Chapter \#2: Two-Level Combinational Logic

Contemporary Logic Design

Randy H. Katz
University of California, Berkeley

May 1993

Algebraic structure consisting of:
set of elements B
binary operations $\{+, \cdot \boldsymbol{\bullet}$
unary operation \{'\}
such that the following axioms hold:

1. B contains at least two elements, a, b, such that $a \square b$
2. Closure a, b in B, (i) $a+b$ in B
(ii) $a \cdot b$ in B
3. Commutative Laws: a, b in B,
(i) $a+b=b+a$
(ii) $a \cdot b=b \cdot a$
4. Identities: 0,1 in B
(i) $a+0=a$
(ii) $a \cdot 1=a$
$B=\{0,1\},+=O R, \bullet=A N D, \quad{ }^{\prime}=$ NOT is a Boolean Algebra
must verify that the axioms hold:
E.g., Commutative Law:

$$
\begin{array}{cc}
0+1=1+0 ? & 0 \cdot 1=1 \cdot 0 ? \\
1=1 & 0=0
\end{array}
$$

Theorem: any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using ', + , •

Review from
Chapter 1

AND

Description
$Z=1$ if X or Y
(or both) are 1

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

OR

More than one way to map an expression to gates

$$
\begin{array}{r}
\text { E.g., } \quad Z=A^{\prime} \cdot B^{\prime} \cdot(C+D)=\left(A^{\prime} \cdot\left(B^{\prime} \cdot(C+D)\right)\right) \\
\longmapsto T 1-
\end{array}
$$

use of 3-input gate

Literal: each appearance of a variable or its complement in an expression E.g., $Z=A B^{\prime} C+A^{\prime} B+A^{\prime} B C^{\prime}+B^{\prime} C$

3 variables, 10 literals

16 functions of two variables:

X, X', Y, Y', X•Y, X+Y, 0, 1 only half of the possible functions

NAND

NOR

Description
$Z=1$ if X is 0
or Y is 0

Description
$Z=1$ if both X and Y are 0

Truth Table		
X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

Truth T able

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	0

Switches

NAND, NOR gates far outnumber AND, OR in typical designs easier to construct in the underlying transistor technologies

Any Boolean expression can be implemented by NAND, NOR, NOT gates In fact, NOT is superfluous
(NOT = NAND or NOR with both inputs tied together)

X	Y	X NOR Y
0	0	1
1	1	0

X	Y	X NAND Y
0	0	1
1	1	0

XOR: X or Y but not both ("inequality", "difference")

 XNOR: X and Y are the same ("equality", "coincidence")Description
$Z=1$ if X has a different value than Y

Truth T able

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

(a) XOR
X ล $Y=X Y^{\prime}+X^{\prime} Y$

Description
$Z=1$ if X has the same value as Y

Gates

Truth Table

(b) XNOR
\bar{X} ล $\mathbf{Y}=X Y+X^{\prime} Y^{\prime}$

Duality: a dual of a Boolean expression is derived by replacing AND operations by ORs, OR operations by ANDs, constant 0s by 1s, and 1s by 0s (literals are left unchanged).

Any statement that is true for an expression is also true for its dual!
Useful Laws/Theorems of Boolean Algebra:
Operations with 0 and 1:

1. $X+0=X$
1D. $X \cdot 1=X$
2. $X+1=1$
2D. $X \cdot 0=0$

Idempotent Law:
3. $X+X=X$

3D. $X \cdot X=X$
Involution Law:
4. $\left(X^{\prime}\right)$ ' $=X$

Laws of Complementarity:
5. $X+X^{\prime}=1$

5D. $X \cdot X^{\prime}=0$
Commutative Law:
6. $X+Y=Y+X$

6D. $X \cdot Y=Y \cdot X$

Associative Laws:
7. $\begin{aligned}(X+Y)+Z & =X+(Y+Z) \\ & =X+Y+Z\end{aligned}$

$$
=X+Y+Z
$$

7D. $(X \cdot Y) \cdot Z=X \cdot(Y \cdot Z)$

$$
=X \cdot \dot{Y} \cdot Z
$$

Distributive Laws:
8. $\mathrm{X} \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} \cdot \mathrm{Y})+(\mathrm{X} \bullet \square \mathrm{Z}) \quad$ 8D. $\mathrm{X}+(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z})$

Simplification Theorems:
9. $X \cdot Y+X \cdot Y^{\prime}=X$
10. $X+X \cdot Y=X$

9D. $(X+Y) \cdot\left(X+Y^{\prime}\right)=X$
11. $\left(X+Y^{\prime}\right) \cdot Y=X \cdot Y$

DeMorgan's Law:

$$
\begin{aligned}
& \text { 12. }(X+Y+Z+\ldots){ }^{\prime}=X^{\prime} \cdot Y^{\prime} \cdot Z^{\prime} \bullet \ldots \text { 12D. (X •Y • Z • ...) ' }=X^{\prime}+Y^{\prime}+Z^{\prime}+\ldots \mid \\
& \text { 13. }\{F(X 1, X 2, \ldots, X n, 0,1,+, \bullet)\}^{\prime}=\left\{F\left(X 1 ', X 2 ', \ldots, X n^{\prime}, 1,0, \bullet,+\right)\right\}
\end{aligned}
$$

$\left.\begin{array}{l}\text { Duality: } \\ \text { 14. } \\ \dot{X}\end{array}+Y+Z+\ldots\right)^{D}=X \cdot Y \cdot Z \bullet \ldots \quad$ 14D. $(X \bullet F Y \bullet Z \bullet \ldots)^{D}=X+Y+Z+\ldots$ 15. $\{F(X 1, X 2, \ldots, X n, 0,1,+, \bullet)\}^{D}=\{F(X 1, X 2, \ldots, X n, 1,0, \bullet,+)\}$

Theorems for Multiplying and Factoring:
16. $(X+Y) \cdot\left(X^{\prime}+Z\right)=X \cdot Z+X^{\prime} \cdot Y$ 16D. $X \cdot Y+X^{\prime} \cdot Z=(X+Z) \cdot\left(X^{\prime}+Y\right)$

Consensus Theorem:
17. $(X \cdot Y)+(Y \cdot Z)+(X \cdot Z)=$ $X \cdot Y+X^{\prime} \cdot Z$

17D. $(X+Y) \cdot(Y+Z) \cdot\left(X^{\prime}+Z\right)=$ $(X+Y) \cdot\left(X^{\prime}+Z\right)$
ュ R.H. Katz Transparency No. 2-9

Gate Logic: Laws of Boolean Algebra

Proving theorems via axioms of Boolean Algebra:
E.g., prove the theorem: $X \cdot Y+X \cdot Y^{\prime}=X$
E.g., prove the theorem: $\mathrm{X}+\mathrm{X} \cdot \mathrm{Y}=\mathrm{X}$

Proving theorems via axioms of Boolean Algebra:
E.g., prove the theorem: $X \cdot Y+X \cdot Y^{\prime}=X$
distributive law (8) $\quad \mathrm{X} \cdot \mathrm{Y}+\mathrm{X} \cdot \mathrm{Y}^{\prime}=\mathrm{X} \cdot\left(\mathrm{Y}+\mathrm{Y}^{\prime}\right)$
complementary law (5) $\quad \mathrm{X} \cdot\left(\mathrm{Y}+\mathrm{Y}^{\prime}\right) \quad=\mathrm{X} \cdot(1)$
identity (1D)
$X \cdot(1) \quad=X$
E.g., prove the theorem: $X+X \cdot Y=X$
identity (1D)
$X+X \cdot Y \quad=X \cdot 1+X \cdot Y$
distributive law (8)
identity (2)
$X \cdot 1+X \cdot Y=X \cdot(1+Y)$
identity (1)
$X \cdot(1+Y)=X \cdot(1)$
$X \cdot(1) \quad=X$

DeMorgan's Law

$$
(X+Y)^{\prime}=X ' \cdot Y^{\prime}
$$

NOR is equivalent to AND with inputs complemented

$$
\begin{aligned}
& \qquad(\mathrm{X} \cdot \mathrm{Y})^{\prime}=\mathrm{X}^{\prime}+\mathrm{Y}^{\prime} \\
& \text { NAND is equivalent to OR } \\
& \text { with inputs complemented }
\end{aligned}
$$

X	Y	\bar{X}	\bar{Y}	$\overline{X+Y}$	$\bar{X} \cdot \bar{Y}$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

X	Y	\bar{X}	\bar{Y}	$\bar{X} \cdot Y$	$\bar{X}+\bar{Y}$
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

DeMorgan's Law can be used to convert ANDIOR expressions to ORIAND expressions

Example:

$$
\begin{aligned}
& Z=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime} \\
& Z^{\prime}=\left(A+B+C^{\prime}\right) \cdot\left(A+B^{\prime}+C^{\prime}\right) \cdot\left(A^{\prime}+B+C^{\prime}\right) \cdot\left(A^{\prime}+B^{\prime}+C\right)
\end{aligned}
$$

Gate Logic: Laws of Boolean Algebra

Apply the laws and theorems to simplify Boolean equations
Example: full adder's carry out function
Cout $=A^{\prime} B C i n+A B ' C i n+A B C i n '+A B C i n$

Apply the laws and theorems to simplify Boolean equations
Example: full adder's carry out function

Cout	$=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
	$=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n+A B C i n$
	$=A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
	$=\left(A^{\prime}+A\right) B C i n+A B B^{\prime} C i n+A B C i n '+A B C i n$
	$=(1) B C i n+A B^{\prime} C i n+A B C i '^{\prime}+A B C i n$
	$=B C i n+A B^{\prime} C i n+A B C i n '+A B C i n+A B C i n$
	$=B C i n+A B^{\prime} C i n+A B C i n+A B C i n '+A B C i n$
	$=B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n '+A B C i n$
	$=B C i n+A(1) C i n+A B C i n '+A B C i n$
	$=B C i n+A C i n+A B(C i n '+C i n)$
	$=B C i n+A C i n+A B(1)$
	$=B C i n+A C i n+A B$

$A \cdot A=A$

$A+0=A$

Idempotent Laws
$A+\bar{A}=1$

1
A. $\bar{A}=0$

Identity Laws
$X Y+X \bar{Y}=X$
 $X+X Y=X$

Complementarity Laws

Truth table is the unique signature of a Boolean function
Many alternative expressions (and gate realizations) may have the same truth table

Canonical form: standard form for a Boolean expression provides a unique algebraic signature

Sum of Products Form

also known as disjunctive normal form, minterm expansion

$$
F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}
$$

