

Decrease Power Consumption using a Programmable Logic Device

Jennifer Jenkins
Applications Engineer
Jennifer.Jenkins@xilinx.com

Introduction

- Existing power saving design techniques include:
 - Reducing operating voltage
 - Optimizing system and CPU clock frequency
 - Eliminating spikes of large current consumption during the power up sequence
 - Efficiently manage system battery operation
 - Efficiently managing operating mode of system devices
 - Minimizing bus activity
 - Reducing bus capacitance
 - Reducing switching noise
- Most important: managing operating mode of system devices
- What system devices?
 - Microprocessors
 - Microcontrollers

CPU Power Consumption

- Typical WebPad application*, CPU consumes 30% of overall power
- Range: 720uW to 1W during operation

^{*} Data from International Data Corporation (IDC)

Operating Modes

- Microprocessor operating modes offer additional power savings to existing low power consumption
- Microprocessor puts itself in a low power mode when idle or suspended

Intel® StrongARM SA-1110 microprocessor operating modes

(Power consumption shown is at 206MHz and V_{CCEXT} =3.3V and V_{CCINT} =1.8V)

Operating Mode Control

- OS or software application temporarily suspend CPU
- Several operating modes allow further power savings
- Wake-up signals consist of HW reset, system interrupt, GPIO interrupt, OS timer interrupt, or peripheral interrupt

Using a CPLD

- Reduce number of interrupts to CPU
- Increase time CPU is in a power saving state
- Respond to and handle external CPU interrupts

Function Separation

- Microprocessor = data processing operations
- CPLD = external interface, data acquisition operations
- System interrupts:
 - Memory access
 - Communication interfaces such as RF, I2C, UART, SPI, or ISA
 - General purpose I/O
 - LCD interface
- CPLD interrupt response time faster than microprocessor

CPLD Operational Flow

CPLD Functionality

Power Savings

Email Terminal Example

WebPad/PDA Example

CPLD Benefits

- Re-programmable CPLD provides flexible microprocessor interfacing
- Add additional system functionality:
 - Expand microprocessor I/O
 - Increase system interfaces
 - Smart battery management with SMBus interface
- Interface to multiple processors in multi-processor environment
- Xilinx CoolRunner CPLDs standby current < 100μA
- Operating power consumption of a CoolRunner CPLD fully populated with 16-bit counters and a 50MHz clock, I_{CC} is around 10mA

Power Savings

Single Processor Solution

Normal Mode (60% of operating time) = 24 Wh Idle Mode (30% of operating time) = 3 Wh Sleep Mode (10% of operating time) = 2.5 mWh 27 Wh

Processor and CPLD Solution

Normal Mode (40% of operating time) = 16 Wh Idle Mode (30% of operating time) = 3 Wh Sleep Mode (30% of operating time) = 7.5 mWh CPLD (100% of operating time) = 1.0 Wh 20 Wh

Increase processor Idle and Sleep time equals additional power savings of **26%**

System Benefits Conclusion

- Increase processor time in sleep mode
- Faster response time to system interrupts
- Provide high speed interface to system with CPLD
- Run microprocessor at a lower frequency for data processing operations
- Increase performance of processor
- Extend battery life over product life cycle

Questions/Comments?

Email: Jennifer.Jenkins@xilinx.com

Web Address: www.xilinx.com