=i

° Arithmetic? Y = _, X=_, sa=_

° Rotate? Y = _, X=_, sa=_

° Left shifts? Y = _, X=_, sa=_

Instead Extract 32 bits of 64.

Shift Right

Shift Right

32 32

32

Y X

R

cs 152 l7 Divide,FP.9 DAP ©UCB 1997

Barrel Shifter

Technology-dependent solutions: transistor per switch

D3

D2

D1

D0

A6

A5

A4

A3 A2 A1 A0

SR0SR1SR2SR3

cs 152 l7 Divide,FP.10 DAP ©UCB 1997

Divide: Paper & Pencil

 1001 Quotient

Divisor 1000 1001010 Dividend
–1000
 10
 101
 1010
 –1000
 10 Remainder (or Modulo result)

See how big a number can be subtracted, creating quotient
bit on each step

Binary => 1 * divisor or 0 * divisor

Dividend = Quotient x Divisor + Remainder
=> | Dividend | = | Quotient | + | Divisor |

3 versions of divide, successive refinement

cs 152 l7 Divide,FP.11 DAP ©UCB 1997

DIVIDE HARDWARE Version 1

° 64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg,
32-bit Quotient reg

Remainder

Quotient

Divisor

64-bit ALU

Shift Right

Shift Left

Write
Control

32 bits

64 bits

64 bits

cs 152 l7 Divide,FP.12 DAP ©UCB 1997

2b. Restore the original value by adding the
Divisor register to the Remainder register, &
place the sum in the Remainder register. Also
shift the Quotient register to the left, setting
the new least significant bit to 0.

Divide Algorithm Version 1
°Takes n+1 steps for n-bit Quotient & Rem.

Remainder Quotient Divisor
0000 0111 0000 0010 0000

Test
Remainder

Remainder < 0Remainder ≥ 0

1. Subtract the Divisor register from the
Remainder register, and place the result
in the Remainder register.

2a. Shift the
Quotient register
to the left setting
the new rightmost
 bit to 1.

3. Shift the Divisor register right1 bit.

Done

 Yes: n+1 repetitions (n = 4 here)

Start: Place Dividend in Remainder

n+1
repetition?

 No: < n+1 repetitions

cs 152 l7 Divide,FP.13 DAP ©UCB 1997

Observations on Divide Version 1

° 1/2 bits in divisor always 0
=> 1/2 of 64-bit adder is wasted
 => 1/2 of divisor is wasted

° Instead of shifting divisor to right,
shift remainder to left?

° 1st step cannot produce a 1 in quotient bit
(otherwise too big)
 => switch order to shift first and then subtract,
can save 1 iteration

cs 152 l7 Divide,FP.14 DAP ©UCB 1997

DIVIDE HARDWARE Version 2

° 32-bit Divisor reg, 32-bit ALU, 64-bit Remainder reg,
32-bit Quotient reg

Remainder

Quotient

Divisor

32-bit ALU

Shift Left

Write
Control

32 bits

32 bits

64 bits

Shift Left

cs 152 l7 Divide,FP.15 DAP ©UCB 1997

Divide Algorithm Version 2
Remainder Quotient Divisor
0000 0111 0000 0010

3b. Restore the original value by adding the Divisor
register to the left half of the Remainderregister,
&place the sum in the left half of the Remainder
register. Also shift the Quotient register to the left,
setting the new least significant bit to 0.

Test
Remainder

Remainder < 0Remainder ≥ 0

2. Subtract the Divisor register from the
left half of the Remainder register, & place the
result in the left half of the Remainder register.

3a. Shift the
Quotient register
to the left setting
the new rightmost
 bit to 1.

1. Shift the Remainder register left 1 bit.

Done

 Yes: n repetitions (n = 4 here)

 nth
repetition?

 No: < n repetitions

Start: Place Dividend in Remainder

cs 152 l7 Divide,FP.16 DAP ©UCB 1997

Observations on Divide Version 2

° Eliminate Quotient register by combining with Remainder as shifted left

• Start by shifting the Remainder left as before.

• Thereafter loop contains only two steps because the shifting of the
Remainder register shifts both the remainder in the left half and the
quotient in the right half

• The consequence of combining the two registers together and the
new order of the operations in the loop is that the remainder will
shifted left one time too many.

• Thus the final correction step must shift back only the remainder in
the left half of the register

cs 152 l7 Divide,FP.17 DAP ©UCB 1997

DIVIDE HARDWARE Version 3

° 32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg,
(0-bit Quotient reg)

Remainder (Quotient)

Divisor

32-bit ALU

Write
Control

32 bits

64 bits

Shift Left“HI” “LO”

cs 152 l7 Divide,FP.18 DAP ©UCB 1997

Divide Algorithm Version 3
Remainder Divisor
0000 0111 0010

3b. Restore the original value by adding the Divisor
register to the left half of the Remainderregister,
&place the sum in the left half of the Remainder
register. Also shift the Remainder register to the
left, setting the new least significant bit to 0.

Test
Remainder

Remainder < 0Remainder ≥ 0

2. Subtract the Divisor register from the
left half of the Remainder register, & place the
result in the left half of the Remainder register.

3a. Shift the
Remainder register
to the left setting
the new rightmost
 bit to 1.

1. Shift the Remainder register left 1 bit.

Done. Shift left half of Remainder right 1 bit.

 Yes: n repetitions (n = 4 here)

 nth
repetition?

 No: < n repetitions

Start: Place Dividend in Remainder

cs 152 l7 Divide,FP.19 DAP ©UCB 1997

Observations on Divide Version 3

° Same Hardware as Multiply: just need ALU to add or subtract, and 63-bit
register to shift left or shift right

° Hi and Lo registers in MIPS combine to act as 64-bit register for multiply
and divide

° Signed Divides: Simplest is to remember signs, make positive, and
complement quotient and remainder if necessary

• Note: Dividend and Remainder must have same sign

• Note: Quotient negated if Divisor sign & Dividend sign disagree
e.g., –7 ÷ 2 = –3, remainder = –1

° Possible for quotient to be too large: if divide 64-bit interger by 1,
quotient is 64 bits (“called saturation”)

cs 152 l7 Divide,FP.20 DAP ©UCB 1997

Administrative Matters

° Midterm Wednesday 10/1

° Revise deadlines (so that can dicuss in section):
Book exercises Fridays at noon
Labs on Tuesdays at noon

° Finishing Chapter 4 today, moving to Chapter 5 Friday

° ALU + notebook, teams of 2 next lab

cs 152 l7 Divide,FP.21 DAP ©UCB 1997

Floating-Point
° What can be represented in N bits?

° Unsigned 0 to 2

° 2s Complement - 2 to 2 - 1

° 1s Complement -2+1 to 2-1

° Excess M -M to 2 - M - 1

• (E = e + M)

° BCD 0 to 10 - 1

° But, what about?

• very large numbers? 9,349,398,989,787,762,244,859,087,678

• very small number? 0.0000000000000000000000045691

• rationals 2/3

• irrationals √ 2

• transcendentals e, π

N

N-1 N-1

N-1 N-1

N

N/4

cs 152 l7 Divide,FP.22 DAP ©UCB 1997

Recall Scientific Notation

6.02 x 10 1.673 x 10
23 -24

exponent

radix (base)Mantissa

decimal point

Sign, magnitude

Sign, magnitude

IEEE F.P. ± 1.M x 2
e - 127

° Issues:

• Arithmetic (+, -, *, /)

• Representation, Normal form

• Range and Precision

• Rounding

• Exceptions (e.g., divide by zero, overflow, underflow)

• Errors

• Properties (negation, inversion, if A ≠ B then A - B ≠ 0)

cs 152 l7 Divide,FP.23 DAP ©UCB 1997

Review from Prerequisties: Floating-Point Arithmetic
Representation of floating point numbers in IEEE 754 standard:

 single precision
1 8 23

sign

exponent:
excess 127
binary integer

mantissa:
sign + magnitude, normalized
binary significand w/ hidden
integer bit: 1.M

actual exponent is
e = E - 127

S E M

N = (-1) 2 (1.M)
S E-127

0 < E < 255

0 = 0 00000000 0 . . . 0 -1.5 = 1 01111111 10 . . . 0

Magnitude of numbers that can be represented is in the range:

2
-126

(1.0) to 2
127

(2 - 223)

which is approximately:

1.8 x 10
-38

to 3.40 x 10
38

(integer comparison valid on IEEE Fl.Pt. numbers of same sign!)

cs 152 l7 Divide,FP.24 DAP ©UCB 1997

Basic Addition Algorithm
For addition (or subtraction) this translates into the following steps:

(1) compute Ye - Xe (getting ready to align binary point)

(2) right shift Xm that many positions to form Xm 2

(3) compute Xm 2 + Ym

if representation demands normalization, then a normalization step
 follows:

(4) left shift result, decrement result exponent (e.g., 0.001xx…)
 right shift result, increment result exponent (e.g., 101.1xx…)
 continue until MSB of data is 1 (NOTE: Hidden bit in IEEE Standard)

(5) doubly biased exponent must be corrected:

 Xe = 7
 Ye = -3
 Excess 8
 extra subtraction step of the bias amount

(6) if result is 0 mantissa, may need to set the exponent to zero by
 special step

Xe-Ye

Xe-Ye

Xe = 1111
Ye = 0101
 10100

= 15
= 5
 20

= 7 + 8
= -3 + 8
 4 + 8 + 8

cs 152 l7 Divide,FP.25 DAP ©UCB 1997

Extra Bits for rounding

"Floating Point numbers are like piles of sand; every time you move one
you lose a little sand, but you pick up a little dirt."

How many extra bits?

IEEE: As if computed the result exactly and rounded.

Addition:

1.xxxxx 1.xxxxx 1.xxxxx

 + 1.xxxxx 0.001xxxxx 0.01xxxxx

 1x.xxxxy 1.xxxxxyyy 1x.xxxxyyy
post-normalization pre-normalization pre and post

° Guard Digits: digits to the right of the first p digits of significand to
guard against loss of digits – can later be shifted left into first P places
during normalization.

° Addition: carry-out shifted in

° Subtraction: borrow digit and guard

° Multiplication: carry and guard, Division requires guard

cs 152 l7 Divide,FP.26 DAP ©UCB 1997

Rounding Digits

normalized result, but some non-zero digits to the right of the
 significand --> the number should be rounded

E.g., B = 10, p = 3: 0 2 1.69

0 0 7.85

0 2 1.61

= 1.6900 * 10

= - .0785 * 10

= 1.6115 * 10

2-bias

2-bias

2-bias
-

one round digit must be carried to the right of the guard digit so that
 after a normalizing left shift, the result can be rounded, according
 to the value of the round digit

IEEE Standard:
 four rounding modes: round to nearest (default)

round towards plus infinity
round towards minus infinity
round towards 0

round to nearest:
 round digit < B/2 then truncate
 > B/2 then round up (add 1 to ULP: unit in last place)
 = B/2 then round to nearest even digit

 it can be shown that this strategy minimizes the mean error
 introduced by rounding

cs 152 l7 Divide,FP.27 DAP ©UCB 1997

Sticky Bit
Additional bit to the right of the round digit to better fine tune rounding

d0 . d1 d2 d3 . . . dp-1 0 0 0
 0 . 0 0 X . . . X X X S
 X X S

+
Sticky bit: set to 1 if any 1 bits fall off
 the end of the round digit

d0 . d1 d2 d3 . . . dp-1 0 0 0
 0 . 0 0 X . . . X X X 0

X X 0
-

d0 . d1 d2 d3 . . . dp-1 0 0 0
 0 . 0 0 X . . . X X X 1-

generates a borrow

Rounding Summary:

Radix 2 minimizes wobble in precision

Normal operations in +,-,*,/ require one carry/borrow bit + one guard digit

One round digit needed for correct rounding

Sticky bit needed when round digit is B/2 for max accuracy

Rounding to nearest has mean error = 0 if uniform distribution of digits
 are assumed

cs 152 l7 Divide,FP.28 DAP ©UCB 1997

Denormalized Numbers

0 2 2 2-bias 1-bias 2-bias

B = 2, p = 4
normal numbers with hidden bit -->

denorm
gap

The gap between 0 and the next representable number is much larger
 than the gaps between nearby representable numbers.

IEEE standard uses denormalized numbers to fill in the gap, making the
 distances between numbers near 0 more alike.

0 2 2 2-bias 1-bias 2-bias

p bits of
precision

p-1
bits of

precision

same spacing, half as many values!

NOTE: PDP-11, VAX cannot represent subnormal numbers. These
 machines underflow to zero instead.

cs 152 l7 Divide,FP.29 DAP ©UCB 1997

Infinity and NaNs
result of operation overflows, i.e., is larger than the largest number that
 can be represented

overflow is not the same as divide by zero (raises a different exception)

+/- infinity S 1 . . . 1 0 . . . 0

It may make sense to do further computations with infinity
 e.g., X/0 > Y may be a valid comparison

Not a number, but not infinity (e.q. sqrt(-4))
 invalid operation exception (unless operation is = or =)

NaN S 1 . . . 1 non-zero

NaNs propagate: f(NaN) = NaN

HW decides what goes here

cs 152 l7 Divide,FP.30 DAP ©UCB 1997

Pentium Bug

° Pentium FP Divider uses algorithm to generate multiple bits per steps

• FPU uses most significant bits of divisor & dividend/remainder to
guess next 2 bits of quotient

• Guess is taken from lookup table: -2, -1,0,+1,+2 (if previous guess
too large a reminder, quotient is adjusted in subsequent pass of -2)

• Guess is multiplied by divisor and subtracted from remainder to
generate a new remainder

• Called SRT division after 3 people who came up with idea

° Pentium table uses 7 bits of remainder + 4 bits of divisor = 211 entries

° 5 entries of divisors omitted: 1.0001, 1.0100, 1.0111, 1.1010, 1.1101 from
PLA (fix is just add 5 entries back into PLA: cost $200,000)

° Self correcting nature of SRT => string of 1s must follow error

• e.g., 1011 1111 1111 1111 1111 1011 1000 0010 0011 0111 1011 0100
(2.99999892918)

° Since indexed also by divisor/remainder bits, sometimes bug doesn’t
show even with dangerous divisor value

cs 152 l7 Divide,FP.31 DAP ©UCB 1997

Pentium bug appearance

° First 11 bits to right of decimal point always correct: bits 12 to 52 where
bug can occur (4th to 15th decimal digits)

° FP divisors near integers 3, 9, 15, 21, 27 are dangerous ones:

• 3.0 > d ≥ 3.0 - 36 x 2–22 , 9.0 > d ≥ 9.0 - 36 x 2–20

• 15.0 > d ≥ 15.0 - 36 x 2–20 , 21.0 > d ≥ 21.0 - 36 x 2–19

° 0.333333 x 9 could be problem

° In Microsoft Excel, try (4,195,835 / 3,145,727) * 3,145,727

• = 4,195,835 => not a Pentium with bug

• = 4,195,579 => Pentium with bug
(assuming Excel doesn’t already have SW bug patch)

• Rarely noticed since error in 5th significant digit

• Success of IEEE standard made discovery possible:
≈ all computers should get same answer

cs 152 l7 Divide,FP.32 DAP ©UCB 1997

Pentium Bug Time line

° June 1994: Intel discovers bug in Pentium: takes months to make
change, reverify, put into production: plans good chips in January 1995
4 to 5 million Pentiums produced with bug

° Scientist suspects errors and posts on Internet in September 1994

° Nov. 22 Intel Press release: “Can make errors in 9th digit ... Most
engineers and financial analysts need only 4 of 5 digits. Theoretical
mathematician should be concerned. ... So far only heard from one.”

° Intel claims happens once in 27,000 years for typical spread sheet user:

• 1000 divides/day x error rate assuming numbers random

° Dec 12: IBM claims happens once per 24 days: Bans Pentium sales

• 5000 divides/second x 15 minutes = 4,200,000 divides/day

• IBM statement: http://www.ibm.com/Features/pentium.html

• Intel said it regards IBM's decision to halt shipments of its Pentium
processor-based systems as unwarranted.

cs 152 l7 Divide,FP.33 DAP ©UCB 1997

Pentium jokes

° Q: What's another name for the "Intel Inside" sticker they put on
Pentiums?

 A: Warning label.

° Q: Have you heard the new name Intel has chosen for the Pentium?

 A: the Intel Inacura.

° Q: According to Intel, the Pentium conforms to the IEEE standards for
floating point arithmetic. If you fly in aircraft designed using a Pentium,
what is the correct pronunciation of "IEEE"?

 A: Aaaaaaaiiiiiiiiieeeeeeeeeeeee!

° TWO OF TOP TEN NEW INTEL SLOGANS FOR THE PENTIUM

 9.9999973251 It's a FLAW, Dammit, not a Bug

 7.9999414610 Nearly 300 Correct Opcodes

cs 152 l7 Divide,FP.34 DAP ©UCB 1997

Pentium conclusion: Dec. 21, 1994 $500M write-off
“To owners of Pentium processor-based computers and the PC community:

 We at Intel wish to sincerely apologize for our handling of the recently
publicized Pentium processor flaw.

 The Intel Inside symbol means that your computer has a microprocessor
second to none in quality and performance. Thousands of Intel employees
work very hard to ensure that this is true. But no microprocessor is ever
perfect.

 What Intel continues to believe is technically an extremely minor problem
has taken on a life of its own. Although Intel firmly stands behind the
quality of the current version of the Pentium processor, we recognize that
many users have concerns.

 We want to resolve these concerns.

 Intel will exchange the current version of the Pentium processor for an
updated version, in which this floating-point divide flaw is corrected, for
any owner who requests it, free of charge anytime during the life of their
computer. Just call 1-800-628-8686.”

Sincerely,
Andrew S. Grove Craig R. Barrett Gordon E. Moore
President /CEO Executive Vice President Chairman of the Board

&COO

cs 152 l7 Divide,FP.35 DAP ©UCB 1997

Summary

° Pentium: Difference between bugs that board designers must know
about and bugs that potentially affect all users

• Why not make public complete description of bugs in later
category?

• $200,000 cost in June to repair design

• $500,000,000 loss in December in profits to replace bad parts

• How much to repair Intel’s reputation?

° What is technologists responsibility in disclosing bugs?

° Bits have no inherent meaning: operations determine whether they are
really ASCII characters, integers, floating point numbers

° Divide can use same hardware as multiply: Hi & Lo registers in MIPS

° Floating point basically follows paper and pencil method of scientific
notation using integer algorithms for multiply and divide of significands

° IEEE 754 requires good rounding; special values for NaN, Infinity

