New Challenges

In Microarchitecture and Compiler
Design

Fred Pollack
Intel Fellow
Director of Microprocessor Research Labs
Contributors: Intel Corporation

Jesse Fang fred.pollack@intel.com
Tin-Fook Ngai

Moore’s Law

Transistors

108
10/
106
10°
104
103
102
101
109

Per Die

4 ® Memory
Microprocessor

=

i488TM Pentium®

256M

PEntium®

D)
5 Pentium®l
Pentium® Pro

- 1386 ™

- /

14004 8080

70 73 76 79 '82 '85 '88 '91 '94 ‘97 2000
Source: Intel

2

Moore’'s Law

e The number of transistors on a chip will double
every generation (18-24 months)
— 2,300 transistors on the 4004 in 1971

— About 120 million transistors on the Pentium® Ill Xeon
processor in 2000

— An increase of 50000x in 29 years

Performance Doubles
Every 18 Months

100X Increase in last 10 years
— Intel 486 processor at 33Mhz in 1990
— To the Pentium® 4 processor at 1.5 GHz

Sources of Performance (approximate)

— 20X from Process and Circuit Technology
— 4X from Architecture
— 1.4X from Compiler Technology

Architecture Performance

Microarchitecture
— Deeper Pipelining to increase frequency
— Execution of more instructions in parallel
— On die Caches
System Architecture
— Buses, e.g. 33Mhz 486 bus to 400Mhz Pentium® 4 bus
» 132Mbytes/sec vs. 3.2Gbytes/sec

* On die caches grew from 4Kbytes to as much as 2Mbytes on
the Pentium [Il Xeon™ processor

— Memory Bandwidth

* 66 Mbytes/sec in a 486 system

« 3.2 Ghytes/sec in a Pentium 4 system
— 10 Bandwidth

* 3 Mbytes/sec on an ISA bus

* 1 Ghyte/sec on AGP4X

In the Last 25 Years Life was Easy

Doubling of transistor density every 30 months

Increasing die sizes, allowed by
— Increasing Wafer Size

— Process technology moving from “black art” to
“manufacturing science”

P Doubling of transistors every 18 months

And, only constrained by cost & mfg limits

But how efficiently did we use the transistors?

Performance Efficiency of parchitectures

Tech Old nArch mm (linear) New mMArch mm (linear) Area
1.0m i386C 6.5 1486 11.5 3.1
0.7m 1486C 9.5 Pentium® proc 17 3.2
0.5m Pentium® proc 12.2 Pentium Pro proc 17.3 2.1
0.18m Pentium Il proc 10.3 Pentium 4 proc ? 2+

Implications: (in the same technology)
1. New mArch ~ 2-3X die area of the last mArch

2. Provides 1.4-1.7X integer performance of the
last mArch

We are on the Wrong Side of a Square Law

Power density continues to get worse

1000 Sun’s
Surface
Nuclear Reactor < | rocket

100 I Nozzle
i=
L L 4
(72} .
% Pentium Il ® processor
< 10 Pentium Il ® processor

Pentium Pro ® processor
1386 Pentium ® processor
€486
1 .

1.5m 1Im O0.7m 0.5m 0.35m 0.25m 0.18m 0.13m 0.1m 0.07m

Surpassed hot-plate power density in 0.5m
Not too long to reach nuclear reactor
If we continue on the current trend, which we can’t

Implications

« We can’t build microprocessors with ever
Increasing die sizes

« The constraint is power — not manufacturability

« Must use transistors efficiently and target for
valued performance

Microarchitecture Directions

Logic Transistor growth constrained by power — not mfg

— At constant power, 50% per process generation vs. over 200%
In past
Current Directions in microarchitecture that help
— SIMD ISA extensions
— On-die L2 caches
— Multiple CPU cores on die
— Multithreaded CPU

Key Challenges for future Microarchitectures
— Special purpose performance

— Increase execution efficiency: improved prediction and
confidence

— Break the data-flow barrier, but in a power efficient manner

10

Changing Landscape of Computing

Server applications
— Higher throughput demands
— Multithread apps on multiprocessor

Internet applications
— Independent user tasks/threads
— Across internet on different platforms
— Security

Peer-to-peer applications
Pervasive Computing

Move from Machine-based to human-based
Interfaces

11

New Computing Environment

New languages & language support

— Java, C#, XML
— Runtime environment: Virtual Machine
— Portability for data and code

New challenges in the environment
— Driven by run-time program/data
— Multithreaded program execution

12

SW Application Trends

Beyond performance
— Maintainability, Reliability, Availability, Scalability
— Ease of Use

Shorter time-to-market

New software development techniques
— Object oriented
— Software reuse (component based)

Performance without excessive tuning/profiling

13

Opportunity

Break the dataflow barrier by
Increasing the cooperation between
the compiler and microarchitecture
In the execution of the new
computing models

14

New Challenges

Beyond ILP: thread level parallelism
— Thread level parallelism
— Speculative multithreaded microarchitecture

Dynamic compilation and optimization
— Dynamic compilation of ILs for new languages

15

New Challenges

Beyond ILP: thread level parallelism
— Thread level parallelism
— Speculative multithreaded microarchitecture

Dynamic compilation and optimization
— Dynamic compilation of ILs for new languages

16

Thread Level Parallelism

High throughput for multithreaded applications
— Not only for servers but also clients

How to boost single thread application
performance on multithreaded microarchitecture
— Speculation: from instruction level to block level

— Prediction: from branch (control flow) to value (data
flow)

— Locality: from instruction/data to computation
— New optimization techniques to best exploit the above

17

Static ILP is hitting its limit

In-order scheduling microarchitecture with perfect memory

5.0 1
4.0 A

O 30 -

al

= 20 -

1.0 -

0.0IIIIIIIIIIII
1 2 3 4 5 6 7 8 9 10 11 12

Issue Width
Benchmark GCC: Issue Width vs IPC

From Intel Microprocessor Research Labs
18

Speculative Multithreading

An application program is decomposed into
multiple threads

e Call and after-call threads
 Loop iteration threads
 Main and run-ahead threads

)

7 %/ Y
V\ v
sequential/
run-ahead

after call loop body after loop

19

Speculative Multithreading

 With microarchitectural support, the threads
are speculatively executed in parallel
— If correct, increased parallelism

— Otherwise (hopefully only occasionally), squash
the speculative threads and re-execute

 Re-execution is faster due to data prefetching
and early branch resolution by the speculative
execution

20

Thread-Level Parallelism with
Value Prediction

« Some real data dependences between
threads can be removed by correctly
predicting the data value
— Loop induction variables
— Procedure return values
— Variables with almost constant runtime values

« Common value predictors
— Last value predictors
— Stride predictors
— Finite context methods (FCM)

21

Value Prediction Accuracy

percentage _
90- Using a
80- Sridet+ FCM
o predictor
60+
501 Not predicted
40- Incorrect
304 [J Correct
20
107
0

SPECint SPECfp SPEC95

From [Rychlik/Faistl/Krug/Shen98]
22

An Example

A difficult-to-parallelize loop in decompress() from compress:
while (1) {

code = getcode(); I/ get next code

If (code == -1) goto exit; // exit if no more code

It (...){ Il 1f special marker, reset and get next code
free ent=...;
code = getcodeg();
If (code==-1) gotoexit;} // exitif no morecode

Incode = code;

If (code>=free ent) { // for aspecial case, process the last code
*stackp++ = ... ;
code = oldcode; }

while (code >=256) { // lookup code sequence and push onto stack
*stackp++=...; ...; }

do ... while (stackp > base); // pop and output code sequence from stack

if (...) free ent++; //'1f anew code, generate a new table entry

oldcode = incode; } /[update the last code

23

Are these real dependences?

Current iteration

code = gaicodel), — Speculative next iteration
if (code==-1) goto exit; code = getcode();
if (...){ /if(code == -1) goto exit;
free ent = ...; if (...){
code = getcode(); free ent = ...;
if (code==-1 m code = getcode();

incode = code; if (code==-1) goto exit; }
if (code >=free ent){ incode = code;
*stackptt = ...; if (code>=free ent){
code=o0 :

a*stackp% S

while (code >=256) ¥ code = oldcode; }

*stackptt=_.i...; } while (code >= 256) {
do ... while (stackp >); —»stackpt+ = 0 }
T (...) free ent++; do ... while (stackp > base);
oldcode = incode; if (...) free ent++;

oldcode = incode;

24

No real output dependences

Memory output dependences removed by
local speculative stores

Current iteration

006 = geicodel) — Speculative next iteration
If (code==-1) goto exit; code = getcode();
if (...){ /lf(code == -1) goto exit;
free ent = ...; if (...){
code = getcode(); free ent =
If (code == -1§t09§ code = getcode()

incode = code; if (code==-1) goto exit; }
if (code>=free ent){ incode = code;

*stackpt+ = ...; if (code >=free . ent) {

code = oldcode; } *stackp++ =
while (code >= 256) { / code = oldcode, }

*stackpt+ = ...) while (code>=256) {
dO...While(StaCkp> : — *StaCkp++— . }

it (...) free ent++; do ... while (stackp > base);
oldcode = incode; if (...) free ent++;

oldcode = incode;

26

Effective value prediction

Each new iteration begins with
 free_ent increment by one (mostly)
* the same stackp value (always)

Often false

free ent

/ stackp
By (=0 > bas /

f : P —» stackp
ree_en

Current iteration _ , _
Speculative next iteration

code = getcode(); —
If (code == -1) goto exit; code = getcode();
if (...){ if (code == -1) goto exit;
free ent=...; if (...){
code = getcode();\< free ent=...;
| if (code==-1) goto exik code = getcode();
incode = code; if (code==-1) goto exit; }
if (code>=free ent){ incode = code
*stackp++ = ...; if (code>=free ent){
code = oldcode; } *stackp++ = ...
while (code >= 256){ ¥ code = oldcode; }
* stackp++ = o)} while (code >= 256) {
do .. Whlle(stackp> base) / *stackp++=...; ... }
if (...) free_ent++; do ... while (stackp > base);
oldcode = incode; if (...) free ent++;
oldcode = incode;

28

False dependences during runtime

tten.rakse

free ent
getcode

oien=alss
free ent

oldcode
A /

Runtime parallel MT execution

Current iteration

Speculative next iteration

code = getcode(); —
?f (code == -1) goto exit; - code = getcode();
if(..){ if (code == -1) goto exit;
free ent = ...; if (...){
code = getcode(); free ent = ...;
| if (code==-1) goto exit; } code = getcode();
incode = code; if (code == -1) goto exit; }
if (code>=free ent){ incode = code;
*stackp++ = ...; if (code>=free ent){
code = oldcode; } *stackp++ = ...;
while (code >= 256) { code = oldcode; }
* stackp++ = o)} while (code >= 256) {
do .. whlle(stackp> base) *stackp++=...; ... ; }
if (...) free_ent++; do ... while (stackp > base);
oldcode = incode; if (...) free ent++;
oldcode = incode;

New Challenges

Beyond ILP: thread level parallelism
— Thread level parallelism
— Speculative multithreaded microarchitecture

Dynamic compilation and optimization
— Dynamic compilation of ILs for new languages

31

Multithreaded Microarchitectures

 Dedicated local context per running thread

o Efficient resource sharing
— Time sharing
— Space sharing

e Fast thread synchronization/communication
— Explicit instructions
— Implicit via shared registers/cache/buffer

32

Speculation Support

Checkpointing

Runtime dependence checking
— Register data dependence
— Memory store-load dependence

Recovery if misspeculated
— Squash speculative threads and re-execute

Committing speculative results

Speculative MT microarchitecture

Master Thread Speculative Thread
PC PC
Dependence Dependence
Checker Checker
Register .| Register
File Forward File
Result Result
Buffers Buffers
1Commit 1 Speculative
Memory dependency
checking

Procedure Speculation

call thread

r = foo(); after-call
— . _ thread
a— ... , foo: tork a= Specul.ative
execution
return commit
> Speculative
L/ result

Loop Speculation

for (I=0;1<n;1++)

{
}

Iiteration |

fork

Iiteration i+ 1

Iteration 1+ 2

OIT

It

>

speculative
execution

commit

36

Performance Potential in SpecMT

Speedup WIth perfect memory and optimal synchronization

6_

5_

4_

d

SPEC95int

Value Prediction

M Last Value
M Stride Value

Single Multiple Procedures Loops

Level Level
Loops Loops

and
Procedures

From [Oplinger/Heine/Lam99]
37

Challenges in Speculative MT

Speculative thread computation model
Speculative MT microarchitecture support

Extremely low cost thread communication/synchronization
Fast and effective checkpointing

Fast recovery and commit: To squash or to selectively
reexecute

Speculative thread scheduling and throttling
Load balancing
Cache/memory subsystem support

Speculative MT compilation

Dependence analysis for speculative threads
Identification of the most opportunistic threads
Code optimization to minimize misspeculations

New Challenges

Beyond ILP: thread level parallelism
— Thread level parallelism
— Speculative multithreaded microarchitecture

Dynamic compilation and optimization
— Dynamic compilation of ILs for new languages

39

Dynamic Compilation

« Dynamic compilation of ILs for new
languages such as bytecode for Java and
MSIL for C#

 Runtime platform includes
— Runtime environment: Virtual Machine

— Dynamic memory management: Garbage
collection

— Dynamic loading and unloading
— Dynamic optimization: Just-In-Time compiler
— Security: Runtime security check

&

Dynamic Compilation Environment

Sour ce code

: Dynamic loader librarics
o > (Lfile <
s Verification)
¢ ThelL files _
movelocally Intérpreter s Optimal
Static or through or St-In-time _
Compiler inter net Fast JI T compiler Virtual
Machine
¢
IL files
(like Java
bytecode Linux Win/NT Unix
clasgfile)

Hardware

Dynamic Compilation Strategies

Lightweight optimization

— Fast compilation time

— Reasonable good performance
Heavyweight optimization

— Slow compilation time

— Better performance

90-10 rule

— 90% methods: lightweight

— 10% methods: heavyweight
Tradeoff: Compilation time vs code execution
time

42

Execution Time (Second)

JIT Overhead and Performance

80.00

. P11/350MHz

70.00

Fast

60.00

i JIT
App by

50.007]

VM

. fast JIT
|

40.001 (==

Opt JIT

App by
optJIT

gy

SpecJVM98 Benchmarks

Source: Intel/MRL JIT 1999
43

JIT Compiler Infrastructure

Input IL file

Bytecode

Call optimizing JIT

Fast Code Optimizing
Generator Compiler

Unoptimized Optimized
Native Native
Profiling Data

vV
| Counters
Gather profiling info Representation | Execyte optimizing JI Ted code
when execute fast JI Ted code /

Call fast JIT first

Challenges of JIT Compiler

Efficient exception handling

Bounds checking elimination

Efficient synchronization

Efficient support for garbage collection

Effective use of profiling information
— Path profiling
— Reduce profiling overhead

Summary

Moore’s Law is still valid for the next 10+ years

But significant challenges
— Power
— Increasing performance efficiently

Opportunity: Increase cooperation between
compiler and microarchitecture

Efficient JIT and Runtime for intermediate
languages

Move from Instruction-level parallelism to thread-
level parallelism

Microprocessor 2010

At Least 100x Performance of the Pentium® 4
Processor

20 Ghz
Multiple Processors on a Die
Multiple Threads per Processor

Specialized Processors to Accelerate Human-
Interface and Communications

47

Cooperation between Industry & Academia

« Open source is a good way to coordinate
research activities between industry and
academia

— Intel MRL open source Computing Vision Lib
— Intel MRL open source Open Runtime Platform

— Several other Intel open source utilities
http://developer.intel.com/software/opensource

e Check out MRL web pages and Intel tools
and compilers

http://intel.com/research/mrl
http://developer.intel.com/vtune

