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I

Course Introduction
And Overview
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The World Of Computers

d Computers are everywhere

– Cell phones

– Automobiles

– Video games

– Desktops

d Each uses software
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Fundamental Question

Why should someone interested in building software study
computer architecture to learn about the organization of the
underlying hardware?
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Why Study Computer Architecture?

d Makes it possible to write computer programs that are:

– Faster

– Smaller

– Less prone to errors

d Allows programmers to appreciate relative cost of
operations and the effect of programming choices

d Helps programmers debug
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Why Study Computer Architecture?

d Makes it possible to write computer programs that are:

– Faster

– Smaller

– Less prone to errors

d Allows programmers to appreciate relative cost of
operations and the effect of programming choices

d Helps programmers debug

d It’s a required course!

CS250  --  Chapt. 1 4 2006



The Bad News

d Digital hardware

– Is complex

– Cannot be understood in one course

– Requires background in electricity and electronics
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The Good News

d It is possible to understand architectural components without
knowing low-level technical details.

d Programmers only need to know the essentials

– Characteristics of major components

– Role in overall system

– Consequences for programmers
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Organization Of The Course

d Basics

– A taste of digital logic

– Data representations

d Processors

– Types of processors

– Instruction sets and operands

– Assembly languages and programming
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Organization Of The Course
(continued)

d Memory

– Storage mechanisms

– Physical and virtual memories and addressing

– Caching

d Input/Output

– Devices and interfaces

– Buses and bus address spaces

– Role of device drivers
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Organization Of The Course
(continued)

d Advanced topics

– Parallelism and parallel computers

– Pipelining

– Performance and performance assessment

– Architectural hierarchy
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What We Will Not Cover

d We choose breadth over depth

d Omissions

– Low-level engineering details (e.g., discussion of
electrical properties of resistance and the relationship to
voltage and current)

– Quantitative analysis of circuits that an engineer uses to
design hardware

– VLSI chip design
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Computer Architecture

d Refers to overall organization of computer system

d Analogous to blueprint

d Specifies

– Functionality of major components

– Interconnection among components

d Abstracts away details

CS250  --  Chapt. 1 11 2006



Design

d Needed before a computer can be built

d Translates architecture into practice

d Fills in details that architectural specification omits

d Specifies items such as

– How components are grouped onto boards

– How power is distributed to boards

d Many designs can satisfy a given architecture
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Summary

d Understanding architecture helps programmers

d Course covers essentials of computer architecture

– Digital logic

– Processors, memory, I / O

– Advanced topics such as parallelism and pipelining

d We will omit details and focus on concepts
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Questions?



II

Fundamentals
Of

Digital Logic
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Our Goal

d Understand

– Fundamentals and basics

– Concepts

– How computers work at the lowest level

d Avoid whenever possible

– Complexity

– Implementation details

– Engineering design rules
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Electrical Terminology

d Voltage

– Quantifiable property of electricity

– Measure of potential force

– Unit of measure: volt

d Current

– Quantifiable property of electricity

– Measure of electron flow along a path

– Unit of measure: ampere (amp)
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Analog For Electricity

d Voltage is analogous to water pressure

d Current is analogous to flow of water

d Can have

– High pressure with little flow

– Large flow with little pressure
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Voltage

d Device used to measure called voltmeter

d Can only be measured as difference between two points

d To measure voltage

– Assume one point represents zero volts (known as
ground)

– Express voltage of second point wrt ground
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In Practice

d Typical digital circuit operates on five volts

d Two wires connect each chip to power supply

– Ground (zero volts)

– Power (five volts)

d Digital logic diagrams do not usually show power and
ground connections
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Transistor

d Basic building block of digital circuits

d Operates on electrical current

d Acts like a miniature switch — small input current controls
flow of large current

d Three external connections

– Emitter

– Base (control)

– Collector

d Current between base and emitter controls current between
collector and emitter
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Illustration Of A Transistor

B

C

E

small current flows
from here to point E

large current flows
from point C to point E
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Boolean Logic

d Mathematical basis for digital circuits

d Three basic functions: and, or, and not

A B A and B

0

0

1

1

0

1

0

1

0

0

0

1

A B A or B

0

0

1

1

0

1

0

1

0

1

1

1

A not A

0

1

1

0
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Digital Logic

d Can implement Boolean functions with transistors

d Five volts represents Boolean 1

d Zero volts represents Boolean 0
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Transistor Implementing Boolean Not

input

output

+5 volts

0 volts

resistor

d When input is zero volts, output is five volts

d When input is five volts, output is zero volts
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Logic Gate

d Hardware component

d Consists of integrated circuit

d Implements an individual Boolean function

d To reduce complexity, provide inverse of Boolean functions

– Nand gate implements not and

– Nor gate implements not or

– Inverter implements not
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Truth Tables For Nand and Nor Gates

A B A nand B

0

0

1

1

0

1

0

1

1

1

1

0

A B A nor B

0

0

1

1

0

1

0

1

1

0

0

0
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Symbols Used In Schematic Diagrams

nand gate nor gate inverter
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Example Of Internal Gate Structure (Nor Gate)

input 1

input 2

0 volts

output

5 volts

4 k 4 k 1.6 k

1 k

130

diode

d Solid dot indicates electrical connection
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Technology For Logic gates

d Most popular technology known as Transistor-Transistor
Logic (TTL)

d Allows direct interconnection (a wire can connect output
from one gate to input of another)

d Single output can connect to multiple inputs

– Called fanout

– Limited to a small number
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Example Interconnection Of TTL Gates

d Two logic gates needed to form logical and

– Output from nand gate connected to input of inverter

input from
power button

input from
disk

output
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Consider The Following Circuit

X

Y

Z

A
B

C output

d Question: what does the circuit implement?
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Two Ways To Describe Circuit

d Boolean expression

– Often used when designing circuit

– Can be transformed to equivalent version that takes
fewer gates

d Truth table

– Enumerates inputs and outputs

– Often used when debugging a circuit
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Describing A Circuit With Boolean Algebra

X

Y

Z

A
B

C output

d Value at point A is not Y

d Value at B is:

Z nor (not Y)
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Describing A Circuit With Boolean Algebra
(continued)

X

Y

Z

A
B

C output

d Output is:

X and (Z nor (not Y))
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Describing A Circuit With Boolean Algebra
(continued)

X

Y

Z

A
B

C output

d Output is (alternative):

X and not (Z or (not Y))
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Describing A Circuit With A Truth Table
(continued)

X Y Z A B C output
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1

0

1

0

1

1

1

0

0

1

1

0

0

0

0

1

0

0

0

1

0

1

1

1

1

1

1

0

1

0

0

0

0

0

0

1

0

d Table lists all possible inputs and output for each

d Can also state values for intermediate points
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Avoiding Nand / Nor Operations

d Circuits use nand and nor gates

d Sometimes easier for humans to use and and or operations

d Example circuit or truth table output can be described by
Boolean expression:

X and Y and (not Z))
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In Practice

d Only a few connections needed per gate

d Chip has many pins for external connections

d Result: can package multiple gates placed on each chip
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Example Of Logic Gates

d 7400 family of chips

d Package is about one-half inch long

d Implement TTL logic

d Powered by five volts

d Contain multiple gates per chip
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Examples Of Gates On 7400-Series Chips

1 2 3 4 5 6 7

891011121314

1 2 3 4 5 6 7

891011121314

1 2 3 4 5 6 7

891011121314

7400 7402 7404

d Pins 7 and 14 connect to ground and power
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Circuits That Maintain State

d More sophisticated than combinatorial circuits

d Output depends on history of previous input as well as
values on input lines
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Example Of Circuit That Maintains State

d Basic flip-flop

d Analogous to push-button power switch

d Each new 1 received as input causes output to reverse

– First input pulse causes flip-flop to turn on

– Second input pulse causes flip-flop to turn off
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Output Of A Flip-Flop

flip-flop
input output

in:

out:

time increases

0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1

d Note: output only changes when input makes a transition
from zero to one
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Flip-Flop Action Plotted As Transition Diagram

in:

out:

0

1

0

1

time increases

d Output changes on leading edge of input

d Also called rising edge
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Binary Counter

d Counts input pulses

d Output is binary value

d Includes reset line to start count at zero

d Example: 4-bit counter available as single integrated circuit
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Illustration Of Counter

counter

input
outputs

(a)

(b)

input outputs decimal

time
increases

0

0

1

0

1

1

0

1

0

1

0

1

0 0 0

0 0 0

0 0 1

0 0 1

0 1 0

0 1 0

0 1 0

0 1 1

0 1 1

1 0 0

1 0 0

1 0 1

0

0

1

1

2

2

2

3

3

4

4

5

.

.

.
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Clock

d Electronic circuit that pulses regularly

d Measured in cycles per second (Hz)

d Digital output of clock is sequence of 0 1 0 1 ...

d Permits active circuits
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Demultiplexor

d Takes binary value as input

d Uses input to select one output
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Illustration Of Demultiplexor

demultiplexor

x
y
z

inputs

‘‘000’’

‘‘001’’

‘‘010’’

‘‘011’’

‘‘100’’

‘‘101’’

‘‘110’’

‘‘111’’

outputs
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Example Circuit That Executes
A Sequence Of Steps

d Desired sequence

– Test the battery

– Power on and test the memory

– Start the disk spinning

– Power up the monitor

– Read boot sector from disk into memory

– Start the CPU
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Circuit To Execute Sequence

clock
counter

demultiplexor

not used

test battery

test memory

start disk

start monitor

read boot blk

start CPU

not used
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Feedback

d Output of circuit used as an input

d Allows more control

d Example: stop sequence when output F becomes active

d Boolean algebra

CLOCK and (not F)
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Illustration Of Feedback For Termination

demultiplexor

counterclock

not used

test battery

test memory

start disk

start monitor

read boot blk

start CPU

stopfeedback

these two gates perform
the Boolean and function

d Note additional input needed to restart sequence
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Spare Gates

d Note: because chip contains multiple gates, some gates may
be unused

d May be able to substitute spare gates in place of additional
chip

d Example uses spare nand gate as inverter by connecting one
input to five volts:

1 nand x = not x
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Practical Engineering Concerns

d Power consumption (wiring must carry sufficient power)

d Heat dissipation (chips must be kept cool)

d Timing (gates take time to settle after input changes)

d Clock synchronization (clock signal must reach all chips
simultaneously)
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Illustration Of Clock Skew

IC1

IC2

IC3

clock

d Length of wire determines time required for signal to
propagate
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Classification Of Technologies

Name Example Use22222222222222222222222222222222222222222222222222222222222222222222222

Small Scale Integration (SSI) Basic Boolean gates
Medium Scale Integration (MSI) Intermediate logic such as counters
Large Scale Integration (LSI) Small, embedded processors
Very Large Scale Integration (VLSI) Complex processors

CS250  --  Chapt. 2 44 2006



Levels Of Abstraction

Abstraction Implemented With22222222222222222222222222222222222222222222222222222222222

Computer Circuit board(s)
Circuit board Components such as processor and memory
Processor VLSI chip
VLSI chip Many gates
Gate Many transistors
Transistor Semiconductor implemented in silicon
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Summary

d Computer systems are constructed of digital logic circuits

d Fundamental building block is gate

d Digital circuit can be described by

– Boolean algebra (most useful when designing)

– Truth table (most useful when debugging)

d Clock allows active circuit to perform sequence of
operations

d Feedback allows output to control processing

d Practical engineering concerns include

– Power consumption and heat dissipation

– Clock skew and synchronization
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Questions?



III

Data And Program
Representation
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Digital Logic

d Built on two-valued logic system

d Can be interpreted as

– Five volts and zero volts

– High and low

– True and false
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Data Representation

d Builds on digital logic

d Applies familiar abstractions

d Interprets sets of Boolean values as

– Numbers

– Characters

– Addresses
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Binary Digit (Bit)

d Direct representation of digital logic values

d Assigned mathematical interpretation

– 0 and 1

d Multiple bits used to represent complex data item
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Byte

d Set of multiple bits

d Size depends on computer

d Examples of byte sizes

– CDC: 6-bit byte

– BBN: 10-bit byte

– IBM: 8-bit byte

d On many computers, smallest addressable unit of storage

d Note: following most modern computers, we will assume an
8-bit byte
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Byte Size And Values

d Number of bits per byte determines range of values that can
be stored

d Byte of k bits can store 2k values

d Examples

– Six-bit byte can store 64 possible values

– Eight-bit byte can store 256 possible values
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Binary Representation

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

d All possible combinations of three bits
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Meaning Of Bits

d Bits themselves have no intrinsic meaning

d Byte merely stores string of 0’s and 1’s

d All interpretation determined by use
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Example Of Interpretation

d Assume three bits used for status of peripheral devices

– First bit has the value 1 if a disk is connected

– Second bit has the value 1 if a printer is connected

– Third bit has the value 1 if a keyboard is connected
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Arithmetic Values

d Combination of bits interpreted as an integer

d Positional representation uses base 2

d Note: interpretation must specify order of bits
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Illustration Of Positional Interpretation

2 0 = 12 1 = 22 2 = 42 3 = 82 4 = 162 5 = 32

d Example:

0 1 0 1 0 1

is interpreted as:

0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 21
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The Range Of Values

A set of k bits can be interpreted to represent a binary integer.
When conventional positional notation is used, the values that
can be represented with k bits range from 0 through 2k– 1.
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Hexadecimal Notation

d Convenient way to represent binary data

d Uses base 16

d Each hex digit encodes four bits
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Hexadecimal Digits

Hex Digit Binary Value Decimal Equivalent2222222222222222222222222222222222222222222222

0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 2
3 0 0 1 1 3
4 0 1 0 0 4
5 0 1 0 1 5
6 0 1 1 0 6
7 0 1 1 1 7
8 1 0 0 0 8
9 1 0 0 1 9
A 1 0 1 0 10
B 1 0 1 1 11
C 1 1 0 0 12
D 1 1 0 1 13
E 1 1 1 0 14
F 1 1 1 1 15
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Hexadecimal Constants

d Supported in some programming languages

d Typical syntax: constant begins with 0x

d Example:

0xDEC90949
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Character Sets

d Symbols for upper and lower case letters, digits, and
punctuation marks

d Set of symbols defined by computer system

d Each symbol assigned unique bit pattern

d Typically, character set size determined by byte size
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Example Character Encodings

d EBCDIC

d ASCII

d Unicode
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EBCDIC

d Extended Binary Coded Decimal Interchange Code

d Defined by IBM

d Popular in 1960s

d Still used on IBM mainframe computers

d Example encoding: lower case letter a assigned binary value

10000001
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ASCII

d American Standard Code for Information Interchange

d Vendor independent: defined by American National
Standards Institute (ANSI)

d Adopted by PC manufacturers

d Specifies 128 characters

d Example encoding: lower case letter a assigned binary value

01100001
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Full ASCII Character Set

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel

08 bs 09 ht 0A lf 0B vt 0C np 0D cr 0E so 0F si

10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb

18 can 19 em 1A sub 1B esc 1C fs 1D gs 1e rs 1F us

20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ’

28 ( 29 ) 2A * 2B + 2C , 2D – 2E . 2F /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F O

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5A Z 5B [ 5C \ 5D ] 5E ^ 5F _

60 ‘ 61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7A z 7B { 7C | 7D } 7E ~ 7F del

CS250  --  Chapt. 3 20 2006



Unicode

d Each character is 16 bits long

d Can represent larger set of characters

d Motivation: accommodate languages such as Chinese
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Integer Representation In Binary

d Each binary integer represented in k bits

d Computers have used k = 8, 16, 32, 60, and 64

d Many computers support multiple integer sizes (e.g., 16 and
32 bit integers)

d 2k possible bit combinations exist for k bits

d Positional interpretation produces unsigned integers
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Unsigned Integers

d Straightforward positional interpretation

d Each successive bit represents next power of 2

d No provision for negative values

d Arithmetic operations can produce overflow or underflow
(result cannot be represented in k bits)

d Handled with wraparound and carry bit
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Illustration Of Overflow

1 0 0

+ 1 1 0

1 0 1 0

overflow result

d Values wrap around address space

d Hardware records overflow in separate carry indicator
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Signed Values

d Most programs need signed values

d Several representations possible

d Each has been used in at least one computer

d Some bit patterns used for negative values (typically half)

d Tradeoff: unsigned representation cannot store negative
values, but can store integers that are twice as large as a
signed representation

CS250  --  Chapt. 3 25 2006



Example Signed Integer Representations

d Sign magnitude

d One’s complement

d Two’s complement

d Note: each has interesting quirks
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Sign Magnitude Representation

d Familiar to humans

d First bit represents sign

d Successive bits represent absolute value of integer

d Interesting quirk: can create negative zero

CS250  --  Chapt. 3 27 2006



One’s Complement Representation

d Positive number uses positional representation

d Negative number formed by inverting all bits of positive
value

d Example: 4-bit representation

– 0 0 1 0 represents 2

– 1 1 0 1 represents -2

d Interesting quirk: two representations for zero (all 0’s and
all 1’s)
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Two’s complement Representation

d Positive number uses positional representation

d Negative number formed by subtracting 1 from positive
value and inverting all bits of result

d Example: 4-bit representation

– 0 0 1 0 represents 2

– 1 1 1 0 represents -2

– High-order bit is set if number is negative

d Interesting quirk: one more negative values than positive
values
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Example Of Values In Unsigned
And Two’s Complement Representations

Binary Unsigned Two’s Complement
Value Equivalent Equivalent22222222222222222222222222222222222222222

1 1 1 1 15 -1
1 1 1 0 14 -2
1 1 0 1 13 -3
1 1 0 0 12 -4
1 0 1 1 11 -5
1 0 1 0 10 -6
1 0 0 1 9 -7
1 0 0 0 8 -8
0 1 1 1 7 7
0 1 1 0 6 6
0 1 0 1 5 5
0 1 0 0 4 4
0 0 1 1 3 3
0 0 1 0 2 2
0 0 0 1 1 1
0 0 0 0 0 0
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Implementation Of Unsigned
And Two’s Complement

A computer can use a single piece of hardware to provide
unsigned or two’s complement integer arithmetic; software
running on the computer can choose an interpretation for each
integer.

d Example ( k = 4 )

– Adding 1 to binary 1 0 0 1 produces 1 0 1 0

– Unsigned interpretation goes from 9 to 10

– Two’s complement interpretation goes from -7 to -6
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Sign Extension

d Needed when computer has multiple sizes of integers

d Works for unsigned and two’s complement representations

d Extends high-order bit (known as sign bit)
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Sign Extension

d Assume computer

– Supports 32-bit and 64-bit integers

– Uses two’s complement representation

d When 32-bit integer assigned to 64-bit integer, correct
numeric value requires upper sixteen bits to be filled with
zeroes for positive number or ones for negative number

d In essence, sign bit from short integer must be extended
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Example Of Sign Extension During Assignment

d The 8-bit version of integer -3 is:

1 1 1 1 1 1 0 1

d The 16-bit version of integer -3 is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

d During assignment to a larger integer, hardware copies all
bits of smaller integer and then replicates the high-order
(sign) bit in remaining bits
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Example Of Sign Extension During Shift

d Right shift of a negative value should produce a negative
value

d Example

– Shifting -4 one bit should produce -2 (divide by 2)

– Using sixteen-bit representation, -4 is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

d After right shift of one bit, value is -2:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

d Solution: replicate high-order bit during right shift
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Summary Of Sign Extension

Sign extension: in two’s complement arithmetic, when an
integer Q composed of K bits is copied to an integer of more
than K bits, the additional high-order bits are made equal to
the top bit of Q. Extending the sign bit means the numeric
value remains the same.
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A Consequence For Programmers

Because two’s complement hardware performs sign extension,
copying an unsigned integer to a larger unsigned integer
changes the value; to prevent such errors from occurring, a
programmer or a compiler must add code to mask off the
extended sign bits.
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Numbering Bits And Bytes

d Need to choose order for

– Storage in physical memory system

– Transmission over serial medium (e.g., a data network)

d Bit order

– Handled by hardware

– Usually hidden from programmer

d Byte order

– Affects multi-byte data items such as integers

– Visible and important to programmer
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Possible Byte Order

d Least significant byte of integer in lowest memory location

– Known as little endian

d Most significant byte of integer in lowest memory location

– Known as big endian

d Other orderings

– Digital Equipment Corporation once used an ordering
with sixteen-bit words in big endian order and bytes
within the words in little endian order.

d Note: only big and little endian storage are popular
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Illustration Of Big And
Little Endian Byte Order

Little Endian

Big Endian

0123

0 1 2 3

0x010x000x000x00

0x00 0x00 0x00 0x01

d Note: difference is especially important when transferring
data between computers for which the byte ordering differs
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Floating Point

d Basic idea: follow standard scientific representation

d Store two basic items

d Example: Avogadro’s number

6.022 × 1023
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Floating Point Representation

d Use base 2 instead of base 10

d Keep two conceptual items

– Exponent that specifies the order of magnitude in a base

– Mantissa that specifies most significant part of value
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Optimizing Floating Point

d Value is normalized

d Leading bit is implicit

d Exponent is biased to allow negative values

d Normalization eliminates leading zeroes

d No need to store leading bit (0 is special case)
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Example Floating Point Representation:
IEEE Standard 754

d Specifies single-precision and double-precision
representations

d Widely adopted by computer architects

02331

05263

S expon. mantissa (bits 0 - 22)

S exponent mantissa (bits 0 - 51)
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Special Values In IEEE Floating Point

d Zero

d Positive infinity

d Negative infinity

d Note: infinity values handle cases such as divide by zero
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Range Of Values In IEEE Floating Point

d Single precision range is:

2–126 to 2127

d Decimal equivalent is approximately:

10–38 to 1038

d Double precision range is:

10–308 to 10308
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Data Aggregates

d Typically arranged in contiguous memory

d Example: three integers

0 1 2 3 4 5

integer #1 integer #2 integer #3

d More details later in the course
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Summary

d Basic output from digital logic is a bit

d Bits grouped into sets to represent

– Integers

– Characters

– Floating point values

d Integers can be represented as

– Sign magnitude

– One’s complement

– Two’s complement
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Summary

d One piece of hardware can be used for both

– Two’s complement arithmetic

– Unsigned arithmetic

d Bytes of integer can be numbered in

– Big-endian order

– Little-endian order

d Organizations such as ANSI and IEEE define standards for
data representation
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Questions?



IV

The Variety Of
Processors

And
Computational Engines
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Definition

The terms processor and computational engine refer broadly to
any mechanism that drives computation

CS250  --  Chapt. 4 2 2006



Von Neumann Architecture

d Characteristic of most modern processors

d Reference to mathematician John Von Neumann who was
one of the computer architecture pioneers

d Central idea is stored program
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Three Basic Components Of
Von Neumann Architecture

d Processor

d Memory

d I/O facilities

d All interact to form a complete computer
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Illustration Of Von Neumann Architecture

computer

input/output facilities

processor memory
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Processor

d Digital device

d Performs computation involving multiple steps

d Building blocks used to form computer system
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Range Of Processors

d Wide variety of capabilities

d Various mechanisms

– Fixed logic

– Selectable logic

– Parameterized logic

– Programmable logic
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Fixed Logic Processor

d Least powerful

d Performs a single operation

d Functionality hardwired (cannot be changed)

d Example: processor that computes sine
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Selectable Logic Processor

d Slightly more powerful than fixed logic

d Can perform more than one function

d Exact function specified each time processor invoked

d Example: compute sine or cosine
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Parameterized Logic Processor

d Accepts set of parameters that control computation

d Parameters set for each invocation

d Example

– Compute hash function, h(x)

– Parameters specify constants p and q used in
computation
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Programmable Logic Processor

d Greatest flexibility

d Function to compute can be changed

d Sequence of steps can be specified for each invocation

d Example: conventional CPU
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Hierarchical Structure And
Computational Engines

d Most computer architecture follows a hierarchical approach

d Subparts of a large, central processor are sophisticated
enough to meet our definition of processor

d Some engineers use term computational engine for subpiece
that is less powerful than main processor
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Illustration Of Processor Hierarchy

CPU

trigonometry
engine

graphics
engine

other
components

query
engine

arithmetic
engine
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Major Components Of A Conventional Processor

d Controller

d Computational engine (ALU)

d Local data storage

d Internal interconnection(s)

d External interface
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Illustration Of A Conventional Processor

controller

internal interconnection(s)

ALU local
storage

external interface

external connection
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Parts Of A Conventional Processor

d Controller

– Overall responsibility for execution

– Moves through sequence of steps

– Coordinates other units

d Computational engine

– Operates as directed by controller

– Typically provides arithmetic and Boolean operations

– Performs one operation at a time
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Parts Of A Conventional Processor
(continued)

d Local data storage

– Holds data values for operations

– Must be loaded before operation can be performed

– Typically impelmented with registers

d Internal interconnections

– Allow transfer of values among units of the processor

– Sometimes called data path
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Parts Of A Conventional Processor
(continued)

d External interface

– Handles communication between processor and rest of
computer system

– Provides connections to external memory as well as
external I/O devices
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Arithmetic Logic Unit
(ALU)

d Main computational engine in conventional processor

d Complex unit that can perform variety of tasks

d Typical ALU operations

– Integer arithmetic (add, subtract, multiply, divide)

– Shift (left, right, circular)

– Boolean (and, or, not, exclusive or)
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Processor Categories And Roles

d Many possible roles for individual processors in

– Coprocessors

– Microcontrollers

– Microsequencers

– Embedded system processors

– General-purpose processors
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Coprocessor

d Operates in conjunction with and under the control of
another processor

d Usually

– Special-purpose processor

– Performs a single task

– Operates at high speed

d Example: floating point accelerator
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Microcontroller

d Programmable device

d Dedicated to control of a physical system

d Example: run automobile engine or grocery store door
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Example Steps A Microcontroller Performs
(Automatic Door)

do forever {
wait for the sensor to be tripped;
turn on power to the door motor;
wait for a signal that indicates the

door is open;
wait for the sensor to reset;
delay ten seconds;
turn off power to the door motor;

}
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Microsequencer

d Similar to microcontroller

d Controls coprocessors and other engines within a large
processor

d Example: move operands to floating point unit; invoke an
operation; move result back to memory
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Embedded System Processor

d Runs sophisticated electronic device

d Usually more powerful than microcontroller

d Example: control DVD player, including commands from a
remote control
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General-Purpose Processor

d Most powerful type of processor

d Completely programmable

d Full functionality

d Example: CPU in a personal computer
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Processor Technologies

d Originally: discrete logic

d Later: single circuit board

d Now: single chip
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Definition Of Programmable Device

To a computer architect, a processor is classified as
programmable if at some level of detail, the processor is
separate from the program it runs. To a user, it may appear
that the program and processor are integrated, and it may not
be possible to change the program without replacing the
processor.
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Fetch-Execute Cycle

d Basis for programmable processors

d Allows processor to move through program steps
automatically

d Implemented by processor hardware

d Note:

At some level, every programmable processor implements a
fetch-execute cycle.
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Fetch-Execute Algorithm

Repeat forever {

Fetch: access the next step of the program from the
location in which the program has been stored.

Execute: Perform the step of the program.

}

11
1
1
1
1
1
1
1
1
1
1
1
22222222222222222222222222222222222222222222222222222222

11
1
1
1
1
1
1
1
1
1
1
122222222222222222222222222222222222222222222222222222222

d Note: we will discuss in more detail later
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Clock Rate And Instruction Rate

d Clock rate

– Measure of underlying hardware speed

– Rate at which gates are clocked

d Instruction rate

– Measure of time required for execute portion of fetch-
execute cycle

– Varies because some instructions take more time than
others
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Clock Rate And Instruction Rate
(continued)

The fetch-execute cycle does not proceed at a fixed rate because
the time required to execute a given instruction depends on the
operation being performed. An operation such as
multiplication requires more time than an operation such as
addition.
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Stopping A Processor

d Processor runs fetch-execute indefinitely

d Software must plan next step

d When last step of application program finishes

– Embedded system: processor enters a loop

– General purpose system: operating system executes an
infinite loop
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Starting A Processor

d Hardware reset stops fetch-execute

d Digital logic holds reset on power-up until processor
initialized

d Process known as bootstrap
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Summary

d Processor performs a computation involving multiple steps

d Many types of processors

– Coprocessor

– Microcontroller

– Microsequencer

– Embedded system processor

– General-purpose processor

d Arithmetic Logic Unit (ALU) performs basic arithmetic and
Boolean operations
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Summary
(continued)

d Hardware in programmable processor runs fetch-execute
cycle

d Most processors now consist of single integrated circuit
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Questions?



V

Processor Types
And

Instruction Sets
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What Instructions Should
A Processor Offer?

d Minimum set is sufficient, but inconvenient

d Extremely large set is convenient, but inefficient

d Architect must consider additional factors

– Physical size of processor

– Expected use

– Power consumption
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The Point About Instruction Sets

The set of operations a processor provides represents a tradeoff
among the cost of the hardware, the convenience for a
programmer, and engineering considerations such as power
consumption.
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Representation

d Architect must choose

– Set of instructions

– Exact representation hardware uses for each instruction
(instruction format)

– Precise meaning when instruction executed

d Above items define the instruction set
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Parts Of An Instruction

d Opcode specifies instruction to be performed

d Operands specify data values on which to operate

d Result location specifies where result will be placed
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Instruction Format

d Instruction represented as binary string

d Typically

– Opcode at beginning of instruction

– Operands follow opcode
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Illustration Of Typical
Instruction Format

opcode operand 1 operand 2 . . .
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Instruction Length

d Fixed-length

– Every instruction is same size

– Hardware is less complex

– Hardware can run faster

d Variable-length

– Some instructions shorter than others

– Appeals to programmers

– More efficient use of memory
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The Point About Fixed-Length Instructions

When a fixed-length instruction set is employed, some
instructions contain extra fields that the hardware ignores. The
unused fields should be viewed as part of a hardware
optimization, not as an indication of a poor design.
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General-Purpose Registers

d High-speed storage device

d Typically part of the processor

d Each register small size (typically, each register can
accommodate an integer)

d Basic operations are fetch and store

d Numbered from 0 through N–1

d Many processors require operands for arithmetic operations
to be placed in general-purpose registers
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Floating Point Registers

d Usually separate from general-purpose registers

d Each holds one floating-point value

d Many processors require operands for floating point
operations to be placed in floating point registers
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Example Of Programming With Registers

d Add X and Y, and place result in Z

d Steps

– Load a copy of X into register 3

– Load a copy of Y into register 4

– Add the value in register 3 to the value in register 4, and
direct the result to register 5

– Store a copy of the value in register 5 in Z

d Note: assumes registers 3, 4, and 5 are free
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Terminology

d Register spilling

– Refers to placing current contents of registers in memory
for later recall

– Occurs when registers needed for other computation

d Register allocation

– Choose which values to keep in registers at any time

– Programmer or compiler decides
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Double Precision

d Refers to value that is twice as large as usual

d Hardware often uses a contiguous pair of registers to hold a
double precision value
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Register Banks

d Registers partitioned into disjoint sets called banks

d Additional hardware detail

d Optimizes performance

d Complicates programming
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Register Banks

d Registers partitioned into disjoint sets called banks

d Additional hardware detail

d Optimizes performance

d Complicates programming
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Typical Register Bank Scheme

d Registers divided into two banks

d ALU instruction that takes two operands must have one
operand from each bank

d Programmer’s responsibility
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Illustration Of Register Banks

Processor

0
1
2
3

Bank A
4
5
6
7

Bank B

separate hardware
units used to access
the register banks

d Both banks can be accessed simultaneously
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Consequence For Programmers

d Operands must be assigned to banks

d Even trivial programs cause problems

d Example

R ← X + Y

S ← Z - X

T ← Y + Z

CS250  --  Chapt. 5 18 2006



Register Conflicts

d Occur when operands specify same register bank

d Reported by compiler / assembler

d Can require programmer to copy values to opposite register
bank
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Types Of Instruction Sets

d Two basic forms

– Complex Instruction Set Computer (CISC)

– Reduced Instruction Set Computer (RISC)
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CISC Instruction Set

d Many instructions (often hundreds)

d Given instruction can require arbitrary time to compute

d Examples of CISC instructions

– Move graphical item on bitmapped display

– Memory copy or clear

– Floating point computation
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RISC Instruction Set

d Few instructions (typically 32 or 64)

d Each instruction executes in one clock cycle

d Example: MIPS instruction set
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Summary Of Instruction Sets

A processor is classified as CISC if the instruction set contains
instructions that perform complex computations that can
require long times; a processor is classified as RISC if it
contains a small number of instructions that can each execute
in one clock cycle.
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Execution Pipeline

d Hardware optimization technique

d Allows processor to complete instructions faster

d Typically used with RISC instruction set
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Typical Instruction Cycle

d Fetch the next instruction

d Examine the opcode to determine how many operands are
needed

d Fetch each of the operands (e.g., extract values from
registers)

d Perform the operation specified by the opcode

d Store the result in the location specified (e.g., a register)
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To Optimize Instruction Cycle

d Build separate hardware block for each step

d Arrange to pass instruction through sequence of hardware
blocks
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Illustration Of Execution Pipeline

fetch
instruction

stage 1

examine
opcode

stage 2

fetch
operands

stage 3

perform
operation

stage 4

store
result

stage 5

d Example pipeline has five stages
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Pipeline Speed

d All stages operate in parallel

d Given stage can start to process a new instruction as soon as
current instruction finishes

d Effect: N-stage pipeline can operate on N instructions
simultaneously
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Illustration Of Instructions In A Pipeline

stage 5stage 4stage 3stage 2stage 1clock

1

2

3

4

5

6

7

8

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

inst. 8

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

-

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

Time
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RISC Processors And Pipelines

Although a RISC processor cannot perform all steps of the
fetch-execute cycle in a single clock cycle, an instruction
pipeline with parallel hardware provides approximately the
same performance: once the pipeline is full, one instruction
completes on every clock cycle.
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Using A Pipeline

d Pipeline is transparent to programmer

d Disadvantage: programmer who does not understand
pipeline can produce inefficient code

d Reason: hardware automatically stalls pipeline if items are
not available
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Example Of Instruction Stalls

d Assume

– Need to perform addition and subtraction operations

– Operands and results in registers A through E

– Code is:

Instruction K: C ← add A B

Instruction K+1: D ← subtract E C

d Second instruction stalls to wait for operand C
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Effect Of Stall On Pipeline

stage 5stage 4stage 3stage 2stage 1clock

1

2

3

4

5

6

7

8

inst. K

inst. K+1

inst. K+2

inst. K+3

-

-

inst. K+4

inst. K+5

inst. K-1

inst. K

inst. K+1

inst. K+2

-

-

inst. K+3

inst. K+4

inst. K-2

inst. K-1

inst. K

(inst. K+1)

(inst. K+1)

inst. K+1

inst. K+2

inst. K+3

inst. K-3

inst. K-2

inst. K-1

inst. K

-

-

inst. K+1

inst. K+2

inst. K-4

inst. K-3

inst. K-2

inst. K-1

inst. K

-

-

inst. K+1

Time

d Bubble passes through pipeline
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Potential Causes Of A Pipeline Stall

d Access external storage

d Invoke a coprocessor

d Branch to a new location

d Call a subroutine
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Achieving Maximum Speed

d Program must be written to accommodate instruction
pipeline

d To minimize stalls

– Avoid introducing unnecessary branches

– Delay references to result register(s)
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Example Of Avoiding Stalls

C ← add A B C ← add A B

D ← subtract E C F ← add G H

F ← add G H M ← add K L

J ← subtract I F D ← subtract E C

M ← add K L J ← subtract I F

P ← subtract M N P ← subtract M N

(a) (b)

d Stalls eliminated by rearranging (a) to (b)
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A Note About Pipelines

Although hardware that uses an instruction pipeline will not
run at full speed unless programs are written to accommodate
the pipeline, a programmer can choose to ignore pipelining and
assume the hardware will automatically increase speed
whenever possible.
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No-Op Instructions

d Have no effect on

– Registers

– Memory

– Program counter

– Computation

d Can be inserted to avoid instruction stalls

d Often used by a compiler
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Use Of No-OP

d Example

Instruction K: C ← add A B

Instruction L+1: no-op

Instruction K+2: D ← subtract E C

d No-op allows time for result from register C to be fetched
for subtract operation
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Forwarding

d Hardware optimization to avoid stall

d Allows ALU to reference result in next instruction

d Example

Instruction K: C ← add A B

Instruction K+1: D ← subtract E C

d Forwarding hardware passes result of add operation directly
to next instruction
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Types Of Operations

d One possible categorization

– Arithmetic instructions (integer arithmetic)

– Logical instructions (also called Boolean)

– Data access and transfer instructions

– Conditional and unconditional branch instructions

– Floating point instructions

– Processor control instructions
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Program Counter

d Hardware register

d Used during fetch-execute cycle

d Gives address of next instruction to execute

d Also known as instruction pointer

CS250  --  Chapt. 5 42 2006



Fetch-Execute Algorithm Details

Assign the program counter an initial program address.
Repeat forever {

Fetch: access the next step of the program from the
location given by the program counter.

Set an internal address register, A, to the address
beyond the instruction that was just fetched.

Execute: Perform the step of the program.

Copy the contents of address register A to the
program counter.

}
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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Branches And Fetch Execute

d Absolute branch

– Typically named jump

– Operand is an address

– Assigns operand to internal register A

d Relative branch

– Typically named br

– Operand is a signed value

– Operand is added to internal register A

CS250  --  Chapt. 5 44 2006



Subroutine Call

d Jump subroutine (jsr instruction)

– Similar to a jump

– Saves value of internal register A

– Replaces A with operand address

d Return from subroutine (ret instruction)

– Retrieves value saved during jsr

– Replaces A with saved value
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Passing Arguments

d Multiple methods have been used

d Examples

– Store arguments in memory

– Store arguments in special-purpose hardware registers

– Store arguments in general-purpose registers

d Many techniques also used to return result from function
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Register Window

d Hardware optimization for argument passing

d Processor contains many general-purpose registers

d Small subset of registers visible at any time

d Caller places arguments in reserved registers

d During procedure call, register window moves
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Illustration Of Register Windows

A B C Dx1 x2 x3 x4 l1 l2 l3 l4

registers 0 - 7
when program runs

current registers 0 - 7
when subroutine runs
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Example Instruction Set

d Known as MIPS instruction set

d Early RISC design

d Minimalistic
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MIPS Instruction Set (Part 1)

Instruction Meaning2222222222222222222222222222222222222222222222222222222222222222

Arithmetic
add integer addition
subtract integer subtraction
add immediate integer addition (register + constant)
add unsigned unsigned integer addition
subtract unsigned unsigned integer subtraction
add immediate unsigned unsigned addition with a constant
move from coprocessor access coprocessor register
multiply integer multiplication
multiply unsigned unsigned integer multiplication
divide integer division
divide unsigned unsigned integer division
move from Hi access high-order register
move from Lo access low-order register

Logical (Boolean)
and logical and (two registers)
or logical or (two registers)
and immediate and of register and constant
or immediate or of register and constant
shift left logical Shift register left N bits
shift right logical Shift register right N bits
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MIPS Instruction Set (Part 2)

Instruction Meaning22222222222222222222222222222222222222222222222222222222222222222222222

Data Transfer
load word load register from memory
store word store register into memory
load upper immediate place constant in upper sixteen

bits of register
move from coproc. register obtain a value from a coprocessor

Conditional Branch
branch equal branch if two registers equal
branch not equal branch if two registers unequal
set on less than compare two registers
set less than immediate compare register and constant
set less than unsigned compare unsigned registers
set less than immediate compare unsigned register and constant

Unconditional Branch
jump go to target address
jump register go to address in register
jump and link procedure call
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MIPS Floating Point Instructions

Instruction Meaning22222222222222222222222222222222222222222222222222222222222222222

Arithmetic

FP add floating point addition
FP subtract floating point subtraction
FP multiply floating point multiplication
FP divide floating point division
FP add double double-precision addition
FP subtract double double-precision subtraction
FP multiply double double-precision multiplication
FP divide double double-precision division

Data Transfer

load word coprocessor load value into FP register
store word coprocessor store FP register to memory

Conditional Branch

branch FP true branch if FP condition is true
branch FP false branch if FP condition is false
FP compare single compare two FP registers
FP compare double compare two double precision values
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Aesthetic Aspects Of Instruction Sets

d Elegance

– Balanced

– No frivolous or useless instructions

d Orthogonality

– No unnecessary duplication

– No overlap among instructions
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Principle Of Orthogonality

The principle of orthogonality specifies that each instruction
should perform a unique task without duplicating or
overlapping the functionality of other instructions.
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Condition Codes

d Hardware bits

d Set by ALU

d Tested in conditional branch instruction
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Example Of Condition Code

cmp r4, r5 # compare regs. 4 & 5, and set condition code

be lab1 # branch to lab1 if cond. code specifies equal

mov r3, 0 # place a zero in register 3

lab1: . . .program continues at this point
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Questions?



VI

Operand Addressing
And

Instruction Representation
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Number Of Operands Per Instruction

d Four basic architectural types

– 0-address

– 1-address

– 2-address

– 3-address
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0-Address Architecture

d No explicit operands in the instruction

d Operands kept on stack in memory

d Instruction removes top N items from stack

d Instruction leaves result on top of stack
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Example 0-Address Instructions

push X
push 7
add
pop X

d Increments X by 7
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1-Address Architecture

d One explicit operand per instruction

d Second operand is implicit

– Always found in hardware register

– Known as accumulator

CS250  --  Chapt. 6 5 2006



Example 1-Address Instructions

load X
add 7
store X

CS250  --  Chapt. 6 6 2006



2-Address Architecture

d Two explicit operands per instruction

d Result overwrites one of the operands

d Operands known as source and destination

d Works well for instructions such as memory copy
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Example 2-Address Instructions

add 7, X

d Computes X ← X + 7
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3-Address Architecture

d Three explicit operands per instruction

d Operands specify source, destination, and result
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Example Of 3-Address Instructions

add X, Y, Z

d Computes Z ← X + Y
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Example Operand Types

d Operand that specifies a source

– Signed constant

– Unsigned constant

– Contents of a register

– Value in a memory location

d Operand that specifies a destination

– Single register

– Pair of contiguous registers

– Memory location
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Example Operand Types
(continued)

d Operand that specifies a constant is known as immediate
value

d Memory references usually much more expensive than
immediate or register access
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Von Neumann Bottleneck

On a computer that follows the Von Neumann architecture, the
time spent performing memory accesses can limit the overall
performance. Architects use the term Von Neumann bottleneck
to characterize the situation, and avoid the bottleneck with
techniques such as restricting most operands to registers.
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Operand Encoding

d Implicit type encoding

– For given opcode, the type of each operand is fixed

– More opcodes required

– Example: opcode is add_signed_immediate_to_register

d Explicit type encoding

– Operand specifies type and value

– Fewer opcodes required

– Example: opcode is add, operands specify register and
immediate
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Example Of Implicit Encoding

Opcode Operands Meaning22222222222222222222222222222222222222222222222222222222222222222

Add register R1 R2 R1 ← R1 + R2
Add immediate signed R1 I R1 ← R1 + I
Add immediate unsigned R1 UI R1 ← R1 + UI
Add memory R1 M R1 ← R1 + memory[M]
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Example Of Explicit Encoding

add

opcode operand 1

register 1

operand 2

register 2

..............

..............

add

opcode

operand 1

register 1

operand 2

signed
integer -93

..............

..............
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Combinations

d Operand specifies multiple items

d Processor computes final value from individual items

d Typical computation: sum

d Example

– Register-offset specifies register and immediate value

– Processor adds immediate value to contents of register
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Illustration Of Register-Offset

add

opcode operand 1

register-
offset 2 -17

..............

..............

operand 2

register-
offset 4 76

..............

..............

CS250  --  Chapt. 6 18 2006



Operand Tradeoffs

d No single style of operands optimal for all purposes

d Tradeoffs among

– Ease of programming

– Fewer instructions

– Smaller instructions

– Larger range of immediate values

– Faster operand fetch and decode

– Decreased hardware size
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Operands In Memory And Indirect Reference

d Operand can specify

– Value in memory (memory reference)

– Location in memory that contains the address of the
operand (indirect reference)

d Note: memory references are relatively expensive
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Types Of Indirection

d Indirection through a register

– Operand specifies register number, R

– Obtain A, the current value from register R

– Interpret A as a memory address, and fetch the operand
from memory location A

d Indirection through a memory location

– Operand specifies memory address, A

– Obtain M, the value in memory location A

– Interpret M as a memory address, and fetch the operand
from memory location M
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Illustration Of Operand Addressing Modes

cpu memory

1

2

3

4

5

Immediate value (in the instruction)

Direct register reference

Indirect through a register

Direct memory reference

Indirect memory reference

locations in memory

instruction register

general-purpose register

1

2 3

3

4

5

5
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Summary

d Architect chooses the number and types of operands for
each instruction

d Possibilities include

– Immediate (constant value)

– Contents of register

– Value in memory

– Indirect reference to memory
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Summary
(continued)

d Type of operand can be encoded

– Implicitly

– Explicitly

d Many variations exist; each represents a tradeoff
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Questions?



VII

CPUs:
Microcode, Protection,

And
Processor Modes
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Evolution Of Computers

d Early systems

– Single Central Processing Unit (CPU) controlled entire
computer

– Responsible for all I/O as well as computation

d Modern computer

– Decentralized architecture

– I/O device such as disk contains processor

– CPU coordinates and controls other processors
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CPU Complexity

d Designed for wide variety of control and processing tasks

d Many special-purpose subunits for speed

d Example: Pentium contains 54 million transistors
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CPU Characteristics

d Completely general

d Performs control as well as computation

d Offers multiple levels of protection and privilege

d Provides mechanism for hardware priorities

d Handles large volumes of data

d Uses parallelism to achieve high speed
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Modes Of Execution

d Part of CPU hardware

d At any time, CPU is in one mode

d Mode dictates

– Instructions that are valid

– Regions of memory that can be accessed

– Amount of privilege

– Backward compatibility to earlier models

d Behavior can vary widely among modes
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An Observation About Modes

A CPU uses an execution mode to determine the current
operational characteristics. In some CPUs, the characteristics
of modes differ so widely that we think of the CPU as having
separate hardware subsystems and the mode as determining
which piece of hardware is used at the current time.
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Changing Modes

d Automatic mode change

– Initiated by hardware

– Programmer can specify code for new mode

d Manual mode change

– Program makes explicit request

– Typically used when program calls the operating system
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Changing Modes
(continued)

d Mechanisms vary among architectures

d Possibilities

– Invoke a special instruction to change mode

– Assign a value to a mode register

– Mode change is a side-effect of another instruction
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Privilege And Protection



Privilege And Protection

d Privilege level linked to mode

d Determines what resources program can use

d Basic scheme: two levels

d Advanced scheme: multiple levels
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Illustration Of Basic Privilege Scheme

Operating System

appl. 2appl. 1 appl. N

. . .
low
privilege

high
privilege

d Application privilege available to arbitrary program

d System privilege restricted to operating system
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Microcoded Instructions

d Hardware technique used to build complex processors

d Employs two levels of processor hardware

– Microcontroller (microprocessor) provides basic
operations

– Macro instruction set built on microinstructions
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Illustration Of Microcoded Instruction Set

(implemented with microcode)

macro instruction set

(implemented with digital logic)

micro instruction set

Microcontroller

CPU

visible to
programmer

hidden
(internal)
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Implementation Of Microcoded Instructions

d Microcontroller

– Lowest level of processor

– Implemented with digital logic

– Offers basic instructions

d Macro instructions

– Implemented as microcode subroutines

– Can be entirely different than micro instructions
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Data And Register Sizes

d Data size used by micro instructions can differ from size
used by macro instructions

d Example

– 16-bit hardware used for micro instructions

– 32-bit hardware used for macro instructions
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Example Of Microcoded Arithmetic

d Assume

– Macro registers

* Each 32 bits wide

* Named R0, R1, ...

– Micro registers

* Each 16 bits wide

* Named r0, r1, ...

d Devise microcode to add values from R5 and R6
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Example Of Microcoded Arithmetic
(continued)

add32:
move low-order 16 bits from R5 into r2
move low-order 16 bits from R6 into r3
add r2 and r3, placing result in r1
save value of the carry indicator
move high-order 16 bits from R5 into r2
move high-order 16 bits from R6 into r3
add r2 and r3, placing result in r0
copy the value in r0 to r2
add r2 and the carry bit, placing the result in r0
check for overflow and set the condition code
move the thirty-two bit result from r0 and r1

to the desired destination
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Microcode Variations

d Scope

– Special-purpose instructions only (extensions)

– All instructions

d Use

– Entire fetch-execute cycle

– Instruction fetch and decode

– Opcode processing

– Operand decode and fetch
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Why Use Microcode Instead Of Circuits?

d Higher level of abstraction

d Easier to build and less error prone

d Easier to change

– Easy upgrade to next version of chip

– Can allow field upgrade
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Disadvantages Of Microcode

d More overhead

d Macro instruction performance depends on micro instruction
set

d Microcontroller hardware must run at extremely high clock
rate (multiple micro instructions per macro instruction)
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Visibility To Programmers

d Fixed microcode

– Approach used by most CPUs

– Microcode only visible to CPU designer

d Alterable microcode

– Microcode loaded dynamically

– May be restricted to extensions (creating new macro
instructions)

– User software written to use new instructions

– Known as reconfigurable CPU
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Reconfigurable CPU

Some CPUs provide a mechanism that allows microcode to be
rewritten. The motivation for allowing such change arises from
the desire for flexibility and optimization: the CPU’s owner can
create a macro instruction set that is optimized for a specific
task.
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In Practice

d Writing microcode is tedious and time-consuming

d Results are difficult to test

d Microcode seldom gives performance equal to discrete
hardware

d Result: reconfigurable CPUs have not enjoyed much success
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Two Fundamental Types Of Microcode

d What programming paradigm is used for microcode?

d Two fundamental types

– Vertical

– Horizontal
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Vertical Microcode

d Microcontroller similar to standard processor

d Vertical microcode similar to conventional assembly
language

d Typically performs one operation at a time

d Has access to all facilities macro instruction set uses

– ALU

– General-purpose registers

– Memory

– I/O buses
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Example Of Vertical Microcode

d Macro instruction set is CISC

d Microcontroller is fast RISC processor

d Programmer writes microcode for each macro instruction

d Hardware decodes macro instruction and invokes correct
microcode routine
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Advantages And Disadvantages
Of Vertical Microcode

d Easy to read

d Programmers are comfortable using it

d Unattractive to hardware designers because higher clock
rates needed

d Generally has low performance (multiple micro instructions
needed for one macro instruction)
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Horizontal Microcode

d Alternative to vertical microcode

d Exploits parallelism in underlying hardware

d Controls functional units and data movement

d Difficult to program
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The Important Point About Horizontal Microcode

Horizontal microcode allows the hardware to run faster, but is
more difficult to program.
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Horizontal Microcode Paradigm

d Each instruction controls a set of hardware units

d Instruction specifies

– Transfer of data

– Which hardware units operate
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Example Of Horizontal Microcode

data transfer mechanism

operand 1 operand 2

Arithmetic
Logic
Unit

(ALU)
result 1 result 2

register access

. . . . . . . . . . . . . . . . . . . . . . . . ...
..
..
..
..
..
..
..
..
..
.................................................

macro
general-
purpose
registers

d Internal structure of CPU

d Data can only move between functional units along paths
shown
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Example Hardware Control Commands
22222222222222222222222222222222222222222222222222222222222222222222222222

Unit Command Meaning22222222222222222222222222222222222222222222222222222222222222222222222222

0 0 0 No operation
0 0 1 Add
0 1 0 Subtract

ALU 0 1 1 Multiply
1 0 0 Divide
1 0 1 Left shift
1 1 0 Right shift
1 1 1 Continue previous operation

22222222222222222222222222222222222222222222222222222222222222222222222222

operand 0 No operation
1 or 2 1 Load value from data transfer mechanism

22222222222222222222222222222222222222222222222222222222222222222222222222

result 0 No operation
1 or 2 1 Send value to data transfer mechanism

22222222222222222222222222222222222222222222222222222222222222222222222222

0 0 x x x x No operation
register 0 1 x x x x Move register xxxx to data transfer mechanism
interface 1 0 x x x x Move data transfer mechanism to register xxxx

1 1 x x x x No operation
222222222222222222222222222222222222222222222222222222222222222222222222221
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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Example Microcode Instruction Format

x x x x x x x x x x x x x

.........

.........

.........

.........

.........

ALU Oper. 1 Oper. 2 Res. 1 Res. 2 Register interface

d Diagram shows how instruction is interpreted

d Bit fields in instruction encode hardware control commands
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Example Horizontal Microcode Program

d Move the value from register 4 to the hardware unit for
operand 1

d Move the value from register 13 to the hardware unit for
operand 2

d Arrange for the ALU to perform addition

d Move the value from the hardware unit for result 2 (the
low-order bits of the result) to register 4
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Example Horizontal Microcode Program
In Binary

.....................................................

.....................................................

.....................................................

.....................................................

.....................................................

Instr. ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1

2

3

4

0 0 0 1 0 0 0 0 1 0 1 0 0

0 0 0 0 1 0 0 0 1 1 1 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 1 0 0
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Horizontal Microcode And Timing

d Each microcode instruction takes one cycle

d Functional unit may require more than one cycle to
complete an operation

d Programmer must accommodate hardware timing or errors
can result

d To wait for functional unit, insert microcode instructions
that continue the operation
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Example Of Continuing An Operation

.............

.............

.............

.............

.............

ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1 1 1 0 0 0 0 0 0 0 0 0 0

d ALU operation 1 1 1 acts as a delay to continue the previous
operation
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Example Of Parallel Execution

.............

.............

.............

.............

.............

ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1 1 1 1 0 0 0 0 1 0 1 1 1

d Single instruction continues ALU operation and loads the
value from register 7 into operand unit 1.
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Horizontal Microcode And Parallel Execution

Because an instruction contains separate fields that each
correspond to one hardware unit, horizontal microcode makes
it easy to specify simultaneous, parallel operation of multiple
hardware units.
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Intelligent Microcontroller

d Schedules instructions by assigning work to functional units

d Handles operations in parallel

d Performs branch prediction (begins to execute both paths of
a branch)

d Constrains results so instructions have sequential semantics
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The Important Concept Of Branch Prediction

A CPU that offers parallel instruction execution can handle
conditional branches by precomputing values on one or both
branches and choosing which values to use at a later time when
the computation of the branch condition completes.
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Taming Parallel Execution Units

d Must preserve sequential execution semantics (as expected
by programmer)

d Mechanisms used

– Scoreboard

– Re-Order Buffer (ROB)

d Note: when results computed from two paths, CPU
eventually discards results that are not needed
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Summary

d CPU offers modes of execution that determine protection
and privilege

d Complex CPU usually implemented with microcode

d Vertical microcode uses conventional instruction set

d Horizontal microcode uses unconventional instructions
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Summary
(continued)

d Each horizontal microcode instruction controls
underlying hardware units

d Horizontal microcode offers parallelism

d Most complex CPUs have mechanism to schedule
instructions on parallel execution units

d Scoreboard and Re-Order Buffer used to maintain
sequential semantics
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Questions?



VIII

Assembly Languages
And

Programming Paradigm
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Programming Languages

d Divided into two broad categories

– Low-level (close to hardware)

– High-level (abstracted away from hardware)
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Characteristics Of High-Level Language

d One-to-many translation

d Hardware independence

d Application orientation

d General-purpose

d Powerful abstractions
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Characteristics Of Low-Level Language

d One-to-one translation

d Hardware dependence

d Systems programming orientation

d Special-purpose

d Few abstractions
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A Note About Abstractions

d Low-level language forces a programmer to construct
abstractions from low-level mechanisms

d Computer scientist Alan Perlis once said that a
programming language is low-level if programming requires
attention to irrelevant details

d Perlis’ point: because most applications do not need direct
control of hardware, a low-level language increases
programming complexity without providing benefits

CS250  --  Chapt. 8 5 2006



Terminology

d Assembly language

– Refers to a type of low-level language

– Specific to given processor

d Assembler

– Refers to software that translates assembly language into
binary code

– Analogous to compiler
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An Important Concept

Because an assembly language is a low-level language that
incorporates specific characteristics of a processor, such as the
instruction set, operand addressing, and registers, many
assembly languages exist.
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Assembly Languages

d Share same general structure

d Programmer who understands one assembly language can
learn another quickly
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Our Approach

d We will discuss general concepts in class

d You will use a specific assembly language in lab
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Assembly Statement Format

d General format is:

label: opcode operand1 , operand2 , ...

d Label is optional

d Opcode and operands are processor specific
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Opcode Names

d Specific to each assembly language

d Most assembly languages use short mnemonics

d Examples

– ld instead of load_value_into_register

– jsr instead of jump_to_subroutine
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Comment Syntax

d Typically

– Character reserved to start a comment

– Comment extends to end of line

d Examples of comment characters

– Pound sign (#)

– Semicolon (;)
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Commenting Conventions

d Block comment to explain overall purpose of large section
of code

d One comment per line explaining purpose of the instruction
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Block Comment Example

################################################################

# #

# Search linked list of free memory blocks to find a block #

# of size N bytes or greater. Pointer to list must be in #

# register 3 and N must be in register 4. The code also #

# destroys the contents of register 5, which is used to #

# walk the list. #

# #

################################################################
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Per-Line Comment Example

ld r5, r3 # load the address of list into r5

loop_1: cmp r5, r0 # test to see if at end of list

bz notfnd # if reached end of list go to notfnd
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Operand Order

d Annoying fact: assembly languages differ on operand order

d Example

– Instruction to load a register

– Possible orders are:

ld r5, r3 # load the address of list into r5

ld r3, r5 # load the address of list into r5

d Note: in one historic case, two assembly languages for the
same processor used opposite orders for operands!
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Help For Programmers

d Some programmers favor each order

d Proponents of using ( source, destination ) claim that it
makes sense because we read left-to-right

d Proponents of using ( destination, source ) claim that the
operands are in the same order as an assignment statement
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Names For General-Purpose Registers

d Registers used heavily

d Most assembly languages use short names for registers

d Typical format is letter r followed by a number

d Syntax that has been used in various assembly languages

– reg10

– r10

– R10

– $10
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Symbolic Definitions

d Some assemblers use long names, but permit a programmer
to define abbreviations

d Example definitions

#

# Define register names used in the program

#

r1 register 1 # define name r1 to be register 1

r2 register 2 # and so on for r2, r3, and r4

r3 register 3

r4 register 4
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Using Meaningful Names

d Symbolic definition also allows meaningful names

d Example: registers used for a linked list

#

# Define register names for a linked list program

#

listhd register 6 # holds starting address of list

listptr register 7 # moves along the list
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Denoting Operands

d Assembly language provides a way to code each possible
operand type (e.g., immediate, register, memory reference,
indirect memory reference)

d Typically, compact syntax is used

d Example

mov r2, r1 # copy contents of reg. 1 into reg. 2

mov r2, (r1) # treat r1 as a pointer to memory and

# copy from the mem. location to reg. 2
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Assembly Language And Idioms

d No high-level abstractions

d Programmer writes sequence of code instead

d Best if programmer follows idioms
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Assembly Language And Idioms

d No high-level abstractions

d Programmer writes sequence of code instead

d Best if programmer follows idioms

d Note: don’t confuse idioms with idiots!
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Assembly Language For Conditional Execution

if (condition) {
body

}
next statement

code to test condition and
set condition code

branch not true to label
code to perform body

label: code for next statement
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Assembly Language For If-Then Else

if (condition) {
then_part

} else {
else_part

}
next statement

code to test condition and
set condition code

branch not true to label1
code to perform then_part
branch to label2

label1: code for else_part
label2: code for next statement
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Assembly Language For Definite Iteration

for (i=0; i<10; i++) {
body

}
next statement

set r4 to zero
label1: compare r4 to 10

branch to label2 if >=
code to perform body
increment r4
branch to label1

label2: code for next statement
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Assembly Language For Indefinite Iteration

while (condition) {
body

}
next statement

label1: code to compute condition
branch to label2 if not true
code to perform body
branch to label1

label2: code for next statement
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Assembly Language For Procedure Call

x ( ) {
body of procedure x

}

x( );
other statement;
x ( );
next statement

x: code for body of x
ret

jsr x
code for other statement
jsr x
code for next statement
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Argument Passing

d Possibilities for hardware

– Stack in memory used for arguments

– Register windows used to pass arguments

– Special-purpose argument registers used

d Assembly language depends on hardware
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Consequence For Programmers

No single argument passing paradigm is used in assembly
languages because a variety of hardware mechanisms exist for
argument passing. In addition, programmers sometimes use
alternatives to the basic mechanism to optimize performance
(e.g., passing values in registers).
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Example Procedure Invocation
(Using Registers 1 - 8)

x ( a, b ) {
body of function x

}

x( -4, 17 );
other statement;
x ( 71, 27 );
next statement

x: code for body of x that assumes
reg. 1 contains parameter a
and reg. 2 contains b

ret

load -4 into register 1
load 17 into register 2
jsr x
code for other statement
load 71 into register 1
load 27 into register 2
jsr x
code for next statement
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Function Invocation

d Like procedure invocation

d Also returns result

d Hardware exists that returns value

– On a stack in memory

– In a special-purpose register

– In a general-purpose register
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Interaction With High-Level Language

d Assembly language program can call procedure written in
high-level language (e.g., to avoid writing in assembly
language)

d High-level language program can call procedure written in
assembly language

– When higher speed is needed

– When access to special-purpose hardware is required

d Assembly language coded to follow calling conventions of
high-level language
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In Practice

Because writing application programs in assembly language is
difficult, assembly language is reserved for situations where a
high-level language has insufficient functionality or results in
poor performance.
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Declaration Of Variable In Assembly Language

d Most assembly languages have no declarations or typing

d Programmer can reserve storage and use labels

d Typical directives

– .word

– .byte or .char

– .long
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Examples Of Equivalent Declarations

int x, y, z;

short w, q;

statement

x: .long
y: .long
z: .long
w: .word
q: .word

code for statement
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Specifying Initial Values

d Usually allowed as arguments to directives

d Example to declare 16-bit storage with initial value 949:

x: .word 949
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Assembler

d Software component

d Accepts assembly language program as input

d Produces binary form of program as output

d Uses two-pass algorithm
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Difference Between Assembler And Compiler

Although both a compiler and an assembler translate a source
program into equivalent binary code, a compiler has more
freedom to choose which values are kept in registers, the
instructions used to implement each statement, and the
allocation of variables to memory. An assembler merely
provides a one-to-one translation of each statement in the
source program to the equivalent binary form.
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What An Assembler Provides

d Statements are 1-to-1 with instructions

d Assembler

– Computes relative location for each label

– Fills in branch offsets automatically

d Consequence: can insert or delete statements without
recomputing offsets manually
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Example Of Code Offsets

locations assembly code2222222222222222222222222222222222222222222222222222222

0x00 – 0x03 x: .word

0x04 – 0x07 label1: cmp r1, r2

0x08 – 0X0B bne label2

0X0C – 0x0F jsr label3

0x10 – 0x13 label2: load r3, 0

0x14 – 0x17 br label4

0x18 – 0x1B label3: add r5, 1

0X1C – 0x1F ret

0x20 – 0x23 label4: load r1, 1

0x24 – 0x27 ret
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General Concept

Conceptually, an assembler makes two passes over an assembly
language program. During the first pass, the assembler assigns
a location to each statement. During the second pass, the
assembler uses the assigned locations to generate code.
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Assembly Language Macros

d Syntactic substitution

d Parameterized for flexibility

d Programmer supplies macro definitions

d Code contains macro invocations

d Assembler handles macro expansion in extra pass

d Known as macro assembly language
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Macro Syntax

d Varies among assembly languages

d Typical definition bracketed by keywords

d Example keywords

– macro

– endmacro

d Typical invocation uses macro name
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Example Of Macro Definition

macro addmem(a, b, c)

load r1, a # load 1st arg into register 1

load r2, b # load 2nd arg into register 2

add r1, r2 # add register 2 to register 1

store r3, c # store the result in 3rd arg

endmacro

d Invocation has arguments that correspond to parameters a,
b, and c
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Example Of Macro Expansion

#

# note: code below results from addmem(xxx, YY, zqz)

#

load r1, xxx # load 1st arg into register 1

load r2, YY # load 2nd arg into register 2

add r1, r2 # add register 2 to register 1

store r3, zqz # store the result in 3rd arg
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Programming With Macros

d Many assembly languages use syntactic substitution

– Parameters treated as string of characters

– Arbitrary text permitted

– No checking performed

d Consequence for programmers: macro can generate invalid
code
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Example Of Illegal Code That
Results From A Macro Expansion

#

# note: code below results from addmem(1+, %*J , +)

#

load r1, 1+ # load 1st arg into register 1

load r2, %*J # load 2nd arg into register 2

add r1, r2 # add register 2 to register 1

store r3, + # store the result in 3rd arg

endmacro

d Assembler substitutes macro arguments literally

d Error messages refer to expanded code, not macro definition
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Summary

d Assembly language is low-level and incorporates details of a
specific processor

d Many assembly languages exist, one per processor

d Each assembly language statement corresponds to one
machine instruction

d Same basic programming paradigm used in most assembly
languages

d Programmers must code assembly language equivalents of
abstractions such as

– Conditional execution

– Definite and indefinite iteration

– Procedure call
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Summary
(continued)

d Assembler translates assembly language program into binary
code

d Assembler uses two-pass processing

– First pass assigns relative locations

– Second pass generates code

d Some assemblers have additional pass to expand macros

CS250  --  Chapt. 8 50 2006



Questions?



IX

Memory And Storage

CS250  --  Chapt. 9 1 2006



Key Aspects Of Memory

d Technology

– Type of underlying hardware

– Many technologies available

– Differ in cost, persistence, performance

d Organization

– How underlying hardware used to build memory system

– Directly visible to programmer
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Memory Characteristics

d Volatile or nonvolatile

d Random or sequential access

d Read-write or read-only

d Primary or secondary
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Memory Volatility

d Volatile memory

– Contents disappear when power is removed

– Least expensive

d Nonvolatile memory

– Contents remain without power

– More expensive than volatile memory

– May have slower access times

– Variants ‘‘cheat’’ by using battery to keep contents
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Memory Access Paradigm

d Random access

– Typical

d Sequential access

– Special purpose memory

– Hardware known as FIFO (First-In-First-Out)
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Permanence Of Values

d ROM (Read Only Memory)

– Values can be read, but not changed

– Useful for firmware

d PROM (Programmable Read Only Memory)

– Contents can be altered, but doing so is time-consuming

– Change may involve removal from a circuit and
exposure to ultraviolet light
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Permanence Of Values
(continued)

d EEPROM

– Form of PROM that can be changed while installed

– Variants such as Flash ROM used in digital cameras
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Primary And Secondary Memory

d Broad classification of memory technologies

d Terminology is qualitative
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Traditional Terminology

d Primary memory

– Highest speed

– Most expensive, therefore smallest

– Typically solid state technology

d Secondary memory

– Lower speed

– Less expensive, therefore can be larger

– Typically magnetic media and electromechanical drive
mechanism
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In Practice

d Distinction between primary and secondary storage blurred

d Solid state technology replacing electromechanical
technology

d Example: microdrive that uses flash memory
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Memory Hierarchy

d Key concept to memory designer

d Related to definitions of primary / secondary memory

d Arise as tradeoff

– Highest performance memory costs the most

– Architect chooses set of memories to satisfy both
performance and cost constraints
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Memory Hierarchy
(continued)

d Small amount of memory has highest performance

d Slightly larger amount of memory has somewhat lower
performance

d Large amount of memory has lowest performance

d Example hierarchy

– Dozens of general-purpose registers

– Megabytes of main memory

– Gigabytes of secondary storage
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General Principle

To optimize memory performance for a given cost, a set of
technologies are arranged in a hierarchy that contains a
relatively small amount of fast memory and larger amounts of
less expensive, but slower memory.
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How Should Memory Be Designed?

d Separate memories, one for programs and another for data

d One memory that holds both programs and data

CS250  --  Chapt. 9 14 2006



Instruction Store And Data Store

d Early computers had separate memories known as

– Instruction store

– Data store

d Most modern computers

– One memory for both instructions and data

d Note single memory design is known as a Von Neumann
architecture
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A Note About Memory Types

d Some special-purpose computers use separate memories

d Motivation: choose memory technology that is optimized for
pattern of use

– Instruction store: typically sequential

– Data store: typically random
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The Fetch-Store Paradigm

d Access paradigm used by memory

d Two operations

– Fetch the value from a specified location

– Store a value into a specified location

d Two operations also called

– Read

– Write

d We will discuss implementation of fetch / store later
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Summary

d Two key aspects of memory are

– Technology

– Organization

d Memory can be characterized as

– Volatile or nonvolatile

– Random or sequential access

– Permanent or nonpermanent

– Primary or secondary
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Summary
(continued)

d Memory systems use fetch / store paradigm

d Two operations are known as

– Fetch (Read)

– Store (Write)
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Questions?



X

Physical Memory
And

Physical Addressing
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Computer Memory

d Main memory known as Random Access Memory (RAM)

d Usually volatile

d Two basic technologies available

– Static RAM

– Dynamic RAM
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Static RAM (SRAM)

d Easiest to understand

d Similar to flip-flop
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Illustration Of Static RAM

circuit
for

one bit

input output

write enable

d When enable is high, output is same as input

d Otherwise, output holds last value
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Advantages And Disadvantages Of SRAM

d Chief advantage: high speed

d Chief disadvantage: power consumption and heat
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Dynamic RAM (DRAM)

d Alternative to SRAM

d Consumes less power

d Acts like a capacitor

– Stores charge
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The Facts Of Electronic Life

d Capacitor gradually loses charge

d When left for a long time, logical 1 changes to logical 0

d Time to discharge can be under a second

d Although it is inexpensive, DRAM is an imperfect memory
device!
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Making DRAM Work

d Invent extra hardware that operates independently

d Repeatedly step through each location of DRAM

d Read value from location in DRAM

d Write value back into same location

d Extra hardware known as refresh circuit
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Illustration Of Bit In DRAM

circuit
for

one bit

refresh

input output

write enable
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DRAM Refresh Circuit

d More complex than figure implies

d Must coordinate with normal read and write operations
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Measures Of Memory Technology

d Density

d Latency and cycle time
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Memory Density

d Refers to memory cells per square area of silicon

d Usually stated as number of bits on standard size chip

d Examples

– 1 meg chip holds one megabit of memory

– 4 meg chip holds four megabits of memory

d Note: higher density chip generates more heat
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Separation Of Read And Write Performance

In many memory technologies, the time required to fetch
information from memory differs from the time required to store
information in memory, and the difference can be dramatic.
Therefore, any measure of memory performance must give two
values: the performance of read operations and the performance
of write operations.
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Latency

d Time that elapses between the start of an operation and the
completion of the operation

d Not a constant
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Memory Organization

d Hardware unit connects computer to physical memory chips

d Called a memory controller
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Illustration Of Memory Organization

processor control-
ler

physical
memory
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Honoring A Memory Request

d Computer

– Presents request to controller

– Waits for response

d Controller

– Translates request into signals for physical memory
chips

– Returns answer to computer immediately

– Sends signals to reset physical memory for next request
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Consequence Of The Need To Reset Memory

Because a memory controller may need extra time between
operations to reset the underlying physical memory, latency is
an insufficient measure of performance; a performance measure
needs to measure the time required for successive operations.
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Memory Cycle Time

d Time that must elapse between two successive memory
operations

d More accurate measure than latency

d Two separate measures

– Read cycle time (tRC)

– Write cycle time (tWC)
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The Point About Cycle Times

The read cycle time and write cycle time are used as measures
of memory system performance because they measure how
quickly the memory system can handle successive requests.
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Synchronized Memory Technologies

d Use same hardware clock as CPU

d Avoid unnecessary delays

d Can be used with SRAM or DRAM

d Terminology

– Synchronized Static Random Access Memory (SSRAM)

– Synchronized Dynamic Random Access Memory
(SDRAM)

d Note: the RAM in many computers is now SDRAM
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Multiple Data Rate Memory Technologies

d Technique to improve memory performance

d Avoids a memory bottleneck

d Memory hardware runs at a multiple of CPU clock

d Examples

– Double Data Rate SDRAM (DDR-SDRAM)

– Quad Data Rate SRAM (QDR-SRAM)
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Example Memory Technologies

Technology Description222222222222222222222222222222222222222222222222222222222222

DDR-DRAM Double Data Rate Dynamic RAM

DDR-SDRAM Double Data Rate Synchronized Dynamic RAM

FCRAM Fast Cycle RAM

FPM-DRAM Fast Page Mode Dynamic RAM

QDR-DRAM Quad Data Rate Dynamic RAM

QDR-SRAM Quad Data Rate Static RAM

SDRAM Synchronized Dynamic RAM

SSRAM Synchronized Static RAM

ZBT-SRAM Zero Bus Turnaround Static RAM

RDRAM Rambus Dynamic RAM

RLDRAM Reduced Latency Dynamic RAM

d Many others exist
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Memory Organization

processor control-
ler

physical
memory...

parallel interface

d Parallel interface used between computer and memory

d Called a bus (more later in the course)
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Memory Transfer Size

d Amount of memory that can be transferred to computer
simultaneously

d Determined by bus between computer and controller

d Example memory transfer sizes

– 16 bits

– 32 bits

– 64 bits

d Important to programmers
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Physical Memory And Word Size

d Bits of physical memory are divided into blocks of N bits
each

d Terminology

– Group of N bits is called a word

– N is known as the width of a word or the word size
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Physical Memory Addresses

d Each word of memory is assigned a unique number known
as a physical memory address

d Programmer imagines physical memory to be an array of
words

d Note: entire word must be transferred
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Illustration Of Physical Memory

word 0

word 1

word 2

word 3

word 4

word 5

.

.

.

physical
address

0

1

2

3

4

5

32 bits

d Illustration depicts a 32-bit word size
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Summary of Physical Memory Organization

Physical memory is organized into words, where a word is
equal to the memory transfer size. Each read or write
operation applies to an entire word.
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Choosing A Word Size

d Larger word size

– Implemented with more parallel wires

– Results in higher performance

– Has higher cost

d Note: architect usually designs all parts of computer to use
one size for:

– Memory word

– Integer (general-purpose registers)

– Floating point number
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Byte Addressing

d View of memory presented to processor

d Each byte of memory assigned an address

d Convenient for programmers

d Underlying memory can still use word addressing
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Translation Between Byte And Word Addresses

d Performed by intelligent memory controller

d CPU can use byte addresses (convenient)

d Physical memory can use word addresses (efficient)
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Illustration Of Address Translation

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

.

.

.

physical
address

0

1

2

3

4

5

32 bits
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Mathematics Of Translation

d Word address given by:

W = 
J
J
Q
  

N
B33  

J
J
P

d Offest given by:

O = B mod  N

d Example

– N = 4

– Byte address 11

– Found in word 2 at offset 3
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Efficient Translation

d Choose word size as power of 2

d Word address computed by extracting high-order bits

d Offset computed by extracting low-order bits
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The Important Point

To avoid arithmetic calculations such as division or remainder,
physical memory is organized such that the number of bytes per
word is a power of two, which means the translation from a
byte address to word address and offset can be performed by
extracting bits.
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Example Of Byte-To-Word Translation

1000100 . ..

Byte Address, B (17)

Word Address, W (4) Offset, O (1)
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Byte Alignment

d Refers to integer storage in memory

d In some architectures

– Integer in memory must correspond to word in
underlying physical memory

d In other architectures

– Integer can be unaligned, but fetch and store operations
are much slower
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The Point For Programmers

The organization of physical memory affects programming:
even if a processor allows unaligned memory access, aligning
data on boundaries that correspond to the physical word size
can improve program performance.
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Memory Size And Address Space

d Size of address limits maximum memory

d Example: 32-bit address can represent

232 = 4,294,967,296

unique addresses

d Known as address space

d Note: word addressing allows larger memory than byte
addressing
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Programming With Word Addressing

d To obtain a single byte

– Fetch word from memory

– Extract byte from word

d To store a single byte

– Fetch word from memory

– Replace byte in word

– Write entire word back to memory

d Performed by software
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Measures Of Physical Memory Size

Physical memory is organized into a set of M words that each
contain N bytes; to make controller hardware efficient, M and
N are each chosen to be powers of two.

d Note

– Memory sizes expressed as powers of two

– Kilobyte defined to be 210 bytes

– Megabyte defined to be 220 bytes
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Consequence To Programmers

d Speed of computer network or other I/O device usually
expressed in powers of ten

– Example: megabits per second is 106 bits per second

d Programmer must accommodate differences between
measures for storage and transmission
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C Programming And Memory Addressability

d C has a heritage of both byte and word addressing

d Example of byte pointer declaration

char *iptr;

d Example of integer pointer declaration

int *iptr;

5.If integer size is four bytes, iptr + + increments by four
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Memory Dump

d Used for debugging

d Printable representation of bytes in memory

d Each line of output specifies memory address and bytes
starting at that address
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Example Memory Dump

d Assume linked list in memory

d Head consists of pointer

d Each node has the following structure:

struct node {
int count;
struct node *next;

}
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Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006
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Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006

head

d Head found at address 0x0001bde4
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Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006

head node 1

d Head found at address 0x0001bde4

d First node at 0x0001bdf8 contains 192 (0xc0)
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Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006

head node 1

node 2

d Head found at address 0x0001bde4

d First node at 0x0001bdf8 contains 192 (0xc0)

d Second node at 0x0001be14 contains 200 (0xc8)
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Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006

head node 1

node 2
node 3

d Head found at address 0x0001bde4

d First node at 0x0001bdf8 contains 192 (0xc0)

d Second node at 0x0001be14 contains 200 (0xc8)

d Last node at 0x001be00 contains 100 (0x64)
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Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006

head node 1

node 2
node 3

d Head found at address 0x0001bde4

d First node at 0x0001bdf8 contains 192 (0xc0)

d Second node at 0x0001be14 contains 200 (0xc8)

d Last node at 0x001be00 contains 100 (0x64)
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Example Memory Dump

Address Contents Of Memory

0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006

d Head found at address 0x0001bde4

d First node at 0x0001bdf8 contains 192 (0xc0)

d Second node at 0x0001be14 contains 200 (0xc8)

d Last node at 0x001be00 contains 100 (0x64)
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Memory Banks And Interleaving

d Two techniques used to increase memory performance

d Use parallel hardware
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Memory Banks

d Alternative to single memory and single memory controller

d Processor connects to multiple controllers

d Each controller connects to separate physical memory

d Controllers and memories can all operate simultaneously
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Programming With Memory Banks

d Two approaches

d Transparent

– Programmer is not concerned with banks

– Hardware automatically finds and exploits parallelism

d Opaque

– Banks visible to programmer

– To optimize performance, programmer must place items
that will be accessed simultaneously in separate banks
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Interleaving

d Related to memory banks

d Transparent to programmer

d Places consecutive bytes in separate physical memory

d Uses low-order bits of address to choose module

d Known as N-way interleaving (N is number of physical
memories)
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Illustration Of 4-Way Interleaving

interface

module 0 module 1 module 2 module 3

0 1 2 3
4 5 6 7
8 9 10 11
... ... ... ...

requests

d Consecutive bytes stored in separate physical memory
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Content Addressable Memory (CAM)

d Blends two key ideas

– Memory technology

– Memory organization

d Includes parallel hardware for high-speed search
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CAM

d Think of memory as a two-dimensional array

d Row in the array is called a slot

d Lookup hardware can answer the question: ‘‘is X stored in
any row of the CAM?’’
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Illustration Of CAM

CAM Storage

Key

...

one slot
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Lookup In A CAM

d CAM presented with key for lookup

d Hardware searches slots to determine whether key is present

– Search operation performed in parallel on all slots

– Result is index of slot where value found

d Note: parallel search hardware makes CAM expensive
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Ternary CAM (T-CAM)

d Variation of CAM

d Extends CAM to use partial match searching

d Each bit in slot can have one of three possible values:

– Zero

– One

– Don’t care

d CAM either reports

– First match

– All matches (bit vector)
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Summary

d Physical memory

– Organized into fixed-size words

– Accessed through a controller

d Controller can use

– Byte addressing when communicating with a processor

– Word addressing when communicating with a physical
memory

d To avoid arithmetic, use powers of two for

– Address space size

– Bytes per word
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Summary
(continued)

d Many memory technologies exist

d A memory dump that shows contents of memory in a
printable form can be an invaluable tool

d Two techniques used to optimize memory access

– Separate memory banks

– Interleaving

d Content Addressable Memory (CAM) permits parallel
search; variation of CAM known as Ternary Content
Addressable Memory (T-CAM) allows partial match
retrieval
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Questions?



XI

Virtual Memory Technologies
And

Virtual Addressing

CS250  --  Chapt. 11 1 2006



Virtual Memory

d Broad concept

d Hides the details of the underlying physical memory

d Provides a view of memory that is more convenient to a
programmer

d Can overcome limitations of physical memory and physical
addressing

CS250  --  Chapt. 11 2 2006



Virtual Example: Byte Addressing

d CPU uses byte addresses

d Underlying physical memory uses word addresses

d Memory controller translates automatically

d Fits our definition of virtual memory
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Virtual Memory Terminology

d Memory Management Unit (MMU)

– Hardware unit

– Provides translation between virtual and physical
memory schemes

d Virtual address

– Address generated by processor

– Translated into corresponding physical address by MMU
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Virtual Memory Terminology
(continued)

d Virtual address space

– Set of all possible virtual addresses

– Can be larger or smaller than physical memory

d Virtual memory system

– All of the above
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Multiple Physical Memory Systems

d Many computers have more than one physical memory
system

d Each physical memory

– Can be optimized for a specific purpose

– Can use a unique technology (e.g., SRAM or DRAM)

d Virtual memory system can provide uniform address space
for all physical memories
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Illustration Of Virtual Address Space
That Covers Two Memories

physical
memory

#1

physical
memory

#2

physical
controller

physical
controller

MMU

processor
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Virtual Addressing

d Processor must have unique address for each location in
memory

d MMU translates from virtual space to underlying physical
memories

d Example:

– Two physical memories with 1000 bytes each

– Virtual addresses 0 through 999 correspond to memory 1

– Virtual addresses 1000 through 1999 correspond to
memory 2
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Illustration Of Virtual Addresses For Two Memories

memory 1

memory 2

Address

0

999

1000

1999

Processor sees a
single contiguous
memory
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Address Translation

d Performed by MMU

d Also called address mapping

d For our example

– To determine which physical memory, test if address is
above 999

– Subtract 1000 from address when forwarding a request
to memory 2

CS250  --  Chapt. 11 10 2006



Steps Used To Perform Address Translation
For The Example System

receive memory request from processor;
let A be the address in the request;
if ( A >= 1000 ) {

A = A – 1000;
pass the modified request to memory 2;

} else {
pass the unmodified request to memory 1;

}
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Avoiding Arithmetic Calculation

d Arithmetic computation

– Is expensive

– Can be avoided

d Divide virtual address space along boundaries that
correspond to powers of two

d Select bits of virtual address to

– Choose among underlying physical memories

– Specify an address in the physical memory
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Example Of Address Translation
Using Powers Of Two

d Two physical memories

d Each memory has 1024 bytes

d Virtual addresses 0 through 1023 map to memory 1

d Virtual addresses 1024 through 2047 map to memory 2
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Example Addresses In Binary

Addresses Values In Binary222222222222222222222222222222222

0 0 0 0 0 0 0 0 0 0 0 0 0
to to

1023 0 1 1 1 1 1 1 1 1 1 1 1

1024 1 0 0 0 0 0 0 0 0 0 0 0
to to

2047 1 1 1 1 1 1 1 1 1 1 1 1

d Values above 1023 are the same as previous set except for
high-order bit

d High-order bit determines physical memory (0 or 1)
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The Important Point

Dividing a virtual address space on a boundary that
corresponds to a power of two allows the MMU to choose a
physical memory and perform the necessary address translation
without requiring arithmetic operations.
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Address Space Continuity

d Contiguous address space

– All locations correspond to physical memory

– Inflexible: requires all memory sockets to be populated

d Discontiguous address space

– One or more blocks of address space do not correspond
to physical memory

– Called hole

– Reference to address in a hole causes an error

– Flexible: allows owner to decide how much memory to
install
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Illustration Of Discontiguous Address Space

memory 1

memory 2

Address

0

N/2– 1

N/2

N

Hole
(not present)

Hole
(not present)
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Consequence To A Programmer

A virtual address space can be contiguous, in which case every
address maps to a location of an underlying physical memory,
or noncontiguous, in which case the address space contains one
or more holes. If a processor attempts to read or write any
address that does not correspond to physical memory, an error
results.

CS250  --  Chapt. 11 18 2006



Motivations For Virtual Memory

d Homogeneous integration of hardware

d Programming convenience

d Support for multiprogramming

d Protection of programs and data
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Multiple Virtual Spaces And Multiprogramming

d Goal: allow multiple application programs to run
concurrently

d Prevent one program from interfering with another

d Trick: provide each program with a separate virtual address
space
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Illustration Of Four Virtual Address Spaces
Mapped To A Single Physical Address Space

physical
memory

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

0

N / 4

N / 2

3 N / 4

N

virtual
space

1

0

M

virtual
space

2

0

M

virtual
space

3

0

M

virtual
space

4

0

M
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Dynamic Address Space Creation

d Processor configures MMU

d Address space mapping can be changed at any time

d Typically

– Access to MMU restricted to operating system

– OS runs in real mode

– Address space changes only affect application program

CS250  --  Chapt. 11 22 2006



Technologies For Dynamic
Address Space Manipulation

d Base-bound registers

d Segmentation

d Demand paging
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Base-Bound Registers

d Two hardware registers in MMU

d Base register specifies starting address

d Bound register specifies size of address space

d Values changed by operating system

– Set before application runs

– Changed when switching to another application
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Illustration Of Virtual Memory Using
Base-Bound Registers

physical
memory

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

0

N

virtual
space

0

M

base

M

bound
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Protection

d Multiple applications each allocated separate area of
physical memory

d OS sets base-bound registers before application runs

d MMU hardware checks each memory reference

d Address outside valid range results in error

CS250  --  Chapt. 11 26 2006



The Concept Of Protection

A virtual memory system that supports multiprogramming must
also provide protection that prevents one program from reading
or altering memory that has been allocated to another program.
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Segmentation

d Alternative to base-bound

d Provides fine-granularity mapping

– Divides program into segments (typical segment
corresponds to one procedure)

– Maps each segment to physical memory

d Key idea

– Segment is only placed in physical memory when
needed

– When segment is no longer needed, OS moves it to disk
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Problems With Segmentation

d Need hardware support to make moving segments efficient

d Two choices

– Variable-size segments cause memory fragmentation

– Fixed-size segments may be too small or too large
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Summary Of Segmentation

Segmentation refers to a virtual memory scheme in which
programs are divided into variable-size blocks, and only the
blocks currently needed are kept in memory. Because it leads
to a problem known as memory fragmentation, segmentation is
seldom used.

CS250  --  Chapt. 11 30 2006



Demand Paging

d Alternative to segmentation

d Most popular virtual memory technology

d Divides program into fixed-size pieces called pages

d No attempt to align page boundary with procedure

d Typical page size 4K bytes
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Support Needed For Demand Paging

d Hardware that handles address mapping and detects missing
pages

d Software that moves pages between external store and
physical memory
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Paging Hardware

d Part of MMU

d Intercepts each memory reference

d If referenced page is present in memory, translate address

d If referenced page not present in memory, generate a page
fault (error condition)

d Allow software to handle the fault
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Demand Paging Software

d Part of the operating system

d Works closely with hardware

d Responsible for overall memory management

d Determines which pages of each application to keep in
memory and which to keep on disk

d Records location of all pages

d Fetches pages on demand

d Configures the MMU
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Page Replacement

d Initially

– Applications reference pages

– Each referenced page is placed in physical memory

d Eventually

– Memory is full

– Existing page must be written to disk before memory
can be used for new page

d Choosing a page to expel is known as page replacement

d Should replace a page that will not be needed soon
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Paging Terminology

d Page: fixed-size piece of program’s address space

d Frame: slot in memory exactly the size of one page

d Resident: a page that is currently in memory

d Resident set: pages from a given application that are present
in memory
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Paging Data Structure

d Page table

– One per application

– Think of each as one-dimensional array indexed by page
number

– Stores the location of each page in the application (either
in memory or on disk)
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Illustration Of A Page Table

physical
memory

0

N

page
table

0

P

d K bytes per page
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Address Translation

d Given virtual address V, find physical memory address P

d Three conceptual steps

– Determine the number of the page on which address V
lies

– Use the page number as an index into the page table to
find the location in memory that corresponds to the first
byte of the page

– Determine how far into the page V lies, and convert to a
position in the frame in memory
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Mathematical View Of Address Translation

d Page number computed by dividing the virtual address by
the number of bytes per page, K:

N = 
J
J
Q
 

K
V33 

J
J
P

d Offset within the page, O, can be computed as the
remainder:

O = V modulo  K
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Mathematical View Of Address Translation
(continued)

d Use N and O to translate virtual address V to physical
address P:

P = pagetable [N] + O
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Using Powers Of Two

d Cannot afford division or remainder operation for each
memory reference

d Use powers of two to eliminate arithmetic

d Let number of bytes per page be 2k

– Offset O given by low-order k bits

– Page number given by remaining (high-order) bits

d Computation is:

P  =  pagetable [ high_order_bits (V) ]  or  low_order_bits (V)
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Illustration Of Translation With MMU Hardware

page table

oN

virtual address

f o

physical address

f
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Presence, Use, And Modified Bits

d Found in most paging hardware

d Shared by hardware and software

d Purpose of each bit:

Control Bit Meaning
22222222222222222222222222222222222222222222222222222222222

Presence bit Tested by hardware to determine whether

page is currently present in memory

Use bit Set by hardware whenever page is referenced

Modified bit Set by hardware whenever page is changed
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Page Table Storage

d Page tables occupy space

d Two possibilities for page table storage

– In MMU

– In main memory
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Illustration Of Page Tables
Stored In Physical Memory

operating
system

page
tables frame storage

memory
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Paging Efficiency

d Paging must be used

– For each instruction fetch

– For each data reference

d Can become a bottleneck

d Must be optimized
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Translation Lookaside Buffer (TLB)

d Hardware mechanism

d Optimizes paging system

d Form of Content Addressable Memory (CAM)

d Stores pairs of

( virtual address, physical address )

d If mapping in TLB

– No page table reference needed

– MMU can return mapping quickly
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In Practice

d Virtual memory system without TLB is unacceptable

d TLB works well because application programs tend to
reference given page many times
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The Importance Of A TLB

A special high-speed hardware device called a Translation
Lookaside Buffer (TLB) is used to optimize performance of a
paging system. A virtual memory that does not have a TLB can
be unacceptably slow.
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Consequences For Programmers

d Can optimize performance by accommodating paging
system

d Examples

– Group related data items on same page

– Reference arrays in order that accesses contiguous
memory locations
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Array Reference

d Illustration of array in row-major order

row 0 row 1 row 2 row 3 row 4 row 5 row N

. . .

d Location of A [ i , j ] given by:

location(A) + i×Q + j

where Q is number of bytes per row
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Optimal Access Of Row-Major Order Array

for i = 1 to N {
for j = 1 to M {

A [ i, j ] = 0;
}

}
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Nonoptimal Access Of Row-Major Order Array

for j = 1 to M {
for i = 1 to N {

A [ i, j ] = 0;
}

}
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Summary

d Virtual memory systems present illusion to processor and
programs

d Many virtual memory architectures are possible

d Examples include

– Hiding details of word addressing

– Create uniform address space that spans multiple
memories

– Incorporate heterogeneous memory technologies into
single address space
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Summary
(continued)

d Virtual memory offers

– Convenience for programmer

– Support for multiprogramming

– Protection

d Three technologies used for virtual memory

– Base-bound registers

– Segmentation

– Demand paging
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Summary
(continued)

d Demand paging

– The most popular technology

– Combination of hardware and software

– Uses page tables to map virtual addresses to physical
addresses

– High-speed lookup mechanism known as TLB makes
demand paging practical
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Questions?



XII

Caches
And

Caching
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Caching

d Key concept in computing

d Used in hardware and software

d Memory cache can reduce the Von Neumann bottleneck
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Cache

d Acts as an intermediary

d Located between source of requests and source of replies

d Contains high-speed, temporary storage

d Keeps a copy of selected items

d Answers requests from local copy when possible
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Illustration Of A Cache

large data storage

requester
cache
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Cache Characteristics

d Small (usually much smaller than storage needed for entire
set of items)

d Active (makes decisions)

d Transparent (invisible to both requester and data store)

d Automatic (uses sequence of requests; does not receive extra
instructions)
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Generality Of Caching

d Hardware, software, or combination

d Small or large data items (byte of memory or complete file)

d Generic data items (e.g., disk block)

d Specific data item (e.g., document from a word processor)

d Textual data (e.g., an email message)
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Generality Of Caching
(continued)

d Nontextual data (e.g., an image, an audio file, or a video
clip)

d A single computer system (e.g., between a processor and a
memory)

d Many computer systems (e.g., between a set of desktop
computers and a database server)

d Systems that are designed to retrieve data (e.g., the World
Wide Web)

d Systems that store as well as retrieve data (e.g., a physical
memory)
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The Importance Of Caching

Caching is a fundamental optimization technique used
throughout most hardware and software systems that retrieve
information. Caching is a broad concept; data items kept in a
cache are not limited to a specific type, form, or size.
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Cache Terminology

d Cache hit

– Request that can be satisfied from cache

– No need to access data store

d Cache miss

– Request cannot be satisfied from cache

– Cache retrieves item from data store
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Cache Terminology
(continued)

d Locality of reference

– Refers to repetitions of same request

– High locality means many repetitions

– Low locality means few repetitions

d Note: cache works well with high locality of reference
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Cache Performance

large data storagerequester cache

Ch

Cm

d Cost measured with respect to requester

CS250  --  Chapt. 12 11 2006



Worst Case Cache Performance

d Ch is the cost of an item found in the cache

d Cm is the cost of an item not found in the cache

d Average cost per request is Cm

d Worst case for sequence of N requests

Cworst  = N Cm
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Best Case Cache Performance

d Best case for sequence of N requests is

Cbest  = Cm + (N − 1) Ch

d Average cost per request is

N

Cm + (N − 1) Ch333333333333333   =   
N

Cm3333  −  
N

Ch333 + Ch

d As N → ∞, average cost becomes Ch
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Summary Of Costs

If we ignore overhead, in the worst case, the performance of
caching is no worse than if the cache were not present. In the
best case, the cost per request is approximately equal to the
cost of accessing the cache, which is lower than the cost of
accessing the data store.
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Definition Of Hit and Miss Ratios

d Hit ratio

– Percentage of requests satisfied from cache

– Given as value between 0 and 1

d Miss ratio

– Percentage of requests not satisfied from cache

– Equal to 1 minus hit ratio
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Cache Performance On A Typical Sequence

d Access cost depends on hit ratio

Cost   =   r Ch  +  (1 − r) Cm

where r is the hit ratio

d Note: performance improves if hit ratio increases or cost of
access from cache decreases
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Cache Replacement Policy

d Cache is smaller than data store

d Once cache is full, existing item must be ejected before
another can be inserted

d Replacement policy chooses items to eject

d Most popular replacement policy known as Least Recently
Used (LRU)

– Tends to retain items that will be requested again
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Multi-level Cache Hierarchy

d Can use multiple caches to improve performance

d Arranged in hierarchy by speed
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Illustration Of Two-Level Cache

large data storagerequester new cache original cache
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Analysis Of Two-Level Cache

d Cost is:

Cost   =   r 1 Ch 1  +  r 2 Ch 2  +  (1 − r 1 − r 2)Cm

d r 1 is fraction of hits for the new cache

d r 2 is fraction of hits for the original cache

d Ch 1 is cost of accessing the new cache

d Ch 2 is cost of accessing the original cache
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Preloading Caches

d Optimization technique

d Stores items in cache before requests arrive

d Works well if data accessed in related groups

d Examples

– When web page is fetched, web cache preloads images

– When byte of memory is fetched, memory cache can
preload succeeding bytes
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Memory Cache

d Several memory mechanisms operate as a cache

– TLB

– Demand paging

– Physical memory cache
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Demand Paging Performance

Cache analysis shows that using demand paging on a computer
system with a small physical memory can perform almost as
well as if the computer had a physical memory large enough for
the entire virtual address space.
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Physical Memory Cache

d Located between processor and physical memory

d Smaller than physical memory

d Note: sophisticated cache hardware operates in parallel to
achieve high performance:

– Search local cache

– Send request to underlying memory

d If answer found in cache, cancel request to memory
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Two Basic Types Of Cache

d Differ in how they handle write operation

d Write-through

– Keep copy of item in cache

– Send write request on to physical memory

d Write-back

– Keep copy of item in cache

– Only write copy to physical memory when necessary

– Works well for frequent updates (e.g., a loop increments
a value)
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Illustration Of System With Multiple Caches

processor
1

processor
2

cache 1 cache 2

physical memory

d Write-back means each cache can retain copy of item

d Cache coherence needed to ensure correctness
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Motivation For Multi-Level Memory Cache

d Traditional memory cache was separate from both the
memory and the processor

d To access traditional memory cache, a processor used pins
that connect the processor chip to the rest of the computer

d Using pins to access external hardware takes much longer
than accessing functional units that are internal to the
processor chip

d Advances in technology have made it possible to increase
the number of transistors per chip, which means a processor
chip can contain a larger cache
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Multi-Level Memory Cache Terminology

d Level 1 cache (L1 cache) on the processor chip

d Level 2 cache (L2 cache) external to the processor

d Level 3 cache (L3 cache) built into the physical memory
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Cost Of Accessing Memory

Computer systems use a multi-level cache hierarchy in which an
L1 cache is embedded on the processor chip, an L2 cache is
external to the processor, and an L3 cache is built into the
physical memory. In the best case, a multi-level cache makes
the cost of accessing memory approximately the same as the
cost of accessing a register.
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Instruction And Data Caches

d Instruction references are typically sequential

– High locality of reference

d Data references are more random

– Lower locality of reference

d Question: does performance improve with separate caches
for data and instructions?
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Instruction And Data Caches
(continued)

d Random references tend to lower cache performance

d Separating instruction and data caches can improve
performance

d However: if cache is ‘‘large enough’’, separation doesn’t
help
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Virtual Memory Caching

d Can choose to cache

– Physical memory address and contents

– Virtual memory address and contents

d Notes

– If MMU is off-chip, L1 cache must use virtual addresses

– Multiple applications use same virtual address space
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Caching Virtual Addresses

d OS performs cache flush operation when changing
applications

d Cache includes disambiguating tag with each entry
(e.g., application ID)
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Illustration Of ID Register

address used by cache

ID virtual address
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Two Technologies For Memory Caching

d Direct mapping memory cache

d Set associative memory cache
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Direct mapping memory cache

d Divides memory into numbered blocks

d Tag used to distinguish among blocks
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Illustration Of Direct Mapping Cache

memory block

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

...

d Example block size is 4

d Only block numbered i can be placed in cache slot i
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Illustration Of Tags

memory

cache

tag value

0

1

2

3

block

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

tag 0

tag 1

tag 2

tag 3

d Use of tags saves space

CS250  --  Chapt. 12 38 2006



Using Powers Of Two

tag block offset

d Using powers of two means bits of address specify tag,
block, and offset
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Algorithm For Cache Lookup

Given:
A memory address

Find:
The data byte at that address

Method:

Extract the tag number, t, block number, b, and offset,
o, from the address.

Examine the tag in slot b of the cache. If the tag
matches t, extract the value from slot b of the cache.

If the tag in slot b of the cache does not match t, use
the memory address to extract the block from
memory, place a copy in slot b of the cache, replace
the tag with t, and use o to select the appropriate byte
from the value.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2222222222222222222222222222222222222222222222222222222222

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
12222222222222222222222222222222222222222222222222222222222
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Set Associative Memory Cache

d Alternative to direct mapping memory cache

d Uses parallel hardware

d Maintains multiple, independent caches
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Illustration Of Set Associative Cache

tag tagvalue value

0

1

2

3

0

1

2

3

Hardware For Parallel Test
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Advantage Of Set Associative Cache

d Assume two memory addresses A1 and A2

– Both have block number zero

– Have different tags

d In direct mapped cache

– A1 and A2 contend for single slot

– Only one can be cached at a given time

d In set associative cache

– A1 and A2 can be placed in separate caches

– Both can be cached at a given time
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Fully Associative Cache

d Many parallel caches

d Each cache has exactly one slot

d Slot can hold arbitrary item
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Continuum Of Caches

d No parallelism corresponds to direct mapped cache

d Some parallelism corresponds to set associative cache

d Full parallelism corresponds to Content Addressable
Memory
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Consequences For Programmers

d In many programs caching works well without extra work

d To optimize cache performance perform all operations on
one data item before moving to another data item

CS250  --  Chapt. 12 46 2006



Summary

d Caching is fundamental optimization technique

d Cache intercepts requests, automatically stores values, and
answers requests quickly, whenever possible

d Caching can be used with both physical and virtual memory
addresses
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Summary
(continued)

d Memory cache uses hierarchy

– L1 onboard processor

– L2 between processor and memory

– L3 built into memory

d Two technologies used for memory cache

– Direct mapped

– Set associative
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Questions?



XIII

Input / Output
Concepts

And
Terminology
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I/O Devices

d Third major component of computer system

d Wide range of types

– Keyboards

– Mice

– Monitors

– Hard disks

– Printers

– Cameras

– Audio speakers
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Illustration Of Early I/O Device

external device

processor

circuit

...

to power source

digital signals

electrical signals lights

d Independent of processor

d Connected by digital signals
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Illustration Of Modern Interface Controller

processor device

controller controller

external
connection

d Needed at each end of physical connection

d Allows arbitrary voltage and signal on connection
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Two Types Of Interfaces

d Parallel interface

– Composed of many wires

– Each wire carries one bit at any time

– Width is number of wires

d Serial interface

– Single signal wire (also need ground)

– Bits sent one-at-a-time

– Slower than parallel interface
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Self-Clocking Data

d Ends of connection use separate clocks

d Transmission is self-clocking if signal encoded in such a
way that receiver can determine boundary of bits
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Duplex Terminology

d Full-duplex

– Simultaneous, bi-directional transfer

– Example disk drive supports simultaneous read and
write

d Half-duplex

– Transfer in only one direction at a time

– Interfaces must negotiate access before transmitting
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Latency And Throughput

The latency of an interface is a measure of the time required to
perform a transfer, the throughput of an interface is a measure
of the data that can be transferred per unit time.
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Data Multiplexing

d Fundamental idea

d Arises from hardware limits on parallelism (pins or wires)

d Allows sharing

d Multiplexor

– Accepts input from many sources

– Sends small amount from one source before accepting
another

d Demultiplexor

– Receives transmission of pieces

– Sends each piece to appropriate destination
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Illustration Of Multiplexing

unit 1 unit 2 unit 3 unit 4

64 bits of data to be transferred

multiplexing hardware

demultiplexing hardware

unit 1 unit 2 unit 3 unit 4

data reassembled after transfer

parallel interface
16 bits side

d Sixty-four bits of data multiplexed over 16-bit path
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Multiplexing And I/O Interfaces

Multiplexing is used to construct an I/O interface that can
transfer arbitrary amounts of data over a fixed number of
parallel wires. Multiplexing hardware divides the data into
blocks, and transfers each block independently.
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Multiple Devices Per External Interface

d Cannot afford separate interface per device

– Too many wires

– Not enough pins on processor chip

d We will see how sharing occurs
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Processor’s View Of I/O

A processor does not access external devices directly. Instead,
the processor uses a programming interface to pass requests to
an interface controller, which translates the requests into the
appropriate external signals.
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Questions?



XIV

Buses
And

Bus Architecture
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Definition Of A Bus

d Digital interconnection mechanism

d Allows two or more functional units to transfer data

d Typical use: connect processor to

– Memory

– I/O devices

d Design can be

– Proprietary (owned by one company)

– Standardized (available to many companies)
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Illustration Of A Bus

bus

processor
device
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Sharing

d Most buses shared

d Need an access protocol

– Determines which device can use the bus at any time

– All attached devices follow the protocol

d Note: can have multiple buses in one computer
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Characteristics Of A Bus

d Parallel data transfer

– Can transfer multiple bits at the same time

– Typical width is 32 or 64 bits

d Passive

– Bus does not contain many electronic components

– Attached devices handle communication

d Conceptual view: think of a bus as parallel wires

d Bus may have arbiter that handles sharing
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Physical Bus Connections

d Several possibilities

– Wires on a circuit board

– Sockets

– Combinations
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Illustration Of Bus On A Motherboard

mother board

sockets placed
near the edge

of the board

bus formed from
parallel wires

area on mother board
for the processor,

memory, and other units
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Illustration Of Circuit Board And
Corresponding Sockets

circuit board
(device interface)

mother board

socket
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Bus Interface

d Nontrivial

d Controller circuit required
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Conceptual Division Of A Bus

d Need three functions

– Control

– Address specification

– Data being transferred

d Conceptually three separate groups of wires (lines)
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Illustration Of Lines In A Bus

control
lines

address
lines

data
lines
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Bus Access

d Bus only supports two operations

– Fetch (also called read)

– Store (also called write)

d Access paradigm known as fetch-store paradigm

d Obvious for memory access

d Surprise: all operations, including I/O must be performed
using fetch-store paradigm
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Fetch-Store Over A Bus

d Fetch

– Place an address on the address lines

– Use control line to signal fetch operation

– Wait for control line to indicate operation complete

d Store

– Place an address on the address lines

– Place data item on the data lines

– Use control line to signal store operation

– Wait for control line to indicate operation complete
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Width Of A Bus

d Larger width

– Higher performance

– Higher cost

– Requires more pins

d Smaller width

– Lower cost

– Lower performance

– Requires fewer pins

d Compromise: multiplex transfers to reduce width
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Multiplexing

d Reuse lines for multiple purposes

d Extreme case

– Serial bus has one line

d Typical case

– Bus has K lines

– Address can be K bits wide

– Data can be K bits wide
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Illustration Of Multiplexing On A Bus

control
lines

address or data
lines

d Transfer takes longer with multiplexing

d Controller hardware is more sophisticated
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Effect Of Bus Multiplexing On Design

Addresses and data values are multiplexed over a bus. To
optimize performance of the hardware, an architect chooses a
single size for both data items and addresses.
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Illustration Of Connection To Memory Bus

bus

processor
memory

1
memory

N. . .

bus
interface

d Bus defines address space
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Control Hardware And Addresses

Although an interface receives all requests that pass across the
bus, the interface only responds to requests that contain an
address for which the interface has been configured.
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Example Of Steps A
Memory Interface Takes

Let R be the range of addresses assigned to the memory
Repeat forever {

Monitor the bus until a request appears;
if ( the request specifies an address in R ) {

respond to the request
} else {

ignore the request
}

}
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Potential Errors On A Bus

d Address conflict

– Two devices attempt to respond to a given address

d Unassigned address

– No device responds to a given address
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Address Configuration And Sockets

d Two options for address configuration

– Configure each interface with set of addresses

– Arrange sockets so that wiring limits each socket to a
range of addresses

d Latter avoids misconfiguration: owner can plug in additional
boards without configuring the hardware

d Note: some systems allow MMU to detect and configure
boards automatically
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Example Of Using Fetch-Store With Devices

d Imaginary status light controller

d Connected to 32-bit bus

d Contains sixteen separate lights

d Desired functions are

– Turn the display on

– Turn the display off

– Set the display brightness

– Turn the ith status light on or off
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Example Of Meaning Assigned To Addresses

Address Operation Meaning222222222222222222222222222222222222222222222222222222222222222222222

100 – 103 store nonzero data value turns the display on,
and a zero data value turns the display off

100 – 103 fetch returns zero if display is currently off,
and nonzero if display is currently on

104 – 107 store Change brightness. Low-order four bits of
the data value specify brightness value
from zero (dim) through sixteen (bright)

108 – 111 store The low order sixteen bits each control a
status light, where zero sets the corresponding
light off and one sets it on.
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Interpretation Of Operations

d Semantics are

if ( address == 100 && op == store && data != 0 )
turn_on_display;

d And

if ( address == 100 && op == store && data == 0 )
turn_off_display;
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Asymmetry

d Fetch and store operations

– Are independent

– Need not be defined for all addresses
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Unification Of Memory And Device Addressing

d Single bus can attach

– Multiple memories

– Multiple devices

d Bus address space includes all units
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Example System With A Bus

bus

processor memory
1

memory
2

device
1

device
2
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Address Assignments
For Example System

Device Address Range222222222222222222222222222222222222222222

Memory 1 0x000000 through 0x0 f f f f f
Memory 2 0x100000 through 0x1 f f f f f
Device 1 0x200000 through 0x20000b
Device 2 0x20000c through 0x200017
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Illustration Of Bus Address Space
For Example System

memory
1

0

memory
2

device 1 device 2

d Address space may have holes
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Example Address Map For 16-Bit Bus

available
for

memory

available
for

memory

available
for devices

0xffff

0xdfff

0xbfff

0x7fff

0x3fff

0x0000

Hole
(not available)

Hole
(not available)
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A Note About Address Space

In a typical computer, the part of the address space available to
devices is sparsely populated — only a small percentage of the
addresses are used.
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Example Code To Manipulate A Bus

int *p; /* declare p to be a pointer to an integer */

p = (*int)100; /* set pointer to address 100 */

*p = 1; /* store nonzero value in addresses 100 - 103 */
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A Note About Programming With Multiple Buses

A processor that has multiple buses provides special
instructions to access each; a processor that has one bus
interprets normal memory operations as referencing locations
in the bus address space.
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Illustration Of Bridge Between Two Buses

bus 2

bus 1

bridge

d Interconnection device

d Maps range of addresses

d Forwards operations and replies from one bus to the other

d Especially useful for adding an auxiliary bus
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Illustration Of Address Mapping

available
for

memory

0

available
for

memory

available
for devices. . . . . . . . . . . . . . . . . . . . . .

address space
of main bus

0

address space
of auxiliary bus

not
mappedmapping the

bridge supplies

CS250  --  Chapt. 14 36 2006



Switching Fabric

d Alternative to bus

d Connects multiple devices

d Sender supplies data and destination device

d Fabric delivers data to specified destination
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Conceptual Crossbar Fabric

input 1

input 2

input 3

input N

output 1 output 2 output 3 output M. . .

..

.

d Solid dot indicates a connection
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Summary

d Bus is fundamental mechanism that interconnects

– Processor

– Memory

– I/O devices

d Bus uses fetch-store paradigm for all communication

d Each unit assigned set of addresses in bus address space

d Bus address space can contain holes
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Summary
(continued)

d Bridge maps subset of addresses on one bus to another bus

d Programmer uses conventional memory address mechanism
to communicate over a bus

d Switching fabric is alternative to bus that allows parallelism
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Questions?



XV

Programmed
And

Interrupt-driven
I / O
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Two Basic Approaches To I/O

d Programmed I/O

d Interrupt-driven I/O
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Programmed I/O

d Used by earliest computers and embedded systems

d CPU does all the work

d Device has no intelligence (called dumb)

d Synchronization needed

d Processor

– Much faster than device

– Starts operation on device

– Waits for device to complete
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Polling

d Technique used when processor waits for a device

d Processor executes a loop

– Repeatedly request status from device

– Continue until device indicates ‘‘ready’’
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Example Of Early Polling

d Cause the printer to advance the paper

d Poll to determine when paper has advanced

d Move the print head to the beginning of the line

d Poll to determine when the print head reaches the beginning
of the line

d Specify a character to print

d Poll to determine when the character is locked in position.

d Cause the hammer to strike the character

d Poll to determine when the hammer is finished striking
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Example Of Early Polling
(continued)

d Cause the print head to move to the next character

d Poll to determine when the print head stops moving

d Specify another character to print

d Cause the hammer to strike the character

. . . Continue with each successive character
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Example Specification Of Addresses
Used For Device Polling

Addresses Operation Meaning222222222222222222222222222222222222222222222222222222222222222222222222222

0 through 3 store Nonzero starts paper advance
4 through 7 store Nonzero starts head moving to beginning of line
8 through 11 store Character to print (low-order byte)
9 through 12 store Nonzero starts hammer striking
13 through 16 fetch Busy: nonzero when device is busy
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Example C Code For Device Polling

int *p; /* declare an integer pointer */

p = 0x110000; /* point to lowest address of device */
*p = 1; /* start paper advance */
while (*(p+4) != 0) /* poll for paper advance */

;
*(p+1) = 1; /* start print head moving */
while (*(p+4) != 0) /* poll for print head movement */

;
*(p+2) = ’C’; /* select character ‘‘C’’ */
while (*(p+4) != 0) /* poll for character selection */

;
*(p+3) = 1; /* start hammer striking */
while (*(p+4) != 0) /* poll for hammer striking */

;

d Note: code does not contain an infinite loop!
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Better C Code For Device Polling

struct dv { /* device control structure */
int d_adv; /* nonzero starts paper advance */
int d_strt; /* nonzero starts head moving */
int d_char; /* character to print */
int d_strk; /* nonzero starts hammer striking */
int d_busy; /* nonzero when device busy */

}
struct dv *p; /* pointer to use */

p = (struct dv *)0x110000; /* initialize pointer */

p –> d_adv = 1; /* start paper advance */
while (p –> d_busy) ; /* poll for paper advance */

p –> d_strt = 1; /* start print head moving */
while (p –> d_busy) ; /* poll for print head movement */

p –> d_char = ’C’; /* select character ‘‘C’’ */
while (p –> d_busy) ; /* poll for character selection */

p –> = 1; /* start hammer striking */
while (p –> d_busy) ; /* poll for hammer striking */
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Control And Status Registers

d Terminology for the set of bus addresses a device uses

d Abbreviated CSRs

d Each CSR can respond to

– Fetch operation

– Store operation

– Both

d Operations on CSRs control the device
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A Note About Polling And Speed

Because a typical processor is much faster than an I/O device,
the speed of a system that uses polling depends only on the
speed of the I/O device; using a fast processor will not increase
the rate at which I/O is performed.

d Polling wastes cycles
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Generations Of Computers

Generation Description2222222222222222222222222222222222222222222222222222222

1 Vacuum tubes used to build digital circuits
2 Transistors used to build digital circuits
3 Interrupt mechanism used to control I/O
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Interrupt-Driven I/O

d Eliminates polling

d Allows processor to perform computation while I/O occurs

d Affects

– I/O device hardware

– Bus architecture and functionality

– Processor architecture

– Programming paradigm
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Bus Architecture For Interrupts

d Must support two-way communication

d Processor controls device

d Device informs processor when task is complete
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Programming Paradigms

d Polling uses synchronous paradigm

– Code is sequential

d Interrupts use asynchronous paradigm

– Device temporarily ‘‘interrupts’’ processor

– Processor services device and returns to computation in
progress
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Hardware Interrupt Mechanism

As the name implies, an interrupt mechanism temporarily
borrows the processor to handle an I/O device. When an
interrupt occurs, the hardware saves the state of the
computation, and restarts the computation when interrupt
processing finishes.
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Fetch-Execute Cycle With Interrupts

Repeat forever {

Test: if any device has requested interrupt, handle the
interrupt and then continue with the next iteration of the
loop.

Fetch: access the next step of the program from the
location in which the program has been stored.

Execute: Perform the step of the program.
}

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
22222222222222222222222222222222222222222222222222222222

1
1
1
1
1
1
1
1
1
1
1
1
1
1
122222222222222222222222222222222222222222222222222222222

d Interrupt appears to occur between two instructions
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Handling An Interrupt

d Save the current execution state

d Determine which device interrupted

d Call the procedure that handles the device

d Clear the interrupt signal on the bus

d Restore the current execution state
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Saving And Restoring State

d Special return from interrupt instruction

d Restores hardware state

– Values in registers

– Program counter

– Condition code

d Expects saved information in format that interrupt uses to
save state
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Interrupt Vectors

d Array of addresses

d Stored at known location

d Used when device interrupts

d Point to software handler for the device

d Hardware follows pointer when interrupt occurs
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Illustration Of Interrupt Vectors

interrupt vectors
in memory

0

1

2

3

...

code for
device 1

code for
device 0

code for
device 2

code for
device 3
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Initialization Of Interrupt Vectors

d Performed by software

d Usually performed by operating system

d Notes

– Processor begins running with interrupts disabled

– After interrupts initialized, operating system enables
interrupts
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Preventing Interrupt Code From Being Interrupted

d Multiple devices can interrupt

d Need to prevent simultaneous interrupts

d Temporarily disable further interrupts while handling an
interrupt

d Only one interrupt can occur at any time
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Multiple Levels Of Interrupts

d Allow concurrency among devices

d At most one device at each level can be interrupting

d Assign devices priorities: devices that need faster service are
assigned higher priority

d Important in real-time systems

d Note: priority zero reserved for processor to run application
programs
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Priority Rule

When operating at priority level K, a processor can only be
interrupted by a device that has been assigned to level K+1 or
higher.
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Interrupt Assignments

d Each device assigned unique interrupt number

d Two possibilities:

– Fixed, manual assignment

* Used on small, embedded systems

– Flexible, automated assignment

* Used on general-purpose systems
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Automated Interrupt Assignment

d Possible if devices are smart

d Handled at system startup

d Either

– CPU probes devices on the bus

– Devices notify the CPU of their presence
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Dynamic Bus Connections And Pluggable Devices

d Some bus architectures allow devices to be connected at
run-time

d Example Universal Serial Bus (USB)

d Single hardware bus controller handles all USB devices

d Handler for specific device linked by software at run-time

d No need for separate hardware interrupt vector
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Advantage Of Interrupts

A computer that uses interrupts is both easier to program and
offers better I/O performance than a computer that uses
polling.
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Dumb Device

d Processor performs all the work

d Example of interaction

– Processor starts the disk spinning

– Disk interrupts when it reaches full speed

– Processor starts disk arm moving to the desired location

– Disk interrupts when arm is in position

– Processor starts a read operation to transfer data to
memory

– Disk interrupts when the transfer completes
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Smart Devices

d Device contains embedded processor

d Offloads work from CPU

d Allows each device to operate independently

d Improves

– I/O Performance

– CPU performance
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Example Of Interaction With A Smart Device

d Processor requests a read operation by specifying the
location on the disk and the location in memory

d Disk performs all steps of the operation and interrupts when
the operation completes
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Optimizations

d Direct Memory Access (DMA)

d Buffer Chaining

d Operation Chaining
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Direct Memory Access (DMA)

d Important optimization

d Needed for high-speed I/O

d Device moves data across the bus to / from memory without
using processor

d Requires smart device
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Buffer Chaining

d Handles multiple transfers without the processor

d Device given linked list of buffers

d Device hardware uses next buffer on list automatically
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Illustration Of Buffer Chaining

data buffer 1 data buffer 2 data buffer 3

address passed
to device
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Scatter Read And Gather Write

d Special case of buffer chaining

d Large data transfer formed from separate blocks

d Example: to write a network packet, combine packet header
from buffer 1 and packet data from buffer 2

d Eliminates application program from copying data into
single, large buffer
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Operation Chaining

d Further optimization for smart device

d Processor gives series of commands to device

d Device carries out successive commands automatically
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Illustration Of Operation Chaining

data buffer 1 data buffer 2 data buffer 3

R W R17 29 61
address passed

to device
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Summary

d Devices use

– Programmed I/O

– Interrupt-driven I/O

d Interrupts

– Introduced in third-generation computers

– Allow processor to continue running while waiting for
I/O

– Use vector (usually in memory)

– Occur ‘‘between’’ instructions in fetch-execute cycle
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Summary
(continued)

d Multi-level interrupts handle high-speed and low-speed
devices on same bus

d Smart device has some processing power builtin

d Optimizations include

– Direct Memory Access (DMA)

– Buffer chaining

– Operation chaining
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Questions?



XVI

A Programmer’s View
Of I / O

And
Buffering
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Device Driver

d Piece of software

d Responsible for communicating with specific device

d Usually part of operating system

d Classified as low-level code

d Manipulates device’s CSRs

d Handles interrupts from device
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Purposes Of Device Driver

d Device independence: application is not written for specific
device(s)

d Encapsulation and hiding: details of device hidden from
other software
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Conceptual Parts Of A Device Driver

d Lower half

– Handler code that is invoked when the device interrupts

– Communicates with device

d Upper half

– Functions that are invoked by applications

– Allow application to request I/O operations

d Shared variables

– Used by both halves to coordinate
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Illustration Of Device Driver Organization

shared
variables

upper half
invoked by

applications

applications programs

lower half
invoked by
interrupts

device hardware
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Types Of Devices

d Character-oriented

– Transfer one byte at a time

– Examples

* Keyboard

* Mouse

d Block-oriented

– Transfer block of data at a time

– Examples

– Disk

– Network interface
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Example Flow Through A Device Driver

computer

application

upper half

variables

lower half

device

operating
system

external
hardware

Steps Taken

1. The application writes data

2. The OS passes control to the driver

3. The driver records information

4. The driver waits for the device

5. The driver starts the transfer

6. The driver returns to the application

7. The device interrupts

1

2

3

4

5

6

7
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Queued Output Operations

d Used by most device drivers

d Shared variable area contains queue of requests

d Upper-half places request on queue

d Lower-half services request from queue
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Illustration Of A Device Driver Request Queue

upper half

lower half

request
queue

d Queue is shared among both halves
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Steps Taken On Output

d Initialization (computer system starts)

– Initialize input queue to empty

d Upper half (application performs write)

– Deposit data item in queue

– Use the CSR to request an interrupt

– Return to application

d Lower half (interrupt occurs)

– If the queue is empty, stop the device from interrupting

– If the queue is nonempty, extract an item and start
output

– Return from interrupt
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Forcing An Interrupt

d A device has a CSR bit, B, that is used to force the device
to interrupt

d If the device is idle, setting bit B causes the device to
generate an interrupt

d If the device is currently performing an operation, setting bit
B has no effect

d Above makes device driver code especially elegant

CS250  --  Chapt. 16 11 2006



Queued Input Operations

d Initialization (computer system starts)

– Initialize input queue to empty

– Force the device to interrupt

d Upper half (application performs read)

– If input queue is empty, temporarily stop the application

– Extract the next item from the input queue

– Return the item to the application

d Lower half (interrupt occurs)

– If the queue is not full, start another input operation

– If an application is stopped, allow the application to run

– Return from interrupt
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Devices That Support Bi-Directional Transfer

d Most devices include two-way communication

d Example: although printer is primarily an output device,
most printers allow the processor to check status

d Drivers can

– Treat device as two separate devices, one used for input
and one used for output

– Treat the device as a single device that handles two
types of commands, one for input and one for output
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Asynchronous Vs. Synchronous Paradigm

d Synchronous programming

– Used for many applications

– Processor follows single path through the code

d Asynchronous programming

– Used for interrupts

– Programmer writes set of handlers

– Each handler invoked when corresponding event occurs

– More challenging than synchronous programming
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Mutual Exclusion

d Needed for asynchronous events

d Guarantees only one operation will be performed at a time

d For device drivers: must provide mutual exclusion between
processor and smart device that change shared data
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I/O As Viewed By An Application

d Few programmers write device drivers

d Most programmers use high-level abstractions

– Files

– Windows

– Documents

d Compiler generates calls to run-time library functions

d Chief advantage: I/O hardware and/or device drivers can
change without changing applications
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Conceptual Arrangement Of Library And OS

application

run-time library

device driver

device hardware

interface 1

interface 2

d Well-known example

– Standard I/O library

– Unix kernel
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Functions In the Unix Operating System’s
Open/Read/Write/Close Paradigm

Operation Meaning22222222222222222222222222222222222222222222222222222222222222222

open Prepare a device for use (e.g., power up)
read Transfer data from the device to the application
write Transfer data from the application to the device
close Terminate use of the device
seek Move to a new location of data on the device
ioctl Miscellaneous control functions (e.g., change volume)
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Cost Of I/O Operations

The overhead involved in using a system call to communicate
with a device driver is extremely high; a system call is much
more expensive than a conventional procedure call, such as the
call used to invoke a library function.
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Reducing System Call Overhead

To reduce overhead and optimize I/O performance, a
programmer must reduce the number of system calls that an
application invokes. The key to reducing system calls involves
transferring more data per system call.
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Buffering

d Important optimization

d Used heavily

d Automated and usually invisible to programmer

d Key idea: make large I/O transfers

– Accumulate outgoing data before transfer

– Transfer large block of incoming data and then extract
items
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Automating Buffering

d Typically performed with library functions

d Application

– Uses functions in the library for all I/O

– Transfers data in arbitrary size blocks

d Library functions

– Buffer data from applications

– Transfer data to underlying system in large blocks
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Example Library Functions For Output

Operation Meaning222222222222222222222222222222222222222222222222

setup Initialize the buffer
input Perform an input operation

output Perform an output operation
terminate Discontinue use of the buffer

flush Force contents of buffer to be written

d Functions are analogous to those provided by operating
system
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Use Of Library

d Setup

– Called to initialize buffer

– May allocate buffer

– Typical buffer sizes 8K to 128K bytes

d Output

– Called when application needs to emit data

– Data sent to OS only when buffer is full

d Terminate

– Called when all data has been emitted

– Forces remaining data to be sent to OS
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Implementation Of Output Buffer Functions

Setup(N)
1. Allocate a buffer of N bytes.

2. Create a global pointer, p, and initialize p to the
address of the first byte of the buffer.

Output(D)
1. Place data byte D in the buffer at the position

given by pointer p, and move p to the next byte.

2. If the buffer is full, make a system call to write
the contents of the entire buffer, and reset
pointer p to the start of the buffer.
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Implementation Of Output Buffer Functions
(continued)

Terminate
1. If the buffer is not empty, make a system call to

write the contents of the buffer prior to pointer
p.

2. If the buffer was dynamically allocated,
deallocate it.
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Flushing A Buffer

d Allows a programmer to control buffering

d Needed for interactive programs

d When flush is called

– If buffer contains data, library sends to OS

– If buffer is empty, flush has no effect
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Implementation Of Flush

Flush

1. If the buffer is currently empty, return to the caller
without taking any action.

2. If the buffer is not currently empty, make a system
call to write the contents of the buffer and set the
global pointer p to the address of the first byte of
the buffer.
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Implementation Of Terminate

d Call flush

d Proceed to deallocate buffer
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Summary Of Buffer Flushing

A programmer uses a flush function to specify that outgoing
data in a buffer should be sent to the device driver in the
operating system. A flush operation has no effect if a buffer is
currently empty.
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Buffering On Input

Setup(N)
1. Allocate a buffer of N bytes.

2. Create a global pointer, p, and initialize p to
indicate that the buffer is empty.

Input(N)
1. If the buffer is empty, make a system call to fill

the entire buffer, and set pointer p to the start of
the buffer.

2. Extract a byte, D, from the position in the buffer
given by pointer p, move p to the next byte, and
return D to the caller.

Terminate
1. If the buffer was dynamically allocated,

deallocate it.
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Important Note About Implementation

d Both input and output buffering are straightforward

d Only a trivial amount of code needed
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Effectiveness Of Buffering

d Buffer of size N reduces number of system calls by a factor
of N

d Example

– Minimum size buffer is typically 8K bytes

– Resulting number of system calls is S / 8192, where S is
the original number of system calls
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Buffering In An Operating System

d Buffering is used extensively inside the OS

d Important part of device drivers

d Goal: reduce number of external transfers

d Reason: external transfers are slower than system calls
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Relation Between Buffering And Caching

d Closely related concepts

d Chief difference

– Cache handles random access

– Buffer handles sequential access
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Buffering Example
(The Unix Standard I/O Library)

d Widely used

d Speeds I/O considerably
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Functions In The Unix Standard I/O Library

Function Meaning222222222222222222222222222222222222222222222

fopen Set up a buffer
fgetc Buffered input of one byte
fread Buffered input of multiple bytes
fwrite Buffered output of multiple bytes
fprintf Buffered output of formatted data
fflush Flush operation for buffered output
fclose Terminate use of a buffer
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Summary

d Two aspects of I/O pertinent to programmers

– Device details important to systems programmers who
write device drivers

– Application programmer must understand relative costs
of I/O

d Device driver divided into three parts

– Upper-half called by application

– Lower-half handles device interrupts

– Shared data area accessed by both halves
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Summary
(continued)

d Buffering

– Fundamental technique used to enhance performance

– Useful with both input and output

d Buffer of size n reduces system calls by a factor of N
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Questions?



XVII

Parallelism
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Two Fundamental Hardware Techniques
Used To Increase Performance

d Parallelism

d Pipelining
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Parallelism

d Multiple copies of hardware unit used

d All copies can operate simultaneously

d Occurs at many levels of architecture

d Term parallel computer applied when parallelism dominates
entire architecture
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Characterizations Of Parallelism

d Microscopic vs. macroscopic

d Symmetric vs. asymmetric

d Fine-grain vs. coarse-grain

d Explicit vs. implicit
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Microscopic Vs. Macroscopic Parallelism

Parallelism is so fundamental that virtually all computer
systems contain some form of parallel hardware. We use the
term microscopic parallelism to characterize parallel facilities
that are present, but not especially visible.
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Examples Of Microscopic Parallelism

d Parallel operations in an ALU

d Parallel access to general-purpose registers

d Parallel data transfer to/from physical memory

d Parallel transfer across an I/O bus
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Examples Of Macroscopic Parallelism

d Symmetric parallelism

– Refers to multiple, identical processors

– Example: dual processor PC

d Asymmetric parallelism

– Refers to multiple, dissimilar processors

– Example: PC with a graphics processor
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Level Of Parallelism

d Fine-grain

– Parallelism among individual instructions or data
elements

d Coarse-grain parallelism

– Parallelism among programs or large blocks of data
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Explicit And Implicit Parallelism

d Explicit

– Visible to programmer

– Requires programmer to initiate and control parallel
activities

d Implicit

– Invisible to programmer

– Hardware runs multiple copies of program automatically
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Parallel Architectures

d Design in which computer has reasonably large number of
processors

d Intended for scaling

d Example: computer with thirty-two processors

d Not generally classified as parallel computer

– Dual processor computer

– Quad processor computer
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Types Of Parallel Architectures

Name Meaning22222222222222222222222222222222222222222222222222

SISD Single Instruction Single Data stream
SIMD Single Instruction Multiple Data streams
MIMD Multiple Instructions Multiple Data streams

d Known as Flynn classification
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Conventional (Nonparallel) Architecture

d Known as Single Instruction Single Data

d Other terms include

– Sequential architecture

– Uniprocessor

CS250  --  Chapt. 17 12 2006



Single Instruction Multiple Data
(SIMD)

d Each instruction specifies a single operation

d Hardware applies operation to multiple data items
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Vector Processor

d Uses SIMD architecture

d Applies a single floating point operation to an entire array of
values

d Example use: normalize values in a set
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Normalization On A Conventional Computer

for i from 1 to N {

V [ i ] ← V [ i ] × Q ;

}
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Normalization On A Vector Processor

V ← V × Q ;

d Trivial amount of code

d Special instruction called vector instruction

d If vector V larger than hardware capacity, multiple steps are
required
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Graphics Processors

d Graphics hardware uses sequential bytes in memory to store
pixels

d To move a window, software copies bytes

d SIMD architecture allows copies in parallel
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Multiple Instructions Multiple Data
(MIMD)

d Parallel architecture with separate processors

d Each processor runs independent program

d Processors visible to programmer
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Two Popular Categories Of Multiprocessors

d Symmetric

d Asymmetric
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Symmetric Multiprocessor (SMP)

d Most well-known MIMD architecture

d Set of N identical processors

d Examples of groups that built SMP computers

– Carnegie Mellon University (C.mmp)

– Sequent Corporation (Balance 8000 and 21000)

– Encore Corporation (Multimax)
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Illustration Of A Symmetric Multiprocessor

Main
Memory
(various
modules)

Devices

P1

Pi

P2

Pi+1

PN

Pi+2
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Asymmetric Multiprocessor (AMP)

d Set of N processors

d Multiple types of processors

d Processors optimized for specific tasks

d Often use master-slave paradigm
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Example AMP Architectures

d Math (or graphics) coprocessor

– Special-purpose processor

– Handles floating point (or graphics) operations

– Called by main processor as needed

d I/O Processor

– Optimized for handling interrupts

– Programmable
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Examples Of Programmable I/O Processors

d Channel (IBM mainframe)

d Peripheral Processor (CDC mainframe)
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Multiprocessor Overhead

d Having many processors is not always a clear win

d Overhead arises from

– Communication

– Coordination

– Contention
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Communication

d Needed

– Among processors

– Between processors and I/O devices

d Can become a bottleneck
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Coordination

d Needed when processors work together

d May require one processor to coordinate others

CS250  --  Chapt. 17 27 2006



Contention

d Processors contend for resources

– Memory

– I/O devices

d Speed of resources can limit overall performance

– Example: N – 1 processors wait while one processor
accesses memory
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Performance Of Multiprocessors

d Disappointing

d Bottlenecks

– Contention for operating system (only one copy
of OS can run)

– Contention for memory and I/O

d Another problem: either need

– One centralized cache (contention problems)

– Coordinated caches (complex interaction)

d Many applications are I/O bound
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According To John Harper

‘‘Building multiprocessor systems that scale while
correctly synchronising the use of shared resources is very
tricky, whence the principle: with careful design and
attention to detail, an N-processor system can be made to
perform nearly as well as a single-processor system. (Not
nearly N times better, nearly as good in total performance as
you were getting from a single processor). You have to be
very good — and have the right problem with the right
decomposability — to do better than this.’’

http:/ / www.john-a-harper.com/ principles.htm

CS250  --  Chapt. 17 30 2006



Definition Of Speedup

d Defined relative to single processor

Speedup  =  
τN

τ1333

d τ1 denotes the execution time on a single processor

d τN denotes the execution time on a multiprocessor

d Goal: speedup is linear in number of processors
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Ideal And Typical Speedup

Speedup

Number of processors (N)

1

4

8

12

16

1 4 8 12 16

ideal

actual

CS250  --  Chapt. 17 32 2006



Speedup For N >> 1 Processors

Speedup

Number of processors (N)

1

8

16

24

32

1 8 16 24 32

ideal

actual
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Summary Of Speedup

When used for general-purpose computing, a multiprocessor
may not perform well. In some cases, added overhead means
performance decreases as more processors are added.

CS250  --  Chapt. 17 34 2006



Consequences For Programmers

d Writing code for multiprocessors is difficult

– Need to handle mutual exclusion for shared items

– Typical mechanism: locks
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The Need For Locking

d Consider an assignment

x = x + 1;

d Typical code is

load x, R5
incr R5
store R5, x
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Example Of Problem With Parallel Access

d Consider two processors incrementing item x

– Processor 1 loads x into its register 5

– Processor 1 increments its register 5

– Processor 2 loads x into its register 5

– Processor 1 stores its register 5 into x

– Processor 2 increments its register 5

– Processor 2 stores its register 5 into x
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Hardware Locks

d Prevent simultaneous access

d Separate lock assigned to each item

d Code is

lock 17
load x, R5
incr R5
store R5, x
release 17
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Programming Parallel Computers

d Implicit parallelism

– Programmer writes sequential code

– Hardware runs many copies automatically

d Explicit parallelism

– Programmer writes code for parallel architecture

– Code must use locks to prevent interference
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The Point About Parallel Programming

From a programmer’s point of view, a system that uses explicit
parallelism is significantly more complex to program than a
system that uses implicit parallelism.
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Programming Symmetric And
Asymmetric Multiprocessors

d Both types can be difficult to program

d Symmetric has two advantages

– One instruction set

– Programmer does not need to choose processor type for
each task
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Redundant Parallel Architectures

d Used to increase reliability

d Do not improve performance

d Multiple copies of hardware perform same function

d Can be used to

– Test whether hardware is performing correctly

– Serve as backup in case of hardware failure
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Loose And Tight Coupling

d Tightly coupled multiprocessor

– Multiple processors in single computer

– Buses or switching fabrics used to interconnect
processors, memory, and I/O

– Usually one operating system

d Loosely coupled multiprocessor

– Multiple, independent computer systems

– Computer networks used to interconnect systems

– Each computer runs its own operating system

– Known as distributed computing
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Cluster Computer

d Distributed computer system

d All computers work on a single problem

d Works best if problem can be partitioned into pieces
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Grid Computing

d Form of loosely-coupled distributed computing

d Uses computers on the Internet

d Popular for large, scientific computations
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Summary

d Parallelism is a fundamental optimization

d Computers classified as

– SISD (e.g., conventional uniprocessor)

– SIMD (e.g., vector computer)

– MIMD (e.g., multiprocessor)

d Multiprocessor speedup usually less than linear
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Summary
(continued)

d Multiprocessors can be

– Symmetric or asymmetric

– Explicitly or implicitly parallel

d Programming multiprocessors is usually difficult

– Locks needed for shared items

d Parallel systems can be

– Tightly-coupled (single computer)

– Loosely-coupled (computers connected by a network)
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Questions?



XVIII

Pipelining
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Concept Of Pipelining

d One of the two major hardware optimization techniques

d Information flows through a series of stations (processing
components)

d Each station can

– Inspect

– Interpret

– Modify
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Illustration Of Pipelining

stage 1 stage 2 stage 3 stage 4

information
arrives

information
leaves
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Characteristics Of Pipelines

d Hardware or software implementation

d Large or small scale

d Synchronous or asynchronous flow

d Buffered or unbuffered flow

d Finite chunks or continuous bit streams

d Automatic data feed or manual data feed

d Serial or parallel path

d Homogeneous or heterogeneous stages
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Implementation

d Pipeline can be implemented in hardware or software

d Software pipeline

– Programmer convenience

– More efficient than intermediate files

d Hardware pipeline

– Much higher performance
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Scale

d Range of scales

d Example of small scale: pipeline within an ALU

d Example of large scale: pipeline composed of programs
running on separate computers connected by the Internet
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Synchrony

d Synchronous pipeline

– Operates like an assembly line

– Items move at exactly the same time

d Asynchronous pipeline

– Each station forwards whenever it is ready

– Slow stage may block previous stages
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Buffering

d Buffered flow

– Buffer placed between each pair of stages

– Useful when processing time per item varies

d Unbuffered flow

– Stage blocks until next stage can accept item

– Works best if processing time per stage is constant
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Size Of Items

d Finite chunks

– Discrete items pass through pipeline

– Example: sequence of Ethernet packets

d Continuous bit stream

– Stream of bits flows through pipeline

– Example: video feed
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Data Feed Mechanism

d Automatic

– Built into pipeline

d Manual

– Separate hardware to move items
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Width Of Data Path

d Serial

– One bit at a time

d Parallel

– N bits at a time
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Homogeneity Of Stages

d Homogeneous

– All stages are the same

– Example: five identical processors

d Heterogeneous

– Stages can differ

– Example: each stage optimized for one function
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Software Pipelining

d Popularized by Unix command interpreter (shell)

d User can specify pipeline as a command

d Example

cat x | sed ’s/friend/partner/g’ | more
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Software Pipeline Performance And Overhead

d Consider the pipeline

cat x | sed ’s/friend/partner/g’ | sed ’/W/d’ | more

d Substitutes ‘‘partner’’ for ‘‘friend’’

d Deletes lines that contain ‘‘W’’

d Can be optimized (swap sed commands)
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Implementation Of Software Pipeline

d Uniprocessor

– Each stage is a process or task

d Multiprocessor

– Each stage executes on separate processor

– Hardware assist can speed inter-stage data transfer
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Hardware Pipelining

d Two broad categories

– Instruction pipeline

– Data pipeline
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Instruction Pipeline

d Covered in Chapter 5

d Recall

– Instruction processed in stages

– Exact details and number of stages depend on instruction
set and operand types
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Data Pipeline

d Data passes through pipeline

d Each stage handles data item and passes item to next stage

d Usually requires programmer to divide code into stages

d Among the most interesting uses of pipelining
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Hardware Pipelining And Performance

d A data pipeline can dramatically increase performance
(throughput)

d To see why, consider an example

– Internet router handles packets

– Assume

* Router processes one packet at at time

* Performs six functions on a packet
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Example Of Internet Router Algorithm

1. Receive a packet (i.e., transfer the packet into memory).

2. Verify packet integrity (i.e., verify that no changes occurred
between transmission and reception).

3. Check for routing loops (i.e., decrement a value in the
header, and reform the header with the new value).

4. Route the packet (i.e., use the destination address field to
select one of the possible output networks and a destination
on that network).

5. Prepare for transmission (i.e. compute information that will
be used to verify packet integrity).

6. Transmit the packet (i.e., transfer the packet to the output
device).
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Illustration Of A Processor In
A Router And The Algorithm Used

processor
input

from one
network

outputs

...

do forever {

Wait to receive packet

Verify integrity

Check for loops

Route packet

Prepare for transmission

Enqueue packet for output

}
(a) (b)
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A Pipeline Implementation Of A
Processor In A Router

verify
integrity

check
for loops

route
packet

prepare for
transmission

packets
arrive

packets
leave
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The Bad News

A data pipeline passes data through a series of stages that each
examine or modify the data. If it uses the same speed
processors as a nonpipeline architecture, a data pipeline will
not improve the overall time needed to process a given data
item.
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The Good News

Even if a data pipeline uses the same speed processors as a
nonpipeline architecture, a data pipeline has higher overall
throughput (i.e., number of data items processed per second).
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Pipelining Can Only Be Used If

d It is possible to partition processing into independent stages

d Overhead required to move data from one stage to another is
insignificant

d The slowest stage of the pipeline is faster than a single
processor
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Understanding Pipeline Speed

d Assume

– The task is packet processing

– Processing a packet requires exactly 500 instructions

– A processor executes 10 instructions per µsec

d Total time required for one packet is:

time = 
10 instr.  per  µsec
500 instructions3333333333333333 = 50 µsec

d Throughput for a non-piplined system is:

Tnp = 
50 µsec
1 packet33333333 = 

50 sec
1 packet × 106
3333333333333 = 20,000 packets per  second
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Understanding Pipeline Speed
(continued)

d Suppose the problem can be divided into four stages and
that the stages require:

– 50 instructions

– 100 instructions

– 200 instructions

– 150 instructions

d The slowest stage takes 200 instructions

d So, the time required for the slowest stage is:

total time  = 
10 inst  / µsec

200 inst333333333333 = 20 µsec
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Understanding Pipeline Speed
(continued)

d Throughput of the pipeline is limited by the slowest stage

d Overall throughput can be calculated:

Tp = 
20 µsec
1 packet33333333 = 

20 sec
1 packet × 106
3333333333333 = 50,000 packets per  second

d Note: throughput of pipelined version is 150% greater than
throughput of the non-pipelined version!
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Conceptual Division Of Processing

h( )g( )f( )
f( )
g( )
h( )

(a) (b)

d (a) shows a single processor handling all functions

d (b) shows processing divided into a pipeline
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Pipeline Architectures

d Refer to architectures that are primarily formed around
pipelining

d Most often used for special-purpose systems

d Less relevant to general-purpose computers
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Pipeline Setup, Stall, And Flush

d Setup time

– Refers to time required to start the pipeline initially

d Stall time

– Refers to time required to restart the pipeline after a
stage blocks to wait for a previous stage

d Flush time

– Refers to time that elapses between the cessation of
input and the final data item emerging from the pipeline
(i.e., the time required to shut down the pipeline)
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Superpipelining

d Most often used with instruction pipelining

d Subdivides a stage into smaller stages

d Example: subdivide operand processing into

– Operand decode

– Fetch immediate value or value from register

– Fetch value from memory

– Fetch indirect operand
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Summary

d Pipelining

– Broad, fundamental concept

– Can be used with hardware or software

– Applies to instructions or data

– Can be synchronous or asynchronous

– Can be buffered or unbuffered
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Summary
(continued)

d Pipeline performance

– Unless faster processors are used, data pipelining does
not decrease the overall time required to process a single
data item

– Using a pipeline does increase the overall throughput
(items processed per second)

– The stage of a pipeline that requires the most time to
process an item limits the throughput of the pipeline
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Questions?



XIX

Assessing Performance
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Measuring Computational Power
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Measuring Computational Power

d Difficult to assess computer performance
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Measuring Computational Power

d Difficult to assess computer performance

d Chief problems
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Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

– Flexibility: computer can be used for wide variety of
computational tasks
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Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

– Flexibility: computer can be used for wide variety of
computational tasks

– Architecture that is optimal for some tasks is suboptimal
for others
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Measuring Computational Power

d Difficult to assess computer performance

d Chief problems

– Flexibility: computer can be used for wide variety of
computational tasks

– Architecture that is optimal for some tasks is suboptimal
for others

– Memory and I/O costs can dominate
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The Point About Performance

Because a computer is designed to perform a wide variety of
tasks and no architecture is optimal for all tasks, the
performance of a system depends on the task being performed.

CS250  --  Chapt. 19 3 2006



Consequences
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Consequences

d Many groups try to assess computer performance
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Consequences

d Many groups try to assess computer performance

d A variety of performance measures exist
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Consequences

d Many groups try to assess computer performance

d A variety of performance measures exist

d No single measure suffices for all situations
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Measures Of Computational Power

d Two primary measures

d Integer computation speed

– Pertinent to most applications

– Example measure is millions of instructions per second
(MIPS)

d Floating point computation speed

– Used for scientific calculations

– Typically involve matrices

– Example measure is floating point operations per second
(FLOPS)
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Average Floating Point Performance

d Assume

– Addition or subtraction takes Q nanoseconds

– Multiplication or division takes 2Q nanoseconds

d Average cost of floating point operation is:

Tavg  =  
4

Q  +  Q  +  2 Q  +  2 Q333333333333333333333  =  1.5 Q   ns per instr.

d Note: addition or subtraction costs 33% less than average,
and multiplication or division costs 33% more
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A Note About Average Execution Times

Because some instructions take substantially longer to execute
than others, the average time required to execute an instruction
only provides a crude approximation of performance. The
actual time required depends on which instructions are
executed.
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Application Specific Instruction Counting

d More accurate assessment of performance for specific
application

d Examine application to determine how many times each
instruction occurs

d Example: multiplication of two N × N matrices

– N 3 floating point multiplications

– N 3  −  N 2 floating point additions

– Time required is:

Ttotal   =  2 × Q × N 3  +  Q × (N 3  −  N 2)
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Weighted Average

d Alternative to precise count of operations

d Typically obtained by instrumentation

d Program run on many input data sets and instruction counts
averaged over all runs
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Example Of Instruction Counts

Instruction Type Count Percentage22222222222222222222222222222222222222222

Add 8513508 72
Subtract 1537162 13
Multiply 1064188 9
Divide 709458 6
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Computation Of Weighted Average

d Uses instruction counts and cost of each instruction

d Example

Tavg′  = .72 × Q + .13 × Q + .09 × 2 Q + .06 × 2 Q

d Or

Tavg′   =  1.16 Q  ns per instruction

d Note: weighted average is %23 less than uniform average
obtained above
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Instruction Mix

d Measure a large set of programs

d Obtain relative weights for each type of instruction

d Relative weights used to assess the performance of a given
architecture

d Try to choose set of programs that represent a typical
workload
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Use Of Instruction Mix

An instruction mix consists of a set of instructions along with
relative weights that have been obtained by counting instruction
execution in example programs. An architect can use an
instruction mix to assess how a proposed architecture will
perform.
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Standardized Benchmarks

d Provides workload used to measure computer performance

d Represent ‘‘typical’’ applications

d Independent corporation formed in 1980s to create
benchmarks

– Named Standard Performance Evaluation Corporation
(SPEC)

– Not-for-profit

– Avoids having each vendor choose benchmark that is
tailored to their architecture
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Examples Of Benchmarks Developed By SPEC

d SPEC cint2000

– Used to measure integer performance

d SPEC cfp2000

– Used to measure floating point performance

d Result of measuring performance on a specific architecture
is known as the computer’s SPECmark
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I/O And Memory Bottlenecks

d CPU performance is only one aspect of system performance

d Bottleneck can be

– Memory

– I/O

d Some benchmarks focus on memory operations or I/O
performance rather than computational speed
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Increasing Overall Performance

To optimize performance, move operations that account for the
most CPU time from software into hardware.
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Which Items Should Be Optimized?

d Adding additional hardware increases cost

d Architect cannot use high-speed hardware for all operations

d Computer architect Gene Amdahl observed that it is a waste
of resources to optimize functions that are seldom used
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Amdahl’s Law

The performance improvement that can be realized from faster
hardware technology is limited to the fraction of time the faster
technology can be used.
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Amdahl’s Law And Parallel Systems

d Amdahl’s law

– Applies directly to parallel systems

– Explains why adding processors does not always
increase performance
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Summary

d A variety of performance measures exist

d Simplistic measures include MIPS and FLOPS

d More sophisticated measures use a weighted average

d Weights can be derived by counting the instructions in a
program or set of programs

d Set of weights corresponds to an instruction mix
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Summary
(continued)

d Benchmark refers to a standardized program or set of
programs used to measure performance

d Best-known benchmarks, known as SPECmarks, are
produced by the SPEC Corporation

d Amdahl’s Law helps architects select functions to be
optimized (moved from software to hardware)
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Questions?



XX

Architecture Examples
And

Hierarchy
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General Idea

d Computer architecture can be presented at multiple levels of
abstraction

d Known as hierarchy
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Architectural Range

d Macroscopic

– Example: entire computer system

d Microscopic

– Single integrated circuit
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Architectural Terminology

Level Description2222222222222222222222222222222222222222222222222222222222222222

System A complete computer with processor(s), memory, and
I/O devices. A typical system architecture describes
the interconnection of components with buses.

Board An individual circuit board that forms part of a computer
system. A typical board architecture describes the
interconnection of chips and the interface to a bus.

Chip An individual integrated circuit that is used on a
circuit board. A typical chip architecture describes
the interconnection of functional units and gates.
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Example System-Level Architecture
(A Personal Computer)

d Functional units

– Processor

– Memory

– I/O interfaces

d Interconnections

– High-speed buses for high-speed units

– Low-speed buses for lower-speed units
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Bus Interconnection And Bridging

d Bridge technology used to interconnect buses

d Allows

– Multiple buses in a computer system

– Processor only connects to one bus

d Bridge maps between address spaces

d Permits backward compatibility (e.g., old I/O device used
with newer processor)
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Example Of Bridging

d Processor uses Peripheral Component Interconnect bus
(PCI)

d I/O devices use older Industry Standard Architecture (ISA)

d Buses are incompatible (cannot be directly connected)

CS250  --  Chapt. 20 7 2006



Illustration Of PC Architecture Using A Bridge

PCI bus

CPU
. . .

bridge

ISA bus

. . .

memory

devices with PCI interfaces

devices with ISA interfaces

d Interconnection can be transparent
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Physical Architecture

d Implementation of bridge is more complex than our
conceptual diagram implies

d Uses special-purpose controller chips

d Separates high-speed and low-speed units onto separate
chips
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Motivation For Controller Chips

Architects use a controller chip to provide interconnection
among components in a computer because doing so is less
expensive than equipping each unit with a set of interfaces or
building a set of discrete bridges to interconnect buses.
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Direct Connection Among Chips And
The Illusion Of A virtual Bus

A controller chip can provide the illusion of a bus over a direct
connection; the wires and sockets normally used to construct a
bus are optional.
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Typical PC Architecture

d Two controller chips

d Northbridge chip connects higher-speed units

– Processor

– Memory

– Advanced Graphics Port (AGP) interface

d Southbridge chip connects lower-speed units

– Local Area Network (LAN) interface

– PCI bus

– Keyboard, mouse, or printer ports
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Illustration Of Physical Interconnections

Northbridge

Southbridge

DDR
SDRAM

DDR
SDRAM

. . . . . . . . . . . . . . . . . . . . ...
..
..
..
..
..
..
..
..
..
..
..
..
.................................................

dual-ported
memory

AGP
port

Stream
Comm.

CISC
CPU

( x86 )

P
C
I

U
S
B

6-chan.
audio

LAN
interface

ISA bus

proprietary hub connectioncontroller

controller
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Example Products

d Northbridge: Intel 82865PE

d Southbridge: Intel ICH5
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Example Connection Speeds

Connection Clock Rate Width Throughput†2222222222222222222222222222222222222222222222222222222

AGP 100-200 MHz 64-128 bits 2.0 GBps
Memory 200-800 MHz 64-128 bits 6.4 GBps

CPU 400-800 MHz 64-128 bits 3.2-6.4 GBps
Hub 100-200 MHz 64 bits 800 MBps
USB 33 MHz 32 bits 133 MBps
PCI 33 MHz 32 bits 133 MBps
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Bridging Functionality And Virtual Buses

d Controller chips can present multiple buses to the processor

d One possible form: controller presents the illusion of three
virtual buses

– Bus 1 contains the host and memory

– Bus 2 contains a high-speed graphics device

– Bus 3 corresponds to the external PCI slots for arbitrary
devices
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Example Board-Level Architecture

d LAN interface

– Connects computer to Local Area Network

– Transfers data between computer and network

– Physically consists of separate circuit board

– Usually contains a processor and some memory
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Illustration Of LAN Interface
(Board-Level Architecture)

network

processor

SRAM

DRAM

DRAM
bus

SRAM
bus

host interface

network interface
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Memory On A LAN Interface

d SRAM

– Highest speed

– Typically used for instructions

d DRAM

– Lower speed

– Typically used for data being transferred
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Chip-Level Architecture

d Describes structure of single integrated circuit

d Components are functional units

d Can include on-board processors, memory, or buses
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Example Chip-Level Architecture
(Intel Network Processor)

DRAM
access

SRAM
access

onboard
scratch
memory

Embedded
RISC

processor
(XScale)

Microengine 1

Microengine 2

Microengine 3

Microengine 4

Microengine 5

Microengine N

...

PCI bus
access unit

media
access unit

serial
line

multiple,
independent

internal
buses
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The Point Of Architectural Level

A chip-level architecture reveals details about the internal
structure of an integrated circuit that are hidden in a board-
level architecture.
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Structure Of Functional Units On A Chip
(Example Of Further Detail)

SRAM access unit

SRAM
pin

inter-
face

SRAM

AMBA
bus

inter-
face

service priority
arbitration

microengine addr.
& command queues

AMBA addr.
queuescommand

decoder
& addr.

generator

memory
& FIFO

addr

microengine data

data

AMBA

from
XScale

Microengine
commands

clock

signals

address

data

d Note: each item composed of logic gates
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Summary

d Architecture of a digital system can be viewed at several
levels of abstraction

d System architecture shows entire computer system

d Board architecture shows individual circuit board

d Chip architecture shows individual IC

d Functional unit architecture shows individual functional unit
on an IC
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Summary
(continued)

d We examined an example hierarchy

– Entire PC

– Physical interconnections of a PC

– LAN interface in a PC

– Network processor chip on a LAN interface

– SRAM access unit on a network processor chip
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Questions?



STOP


