Understanding the |A-64
Architecture

Gautam Doshi

Senior Architect

|A-64 Processor Division
Intel Corporation

August 31,99 - September 2,99

Intel

Agenda

eToday’s Architecture Challenges

e |A-64 Architecture Performance Features
eHigh-end Application Characteristics
eEnd User Benefits of |IA-64 Features

The Context

e Programmer programs in high level lang.
e Compiler compiles program to machine inst.
e Machine executes these instructions

eHigh Level Lang = Programmer's vocabulary

elnst. Set Arch = Compiler’s “vocabulary”

m Architecture determines what the compiler can “express”
m Architecture determines what the machine must “execute”

Architecture : the compiler’'s “vocabulary”

Today’s Architecture
Challenges

e Sequential Semantics of the ISA

elLow Instruction Level Parallelism (ILP)
eUnpredictable Branches, Mem dependencies
eEver Increasing Memory Latency

eLimited Resources (registers, memory addr)
eProcedure call, Loop pipelining Overhead

Fundamental challenges abound

Today’s Architecture Challenges

Seguential Semantics

Program = Sequence of instructions

mplied order of instruction execution
Potential dependence from inst. to inst.

But ...

High performance needs parallel execution
Parallel execution needs independent insts.
ndependent insts must be (re)discovered

Sequentiality inherent in traditional archs

Today’s Architecture Challenges

Seguential Semantics ...

addrl=r2,r3 addrl=r2,r3
subrd=rl,r2 subr4d=ril,r2

shlr5=r4,r8 shlr5=r14, r8

e Compiler knows the available parallelism
= but has no “vocabulary” to express it

e Hardware must (re)discover parallelism

Complex hardware needed to (re)extract ILP

Today’s Architecture Challenges

| ow Inst. Level Parallelism

eBranches: Frequent, Code blocks: Small
eLimited parallelism within code basic blocks
e\Wider machines need more parallel insts.
eNeed to exploit ILP across branches

eBut some instructions can fault !

eBranches are a barrier to code motion

Limited ILP available within basic blocks

. Intel
mteI@
Labs

Today’s Architecture Challenges

Branch Unpredictability

eBranches alter the “sequence” of insts.
elLP must be extracted across branches

eBranch prediction has its limitations
¢ Not perfect, performance penalty when wrong

¢ Need to speculatively execute insts that can fault
= memory operations (loads), floating-point operations, ...

¢Need to defer exceptions on speculative operations
= more book keeping overhead hardware

Branches make extracting ILP difficult

Today’s Architecture Challenges

Memory Dependencies

el oads usually at the top of a chain of insts.
e |LP extraction requires moving these loads
eBranches abound and are a barrier

e Stores abound and are also a barrier
m programming paradigm: Pointers can point anywhere!

e Dynamic disambiguation has its limitations

= limited In its scope, requires additional hardware
m adds to code size increase, If done In software

Memory dependencies further limit ILP

Today’s Architecture Challenges

Memory Latency

e Has been increasing over time
e Need to distance loads from their uses
eBranches and Stores are barriers

e Cache hierarchy has its limitations
¢ Typically small, so limited working set
¢ Consumes precious silicon area
¢ Helps if there is locality. Hinders, otherwise.
¢Managed asynchronously by hardware

Increasing latency exacerbates ILP need

Today’s Architecture Challenges

Resource Constraints

eSmall Register Space

= Limits compilers ability to “express” parallelism
m Creates false dependencies (overcome by renaming)

e Shared Resources

= Condition flags, Control registers, etc.
m Forces dependencies on otherwise independent insts

e Floating-Point Resources

= Limited performance even in ILP rich applications
m Data parallel applications need flexible resources

Limited Resources: a fundamental constraint

Today’s Architecture Challenges

Procedure Call Overhead

e Modular programming increasingly used
¢ Programs tend to be call intensive

eRegister space is shared by caller and callee
e Call/Returns require register save/restores

e Software convention has its limitations
¢ Parameter passing limited
¢ Extra saves/restores when not needed

Shared resources create more overhead

Today’s Architecture Challenges

Loop Optimization Overhead

elLoops are a common source of good ILP
eUnrolling/Pipelining exploit this ILP
ePrologue/Epilogue cause code expansion
eUnrolling causes more code expansion
eLimits the applicability of these techniques

Loop ILP extraction costs code size

Intel

Labs

Today’s Architecture Challenges

e Complex conditionals
m sequential branch execution increases critical path

e Dynamic resource binding
m parallel insts need to be reorganized to fit machine capability

e (Lack of) Domain specific support

= Multimedia: operations repertoire, efficient data-types, ...
= Floating-point: standard compliant, accuracy, speed, ...

And the challenges continue ...

Architecture Challenges

¢ Sequentiality inherent in traditional architectures
¢ Complex hardware needed to (re)extract ILP

¢ Limited ILP available within basic blocks

¢ Branches make extracting ILP difficult

¢ Memory dependencies further limit ILP

¢ Increasing latency exacerbates ILP need
¢Limited resources : A fundamental constraint

¢ Shared resources create more overhead

¢Loop ILP extraction costs code size

¢And the challenges continue ...

|A-64 overcomes these challenges!

Agenda

>|A-64 Architecture Performance Features
eHigh-end Application Characteristics
e End User Benefits of IA-64 Features

|A-64 Architecture Performance
Features

elt’s all about Parallelism !

¢ Enabling it

¢Enhancing it

¢ EXxpressing it

¢ EXxploiting it
... at the proc./thread level for programmer
... at the instruction level for compiler

Enable, Enhance, Express, Exploit - Parallelism

|A-64 Architecture Performance
Features

e Explicitly Parallel Instruction Semantics
ePredication and Control/Data Speculation
e Massive, Massive Resources (regs, mem)
eRegister Stack and its Engine (RSE)

e Memory hierarchy management support
e Software Pipelining Support

Challenges addressed from the ground up

|A-64 Architecture Performance Features

Explicitly Parallel Semantics

eProgram = Sequence of Parallel Inst. Groups

eImplied order of instruction groups

e NO dependence between insts. within group
SO ...

High performance needs parallel execution
Parallel execution needs independent insts.
ndependent instructions explicitly indicated

Parallelism inherent in I1A-64 architecture

|A-64 Architecture Performance Features

Explicitly Parallel Semantics ...

addrl=r2,r3 addrl=r2,r3 ,:
subrd=rl,r2 :: subrd4d=ril,r2
shlr5=r4,r8 shlr5=r14, r8

e Compiler knows the available parallelism
= and now HAS the “vocabulary” to express it - STOPS (;;)

e Hardware easily exploits the parallelism

Frees up hardware for parallel execution

Architecture Challenges

N
elLow Instruction Level Parallelism (ILP)
eUnpredictable Branches, Mem dependencies
eEver Increasing Memory Latency

eLimited Resources (registers, memory addr)
eProcedure call, Loop pipelining Overhead

|A-64 EPIC ISA : Sequential--, Parallel++

|A-64 Architecture Performance Features

Predication

Traditional Arch
[cmp___]

br —

|

| |

| |
— |

I

I

—
|

| —

e Control flow to Data flow

Predication removes/reduces branches

|A-64 Architecture Performance Features

Predication ...

eUnpredictable branches removed
= Misprediction penalties eliminated

eBasic block size increases
m Compiler has a larger scope to find ILP

e |LP within the basic block increases
= Both “then” and “else” executed in parallel

e\Wider machines are better utilized

Predication enables and enhances ILP

inte|® Intel

Labs

Architecture Challenges

Mem dependencies
eEver Increasing Memory Latency
eLimited Resources (registers, memory addr)
eProcedure call, Loop pipelining Overhead

|A-64 Predication: ILP++, Branches--

|A-64 Architecture Performance Features

Control Speculation

Traditional Arch

S

[NSUIRZ Load moved

Of above branch
by compiler

|A-64 Architecture Performance Features

Control Speculation ...

Uses moved |
above branch Recovery code
by compiler

Architecture Challenges

Mem dependencies
N
eLimited Resources (registers, memory addr)
eProcedure call, Loop pipelining Overhead

|A-64 Control Speculation: ILP++, Latency impact--

|A-64 Architecture Performance Features

Data Speculation

Load moved
above store
by compiler

|A-64 Architecture Performance Features

Data Speculation ...

Uses moved
above store = Recovery code
by compiler

Architecture Challenges

9
eLimited Resources (registers, memory addr)
eProcedure call, Loop pipelining Overhead

|A-64 Data Speculation: ILP++, Latency impact--

|A-64 Architecture Performance Features

Massive Execution Resources

Floating -Point Branch Predicate

, Registers Registers Registers
bit O

| e
cr1ll FRL .

|
w1l I -1
GR3z2l] FR32
|

Integer Registers

PR15
PR16 |
|

|
|
cr127ll =127 Pre3 [

NaT l 32 Static . 32 Static 16 Static .

D96 Stacked, Rotating l 96 Rotating 48 Rotating .

An abundance of machine resources

|A-64 Architecture Performance Features

Massive Memory Resources

¢18 BILLION Giga Bytes accessible
m 2°64 == 18,446,744,073,709,551,616

eBoth 64-bit and 32-bit pointers supported
eBoth Little and Big Endian Order supported

An abundance of memory resources

Architecture Challenges

eProcedure call, Loop pipelining Overhead

|A-64 Resources: Aid “explicit” parallelism

|A-64 Architecture Performance Features

Register Stack

e GR Stack reduces need for
save/restore across calls

e Procedure stack frame of
programmable size (O to 96
regs)

e Mechanism implemented by
renaming register addresses

Distinct resources reduce overhead

- Intel
intel T \Labs,

|A-64 Architecture Performance Features

Register Stack
32+sofB-1!

32+s0IB-1
Virtual

32+sofA-1
Outputs Outputs

32+solA-1 32+solA-1

RETURN
ﬁ

ﬁ q
32
31- 31-)
0 0
A before B immediately
Call to B after Call from A Return from B

B after Alloc A after

Frame overlap eases parameter passing

|A-64 Architecture Performance Features

Register Stack Engine (RSE)

e Automatically saves/restores stack

registers without software intervention

m Provides the illusion of infinite physical registers
—by mapping to a stack of physical registers in memory
m Overflow: Alloc needs more registers than available
m Underflow: Return needs to restore frame saved in memory

e RSE may be designed to utilize unused
memory bandwidth to perform register
spill and fill operations in the background

RSE eliminates stack management overhead

Architecture Challenges

Loop pipelining Overhead

|A-64 Reg. Stack: Modular program support

|A-64 Architecture Performance Features

Software Pipelining Support

eHigh performance loops
without code size overhead

= No prologue/epilogue
— Register rotation (rrb)
— Predication

— Loop control registers (LC, EC)
— Loop branches (br.ctop, br.wtop)

m Especially valuable for integer loops
with small trip counts

I Whole loop computation in parallel

|A-64 Loop support: ILP+++, Overhead---

Architecture Challenges

|A-64 Loop support: Perf. w/o code overhead

|A-64 Architecture Performance Features

Floating-Point Architecture

eFused Multiply Add Operation

= An efficient core computation unit

e Abundant Register resources
m 128 registers (32 static, 96 rotating)

eHigh Precision Data computations
m 82-bit unified internal format for all data types

e Software divide/square-root
= High throughput achieved via pipelining

|A-64 FP: High performance and high precision

|A-64 Architecture Performance Features

Example: Software divide

e2 dimensional Hydro-dynamics kernel
¢Livermore FORTRAN Kernel #18

eScaling - acommon operation

DO 70 k= 2, KN
DO 70 j= 2,JN
ZA(j , k) =

/
ZB(), k)= (ZP(] -1, k) +ZQ(] - 1, k) - ZP(] , k) - ZQ] , k))
. *(ZR(j, K)+ZR(j , k-1))/ (ZMj , k) +ZMj - 1, k))
70 CONTI NUE

Several independent iterations containing divide

|A-64 Architecture Performance Features

Example: Software divide

Traditional Arch ZAi = N/ |A-64

Software divide
& breaks a single divide
A, into several FMA operations

Slightly greater latency of each
\\ZAZ divide, but much greater
throughput

H/W\\ZA3 Performance scales as machine .
Shidle becomes wider and has more FMA

FMA execution units execution execu_tion
unit unit unit

|A-64 Software divide provides much greater
throughput on FP loops

|A-64 Architecture Performance Features

e Parallel Compares and Multi-way branches
= Control height reduction, branch bandwidth, ...

e Memory Hierarchy Control
= Allocation, De-allocation, Flush, Prefetch (Data/lnst.), ...

e Multimedia Support

m Semantically compatible with Intel's MMX™ technology and
Streaming SIMD Extension instruction technology

eBit/Byte field instructions

= Population count, Extract/Deposit, Leading/Trailing zero
bytes, ...

And the performance features continue ...

|A-64 Architecture Performance
Features

¢ Parallelism - inherent in IA-64 architecture

¢ Frees up hardware for parallel execution

¢ Predication reduces branches, enables/enhances ILP
¢ Control Specn breaks branch barrier, increases ILP

¢ Data Specn breaks data dependences, increases ILP
¢ Control and Data Specn address memory latency
¢|A-64 provides abundant machine & mem resources
¢ Stack/RSE reduces call overhead and management
¢ Loop support yields performance w/o overhead

¢ And the performance features continue ...

Beyond traditional RISC capabilities

And YES ...

The Compiler DOES use these powerful
architecture features to

¢Enable
¢Enhance
¢ EXxpress
¢ Exploit

the Parallelism

Agenda

®

®

>High-End Computing Characteristics
eEnd User Benefits of I1A-64 Features

High-end Computing
Applications

e Commercial Computing e Technical Computing

¢ Decision Support Systems ¢ Elect./Mech. Design Automation
m In Memory Databases, Data m Modeling/Simulation/FEA
Warehousing, Data Mining # Digital Content Creation
¢ E-Business = Video editing, 3D Rendering

- Aunzndcetion, Seourdly « Scientific / Financial Analysis
Transaction processing _) _
m Siesmic/Weather analysis

|A-64 designed for high-end workloads

High-End Computing Characteristics

Server Applications

e Huge Data working set

el arge Instruction foot-print

e Control intensive, non-loopy integer code
elrregular data access patterns

e Traditionally difficult to extract ILP
elarge number of users/clients supported
e Throughput dominated requirements

|A-64 for High Performance
Databases

eNumber of branches in large server apps
overwhelm traditional processors
= |A-64 predication removes branches, avoids mis-predicts

eEnvironments with a large number of users

need large systems for high performance
= |A-64 data/control speculation reduces impact of long
memory latency

= |A-64 64-bit addressing enables systems with very large
virtual and physical memory

JA-64 for ERP Applications

e Applications are control intensive integer
codes with many small loops

= |A-64 Rotating registers enable efficient loop execution
= |A-64 Register resources provide for optimized performance

e Applications are modular and result in
significant dynamic call/return
m |A-64 Register stack ideally suited for call-intensive code

|A-64 provides optimizations for
a diverse set of application requirements

|A-64 for E-business
Applications

e Security Is at the heart of E-business

e Applications are compute bound and perf is
limited by branch mispredicts, ambiguous
memory dependencies and large integer

multiply rates

= |A-64 Predication reduces branches, especially unpredictable
ones (hence mispredicts)

= |A-64 Data speculation (Id.c, ALAT, etc) support aggressive
software optimizations in presence of ambiguous memory
dependencies

= |A-64 64-bit integer multiply boosts security algorithms

Intel
Labs

|A-64 for E-Business
Applications

Achieved thru
64-bit Integer

RSA Algorithm Multiply-Add
Estimated Performance*

Pentium® I Future IA-32 ltanium ™
Processor Processor Processor

|A-64 delivers secure transactions to more users

* All third party marks, brands, and names are the property of their respective owners

JA64 for Java Applications

eJava has more method invocations than
C/C++ function calls
m |A-64 register stack engine saves spill/fill time
= |A-64 calling convention with more registers helps it

eJava has smaller basic blocks in methods

= |A-64 Predication removes branches increasing basic blocks

= |A-64 Control speculation enables code motion further
Increasing basic block size

= |A-64 Predication+Speculation increase parallelism

* All third party marks, brands, and names are the property of their respective owners

JA64 for Java Applications ...

e\Write barrier is performance bottleneck in
garbage collection (widely used in Java)

= |A-64 can reserve more registers and employ predication to
reduce write barrier overhead

e Java requires exception handling
functionality
= |A-64 recovery code mechanism is very well suited for it

e Jini servers requires large “name space”
= |A-64 has large 64-bit address space

* All third party marks, brands, and names are the property of their respective owners

High-End Computing Characteristics

Workstation Applications

el arge Data working set

e Small Instruction foot-print

e Compute intensive, loopy FP code

e [raditionally easy to extract ILP
eRegular data access patterns

eSmall number of users/clients supported
e atency dominated requirements

|JA-64 for Technical/Scientific
Applications

e Applications demand HIGH performance
Floating-Point computations

= |A-64 FP Multiply-Add - a very efficient core computation that
maps well into common algorithms

= |A-64 FP register resources enable sufficient parallel
expression/execution

= |A-64 FP div/sgrt provide high throughput via pipelining

= |A-64 82-bit FP provides much higher precision & range
— Computations incur a smaller rounding error
— Iterative calculations converge faster
— Can handle much larger numbers than RISC w/o overflow

|A-64 FP designed for high performance

High-End Computing

|JA-64 for Technical/Scientific
Applications

e Applications are often loop intensive but
have scalar components as well

= |A-64 Software pipelining support optimizes loop structures

= |A-64 Predication and Speculation support addresses scalar
portions of FP applications

= |IA-64 NaT Value and Alternate IEEE flag sets enable FP
speculations to propagate deferred exceptions and maintain
IEEE flags

|A-64 optimizes both loopy and scalar FP code

High-End Computing

|JA-64 for Technical/Scientific
Applications

e Applications have predictable access
patterns and demand large fast memory
subsystems

= |IA-64 Load pair doubles the cache-register bandwidth

= |A-64 Data pre-fetching support allows for fast access of
critical information reducing memory latency impact

= |A-64 Cache allocation support enables optimal management
of the precious cache hierarchy

|A-64 reduces the memory bottleneck

High-End Computing

JA-64 for Graphics Applications

e Geometry calculations (transforms and
lighting) use 32-bit FP numbers

= |A-64 Parallel FP data type (2 SP values) configures
registers for maximum 32-bit floating-point performance

= |A-64 Software FP divide/square-root allow speed/accuracy
tradeoffs not otherwise enabled by hardware equivalents

= |A-64 support for Intel’'s Streaming SIMD Extensions (SSE™)
Instructions preserves software investments

|A-64 enables world-class GFLOP performance

High-End Computing

|A-64 for Streaming Media
Applications

e Audio/Video functions, [De]Compression
perform the same operation on arrays of
data values

= |A-64 Parallel integer and FP data type support enable
executing these functions efficiently

— Integer Registers. 8x8, 4x16, or 2x32 bit elements
— FPregisters. 2x32, 1x64 bit elements

= |A-64 Multimedia operands/results reside in general registers

= |A-64 provides semantic equivalence with Intel’'s MMX™
technology and Streaming SIMD Extension (SSE™)
Instructions

|A-64 enables fast streaming media operations

>End User Benefits of IA-64 Features

|A-64/ ltanium™ Features

Explicit Parallelism :
compiler / hardware synergy

Predication/Speculation:
predicates, parallel compares,
speculative insts and checks

Register Model :

Function

Enables compiler to “express”

parallelism, hardware to “exploit” it

Enhances ILP by overcoming
traditional barriers (branches/
stores), hides memory latency

Benefits

» Maximizes headroom for the

future

» Achieves higher performance

where traditional architectures
can’t

World-class performance for

Able to optimize for scalar and
object oriented applications

large register file, rotating registers, complex applications

register stack engine

Enables more complex
scientific analysis & Faster
DCC/rendering

High performance 3D graphics and
scientific analysis

Floating Point Architecture : extended
precision,128 regs FMAC, SIMD

Multimedia Architecture :
parallel arithmetic, parallel shift, data
arrangement instructions

Efficient delivery of rich Web
content

Improves calculation throughput for
multimedia data

Increased architecture &
system scalability

Manages large amounts of memory,
efficiently organizes data from / to
memory

Memory Management :
64-bit addressing, speculation,
memory hierarchy control

Preserves investment in
existing software

Compatibility : Existing software runs seamlessly
full binary compatibility with existing

IA-32 in hardware

JA-64 Roadmap

A

You are HERE!

[tanitim i

D
(&)
C
(qv)
=
—
@)
Y
-
@
al

Foster

Pentium®Ill Xeon

Pentitm® (I Xeon ™
Processor

>
‘98 '99 ‘00 01 ‘02 03

|A-64 Starts with Itanium™ processor!

. Intel
InQﬂ®
Labs

All dates specified are target dates provided for planning purposes only and are subject to change.

Collateral

o |A-64

Application Developer’s Architecture Guide

= Application instructions and machine code

= Application programming model

= Unique architecture features & enhancements

m Features and benefits for key applications

m Insight into techniques for optimizing 1A-64 solutions

e Download from:

m http://developer.intel.com/design/ia64/index.htm
= Also on your CD!

Call to Action

e“Know” the IA-64 architecture features
o“See” the IA-64 performance advantage
e Start working on I1A-64 readiness NOW!

I T
canTam E—— .

)
&)
C
©
=
| -
@)
Y
S
(V)
al

~ Pentium®lll Xeon ™Proc.
Pentium® |l Xeon™

Processor

'99

