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Review: Summary of Pipelining Basics

° Pipelines pass control information down the pipe just 
as data moves down pipe

° Forwarding/Stalls handled by local control

° Hazards limit performance
• Structural: need more HW resources

• Data: need forwarding, compiler scheduling

• Control: early evaluation & PC, delayed branch, prediction

° Increasing length of pipe increases impact of hazards; 
pipelining helps instruction bandwidth, not latency

° Interrupts, Instruction Set, FP makes pipelining harder

° Compilers reduce cost of data and control hazards
• Load delay slots

• Branch delay slots

• Branch prediction
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Recap: Pipeline Hazards

I-Fet ch        DCD   MemOpFetch   OpFetch     Exec     Store

IFetch               DCD     ° ° °
Structural
Hazard

I-Fet ch        DCD      OpFetch    Jump

IFetch               DCD     ° ° °

Control Hazard

  IF       DCD   EX     Mem  WB

  IF                  DCD                                     OF     Ex      Mem

RAW (read after write) Data Hazard

WAW Data Hazard
 (write after write) 

  IF       DCD   OF     Ex       RS WAR Data Hazard
 (write after read) 

  IF      DCD   EX         Mem                      WB

  IF       DCD   EX     Mem  WB
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Recap: Data Hazards

° Avoid some “by design”
• eliminate WAR by always fetching operands early (DCD) in pipe

• eleminate WAW by doing all WBs in order (last stage, static)

° Detect and resolve remaining ones
• stall or forward (if possible)

  IF       DCD   EX     Mem  WB

  IF                  DCD                                     OF     Ex      Mem

RAW Data Hazard

WAW Data Hazard

  IF       DCD   OF     Ex       RS RAW Data Hazard

  IF      DCD   EX         Mem                      WB

  IF       DCD   EX     Mem  WB
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Recap: Exception Problem

° Exceptions/Interrupts: 5 instructions executing in 5 stage pipeline
• How to stop the pipeline?
• Restart?
• Who caused the interrupt?

Stage Problem interrupts occurring
IF Page fault on instruction fetch; misaligned memory 

access; memory-protection violation
ID Undefined or illegal opcode
EX Arithmetic exception
MEM Page fault on data fetch; misaligned memory 

access; memory-protection violation; memory error
° Load with data page fault, Add with instruction page fault?
° Solution 1: interrupt vector/instruction, check last stage
° Solution 2: interrupt ASAP, restart everything incomplete
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° The Five Classic Components of a Computer

° Today’s Topics: 
• Recap last lecture

• Review MIPS R3000 pipeline

• Administrivia

• Advanced Pipelining

• SuperScalar, VLIW/EPIC

The Big Picture: Where are We Now? 

Control

Datapath

Memory

Processor

Input

Output
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FYI: MIPS R3000 clocking discipline

° 2-phase non-overlapping clocks

° Pipeline stage is two (level sensitive) latches

phi1

phi2

phi1 phi1phi2
Edge-triggered
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MIPS R3000 Instruction Pipeline

Inst Fetch Decode
Reg. Read

ALU  /  E.A Memory Write Reg

 TLB           I-Cache      RF          Operation                             WB

 E.A.      TLB        D-Cache

TLB

I-cache

RF

ALUALU

TLB

D-Cache

WB

Resource Usage

Write in phase 1, read in phase 2 => eliminates bypass from WB
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Recall: Data Hazard on r1

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

With MIPS R3000 pipeline, no need to forward from WB stage
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MIPS R3000 Multicycle Operations

Ex: Multiply, Divide, Cache Miss

Stall all stages above multicycle
operation in the pipeline

Drain (bubble) stages below it

Use control word of local stage
state to step through multicycle
operation

A B

op Rd Ra Rb

mul Rd Ra Rb

 Rd 

to reg
file

R

T Rd 
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Getting CPI < 1: Issuing Multiple Instructions/Cycle

° Two main variations: Superscalar and VLIW

° Superscalar: varying no. instructions/cycle (1 to 6)
• Parallelism and dependencies determined/resolved by HW

• IBM PowerPC 604, Sun UltraSparc, DEC Alpha 21164, HP 7100

° Very Long Instruction Words (VLIW): fixed number of 
instructions (16) parallelism determined by compiler

• Pipeline is exposed; compiler must schedule delays to get right result

° Explicit Parallel Instruction Computer (EPIC)/ Intel
• 128 bit packets containing 3 instructions (can execute sequentially)

• Can link 128 bit packets together to allow more parallelism

• Compiler determines parallelism, 
HW checks dependencies and fowards/stalls
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Getting CPI < 1: Issuing Multiple Instructions/Cycle

° Superscalar DLX: 2 instructions, 1 FP & 1 anything else
– Fetch 64-bits/clock cycle; Int on left, FP on right

– Can only issue 2nd instruction if 1st instruction issues

– More ports for FP registers to do FP load & FP op in a pair

Type PipeStages

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

Int. instruction IF ID EX MEM WB

FP instruction IF ID EX MEM WB

°  1 cycle load delay expands to 3 instructions in SS
• instruction in right half can’t use it, nor instructions in next slot
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Unrolled Loop that Minimizes Stalls for Scalar

1 Loop: LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

LD to ADDD: 1 Cycle
ADDD to SD: 2 Cycles
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Loop Unrolling in Superscalar

Integer instruction FP instruction Clock cycle

Loop: LD    F0,0(R1) 1

LD    F6,-8(R1) 2

LD    F10,-16(R1) ADDD F4,F0,F2 3

LD    F14,-24(R1) ADDD F8,F6,F2 4

LD    F18,-32(R1) ADDD F12,F10,F2 5

SD    0(R1),F4 ADDD F16,F14,F2 6

SD    -8(R1),F8 ADDD F20,F18,F2 7

SD    -16(R1),F12 8

SD    -24(R1),F16 9

SUBI   R1,R1,#40 10

BNEZ  R1,LOOP 11

SD    -32(R1),F20 12

° Unrolled 5 times to avoid delays (+1 due to SS)

° 12 clocks, or 2.4 clocks per iteration



cs 152  L1 5 .15 DAP Fa97,  U.CB

Software Pipelining

° Observation: if iterations from loops are independent, 
then can get ILP by taking instructions from different 
iterations

° Software pipelining: reorganizes loops so that each 
iteration is made from instructions chosen from different 
iterations of the original loop (≈ Tomasulo in SW)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration
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Software Pipelining Example

Before: Unrolled 3 times
 1 LD F0,0(R1)
 2 ADDD F4,F0,F2
 3 SD 0(R1),F4 
 4 LD F6,-8(R1)
 5 ADDD F8,F6,F2
 6 SD -8(R1),F8 
 7 LD F10,-16(R1)
 8 ADDD F12,F10,F2
 9 SD -16(R1),F12
 10 SUBI R1,R1,#24
 11 BNEZ R1,LOOP

After: Software Pipelined
 1 SD 0(R1),F4 ; Stores M[i]
 2 ADDD F4,F0,F2 ; Adds to M[i-1]
 3 LD F0,-16(R1);Loads M[i-2]
 4 SUBI R1,R1,#8
 5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
–  Less code space
–  Fill & drain pipe only once
     vs. each iteration in loop unrolling
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Administrative Issues

°Schedule Ahead

°Sign up IEEE/computer society: 
www.computer.org

8
M T W T F M T W T F M T W T F M T W T F M T W T F M T W T F M T W T F M T W T F

9 10 11 12 13 14 15

final
report

proj
present

pipeline (5) cache(6) xtra & writeup

midterm

M T W T F

16

last lecture
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Limits of Superscalar

° While Integer/FP split is simple for the HW, get CPI of 
0.5 only for programs with:

• Exactly 50% FP operations

• No hazards

° If more instructions issue at same time, greater 
difficulty of decode and issue

• Even 2-scalar => examine 2 opcodes, 6 register specifiers, & decide if 
1 or 2 instructions can issue

° VLIW: tradeoff instruction space for simple decoding
• The long instruction word has room for many operations

• By definition, all the operations the compiler puts in the long 
instruction word can execute in parallel

• E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

- 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

• Need compiling technique that schedules across several branches
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Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1  op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 7

SD -32(R1),F20 SD -40(R1),F24 SUBI  R1,R1,#48 8

SD -0(R1),F28 BNEZ R1,LOOP 9

  Unrolled 7 times to avoid delays

  7 results in 9 clocks, or 1.3 clocks per iteration

  Need more registers in VLIW(EPIC => 128int + 128FP)
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Trace Scheduling

° Parallelism across IF branches vs. LOOP branches

° Two steps:
• Trace Selection

- Find likely sequence of basic blocks (trace) of (statically 
predicted) long sequence of straight-line code

• Trace Compaction

- Squeeze trace into few VLIW instructions

- Need bookkeeping code in case prediction is wrong 
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HW Schemes: Instruction Parallelism

° Why in HW at run time?
• Works when can’t know real dependence at compile time

• Compiler simpler

• Code for one machine runs well on another

° Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F12,F8,F14

• Enables out-of-order execution => out-of-order completion

• ID stage checked both for structural & data dependencies
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HW Schemes: Instruction Parallelism

° Out-of-order execution divides ID stage:
1. Issue—decode instructions, check for structural hazards

2. Read operands—wait until no data hazards, then read operands

° Scoreboards allow instruction to execute whenever 1 
& 2 hold, not waiting for prior instructions

° CDC 6600: In order issue, out of order execution, out 
of order commit ( also called completion)
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Scoreboard Implications

° Out-of-order completion => WAR, WAW hazards?

° Solutions for WAR
• Queue both the operation and copies of its operands

• Read registers only during Read Operands stage

° For WAW, must detect hazard: stall until other 
completes

° Need to have multiple instructions in execution phase 
=> multiple execution units or pipelined execution 
units

° Scoreboard keeps track of dependencies, state or 
operations

° Scoreboard replaces ID, EX, WB with 4 stages
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Iteration Instructions Issues Executes Writes result

no.                                    clock-cycle number

1 LD   F0,0(R1) 1 2 4

1 ADDD F4,F0,F2 1 5 8

1 SD   0(R1),F4 2 9

1 SUBI  R1,R1,#8 3 4 5

1 BNEZ R1,LOOP 4 5

2 LD   F0,0(R1) 5 6 8

2 ADDD F4,F0,F2 5 9 12

2 SD   0(R1),F4 6 13

2 SUBI  R1,R1,#8 7 8 9

2 BNEZ R1,LOOP 8 9

≈ 4 clocks per iteration

Branches, Decrements still take 1 clock cycle

Performance of Dynamic SS
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Dynamic Branch Prediction

° Solution: 2-bit scheme where change prediction 
only if get misprediction twice

T

T

T

T

NT

NT

NT

NT

Predict Taken

Predict Not 
Taken

Predict Taken

Predict Not 
Taken
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BHT Accuracy

° Mispredict because either:
• Wrong guess for that branch

• Got branch history of wrong branch when index the table

° 4096 entry table  programs vary from 1% 
misprediction (nasa7, tomcatv) to 18% (eqntott), 
with spice at 9% and gcc at 12%

° 4096 about as good as infinite table, but 4096 is a 
lot of HW
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Need Address @ Same Time as Prediction

° Branch Target Buffer (BTB): Address of branch index to 
get prediction AND branch address (if taken)

• Note: must check for branch match now, since can’t use wrong branch 
address

° Return instruction addresses predicted with stack

Predicted PC
Branch Prediction:
Taken or not Taken
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Dynamic Branch Prediction Summary

° Branch History Table: 2 bits for loop accuracy

° Branch Target Buffer: include branch address & 
prediction
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HW support for More ILP

° Avoid branch prediction by turning branches into 
conditionally executed instructions:

 if (x) then A = B op C else NOP
• If false, then neither store result nor cause exception

• Expanded ISA of Alpha, MIPS, PowerPC, SPARC have 
conditional move; PA-RISC can annul any following instr.

• EPIC: 64 1-bit condition fields selected so conditional execution

° Drawbacks to conditional instructions
• Still takes a clock even if “annulled”

• Stall if condition evaluated late

• Complex conditions reduce effectiveness; 
condition becomes known late in pipeline
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HW support for More ILP

° Speculation: allow an instruction to issue that is 
dependent on branch predicted to be taken without 
any consequences (including exceptions) if branch 
is not actually taken (“HW undo”)

° Often try to combine with dynamic scheduling

° Separate speculative bypassing of results from real 
bypassing of results

• When instruction no longer speculative, 
write results (instruction commit)

• execute out-of-order but commit in order
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HW support for More ILP

° Need HW buffer for results of 
uncommitted instructions: 
reorder buffer

• Reorder buffer can be operand 
source

• Once operand commits, result is 
found in register

• 3 fields: instr. type, destination, value

• Use reorder buffer number instead 
of reservation station

• Instructionscommit in order

• As a result, its easy to undo 
speculated instructions on 
mispredicted branches or on 
exceptions

Reorder
Buffer

FP Regs

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations
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Dynamic Scheduling in PowerPC 604 and Pentium Pro

° Both In-order Issue, Out-of-order execution, In-
order Commit

PPro central reservation station for any 
functional units with one bus shared by a 
branch and an integer unit
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Dynamic Scheduling in PowerPC 604 and Pentium Pro

Parameter PPC PPro

Max. instructions issued/clock 4 3

Max. instr. complete exec./clock 6 5

Max. instr. commited/clock 6 3

Instructions in reorder buffer 16 40

Number of rename buffers 12 Int/8 FP 40

Number of reservations stations 12 20

No. integer functional units (FUs) 2 2
No. floating point FUs 1 1 
No. branch FUs 1 1 
No. complex integer FUs 1 0
No. memory FUs 1 1 load +1 store
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Dynamic Scheduling in Pentium Pro

° PPro doesn’t pipeline 80x86 instructions

° PPro decode unit translates the Intel instructions into 
72-bit micro-operations (≈ MIPS)

° Sends micro-operations to reorder buffer & reservation 
stations

° Takes 1 clock cycle to determine length of 80x86 
instructions + 2 more to create the micro-operations

° Most instructions translate to 1 to 4 micro-operations

° Complex 80x86 instructions are executed by a 
conventional microprogram (8K x 72 bits) that issues 
long sequences of micro-operations
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Limits to Multi-Issue Machines

° Inherent limitations of ILP
• 1 branch in 5: How to keep a  5-way VLIW busy?

• Latencies of units: many operations must be scheduled

• Need about Pipeline Depth x No. Functional Units of independent 
operations to keep machines busy

° Difficulties in building HW
• Duplicate FUs to get parallel execution

• Increase ports to Register File 

- VLIW example needs 7 read and 3 write for Int. Reg. 
& 5 read and 3 write for FP reg

• Increase ports to memory

• Decoding SS and impact on clock rate, pipeline depth
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Limits to Multi-Issue Machines

° Limitations specific to either SS or VLIW 
implementation

• Decode issue in SS

• VLIW code size:  unroll loops + wasted fields in VLIW

• VLIW lock step => 1 hazard & all instructions stall

• VLIW & binary compatibility is practical weakness
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° 8-scalar IBM Power-2 @ 71.5 MHz (5 stage pipe) 
vs. 2-scalar Alpha @ 200 MHz (7 stage pipe)

Braniac vs. Speed Demon

Benchmark
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3 Recent Machines

Alpha 21164 Pentium II HP PA-8000

Year 1995 1996 1996

Clock 600 MHz (‘97) 300 MHz (‘97) 236 MHz (‘97)

Cache 8K/8K/96K/2M 16K/16K/0.5M 0/0/4M

Issue rate 2int+2FP 3 instr (x86) 4 instr 

Pipe stages 7-9 12-14 7-9

Out-of-Order 6 loads 40 instr (µop) 56 instr

Rename regs none 40 56
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SPECint95base Performance (Oct. 1997)
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SPECfp95base Performance (Oct. 1997)
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Summary

° MIPS I instruction set architecture made pipeline visible 
(delayed branch, delayed load)

° More performance from deeper pipelines, parallelism

° Superscalar and VLIW
• CPI < 1

• Dynamic issue vs. Static issue

• More instructions issue at same time, larger the penalty of hazards

° SW Pipelining
• Symbolic Loop Unrolling to get most from pipeline with little code 

expansion, little overhead


