
An Introduction
to

Support Vector Machines
and

Multiclass Classification

Boonserm Kijsirikul

Department of Computer Engineering,

Chulalongkorn University

Outline

• Introduction to Support Vector Machines
(SVMs)

• Maximum Margin Hyperplane

• Linear SVMs

• Non-Linear SVMs

• Feature Spaces and Kernels

• Multiclass Support Vector Machines

Introduction to SVMs

• Problem:

– Find a hyperplane that correctly classifies data
points from two different classes.

• Solutions: Perceptron, Neural Networks

• SVM constructs an optimal hyperplane that
separates the data points of two classes as far
as possible [Cortes and Vapnik, 1995].

• Issues: Linear separable, Feature space,
Multiclass classification

Classification of Fat Child

130.4104.49
129.6103.68
-121.0102.07
132.0101.66
127.0101.65
132.4100.04
130.4100.03
126.0100.02
-120.0100.01

Fat /
Not fat

Weight
(kg.)

Height
(cm.)

No

-126.9117.818
136.3115.517
-123.5114.216
-125.4111.015
134.9109.914
132.4107.213
134.4105.612
-120.0105.211
-122.0104.910

Fat /
Not fat

Weight
(kg.)

Height
(cm.)

No.

Maximum Margin Hyperplane

Maximum Margin Hyperplane

• A Yellow hyperplane with small margin.

Maximum Margin Hyperplane

• Yellow hyperplanes with small margin.

• A Green hyperplanes with large margin.

• A better generalization is expected from the green hyperplane.

Linear SVMs

• Given a training data set
(x1,y1),…,(xl,yl) ∈ RN ×{±1},

Find f(x) such that f(xi) = yi for all i=1,…,l.
• Consider a hyperplane

(w ⋅ x) + b = 0, w ∈ RN, b ∈ R,
• If we additionally require

min |(w ⋅ xi) + b| = 1,

w and b be such that the point closest to the
hyperplane has a distance of 1/||w||

• Therefore, (w ⋅ xi) + b ≥ +1 if yi = +1
(w ⋅ xi) + b ≤ −1 if yi = −1,

or yi[(w ⋅ xi) + b] ≥ +1, ∀i

i = 1,…,l

Maximum Margin

• Therefore, we want to maximize 2/||w||,
or minimize ||w||/2

Solving SVMs by Quadratic Programming

• Minimize ½ ||w||2

subject to yi[(w ⋅ xi) + b] ≥ +1, for i=1,…,l.
• This constrained optimization problem is dealt with by

introducing Lagrange multipliers αi ≥ 0 and a Lagrangian

L(w,b,α)= ½ ||w||2 − Σ αi((yi((w ⋅ xi) + b)
• The solution is

Σ αi yi= 0 and w = Σ αi yixi

• The solution vector thus has an expansion in terms of a
subset of the training data, namely those patterns whose a
is non-zero, called support vectors.

• The hyperplane decision function can be written as

f(x) = sgn(Σ yiαi ⋅ (x ⋅ xi) +b)

l

i=1

l

i=1

l

i=1

l

i=1

An Example of Linearly Separable Functions

• No. of support vectors = 4

An Example of Linearly Non-Separable Functions
• An example of linearly non-separable functions

An Example of Linearly Non-Separable Functions
• In case of using the input space

• For linearly non-separable function, it is very
likely that a linear separator (hyperplane) can be
constructed in higher dimensional space.

• Suppose we map the data points in the input
space Rn into some feature space of higher
dimension, Rm using function Φ

Φ : Rn → Rm

• Example:

Φ : R2 → R3

x = (x1, x2) , Φ(x) = (x1, x2, √2 x1x2)

Feature Spaces

2 2

An Example of Linearly Non-Separable Functions
• In case of using the feature space: Φ(x) = (x1, x2, √2 x1x2)

2 2

An Example of Linearly Non-Separable Functions

• The corresponding non-linear function in the input space

Kernel Functions
• We need not explicitly map input data into feature

space, as the construction of optimal hyperplane
and the evaluation of the corresponding decision
function only require the the evaluation of dot
products (f(x) = sgn(Σ yiαi ⋅ (x ⋅ xi) +b))

• Therefore, the dot products can be evaluated by a
kernel, k(x,y), such that

k(x,y) = (Φ(x) ⋅ Φ(y))

e.g. k(x,y) = (x ⋅ y)2 = (x1, x2, √2 x1x2) (y1, y2, √2 y1y2)T

• Some kernel functions
– Polynomial : k(x,y) = (x ⋅ y + 1) p

– Radial basis function : k(x,y) = e
– Neural network : k(x,y) = tanh(κx ⋅ y – d)

-||x-y||2/2σ2

Multiclass SVMs

• SVMs are originally designed to be binary
classifiers (discriminating between two classes).

• Thus, SVMs need modification in order to deal
with real-world multiclass problems.

• Previous Methods for Multiclass SVMs.

– One-against-the-Rest (1-v-R)

– One-against-one (1-v-1)

– Max Wins algorithm

– Decision Directed Acyclic Graphs (DDAG)

– Etc.

One-against-the-Rest

• For N-class classification, construct N
binary classifiers.

• Train the ith classifier with all examples
in the ith class as positive, and the other
examples as negative labels.

• Output the class corresponding to the
classifier with the highest output value.

Max Wins Algorithm

• One-against-one (1-v-1)

– Construct all possible binary classifiers.

– For N classes, there will be N(N-1)/2 classifiers.

– Each classifier is trained on 2 out of N classes.

• Max Wins (a kind of 1-v-1)

– A test example is classified by all classifiers.

– Each classifier provides one vote for its
preferred class.

– The majority vote is the final output.

– Accurate but slow.

DDAG

• Decision Directed Acyclic Graphs

• Concept – remove wrong classes one-by-one.

• Construct N(N-1)/2 classifiers, but require
only N-1 times of binary classification.

(<< N(N-1)/2).

• Faster than Max Wins (require less
evaluation time).

DDAG Architecture

Weakness of DDAG

• Number of node evaluations for the correct
class is unnecessarily high.

• If the correct class is evaluated at the root
node, it is tested against the other classes for
N-1 times.

• The higher the number of times the correct
class is tested, the higher misclassification
will be.

Positioning of Adaptive Directed
Acyclic Graphs (ADAG)

Evaluation Speed

A
cc

ur
ac

y

Max Wins :
The most accurate one

ADAG :As fast as DDAG
but more accurate

DDAG : Almost as
accurate as Max Wins,
but much faster

ADAG

• Adaptive Directed Acyclic Graphs

• The architecture is like a paired knock-out
competition.

• In each round, two classes are paired and
play a knock-out match.

• The winners proceed to the next round.

• The champion will be the classification
result.

ADAG Architecture (8 classes)

4 - 51 - 8

B1-B2

A1 A2 A3 A4

B1 B2

Output

2 - 7 3 - 6

A1-A2 A3-A4

More Accuracy

• ADAG gives higher accuracy than DDAG,

- when the number of classes increases, and

- when each binary classifier is not very

accurate.

• Reduction of levels of evaluation

= Reduction of cumulative error.

More Accuracy

Output

Output

DDAG ADAG

• Suppose each classifier has 1% error rate.

Error = 1-0.997 = 6.79%

Error = 1-0.99log2(8) = 2.97%

Expected Accuracy of DDAG & ADAG

• Let p be the probability that the correct
class will be eliminated from the
implementation list, when it is tested against
another class.

• Let the probability of one of any two
classes, except for the correct class, being
eliminated from the list be 0.5.

• Assume the probability distribution of the
position of the correct class in the list is
uniform.

• Let N be the number of classes.

Theorems

• The expected accuracy of DDAG is

• The expected accuracy of ADAG is

() ()
⎥
⎦

⎤
⎢
⎣

⎡ −
−−+

− −

p

p
p

p

p

N

N
N 1

1
11 1

⎡ ⎤
()⎡ ⎤

⎡ ⎤
()⎡ ⎤ 1log

log
log

log
2

2
2

2

1
2

1
22 −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ − N
N

N
N

p
N

N
p

N

N

Expected Accuracy of DDAG & ADAG

• p = 0.1%

0.9700

0.9750

0.9800

0.9850

0.9900

0.9950

1.0000

0 5 10 15 20 25 30 35 40

No. of Classes

A
cc

ur
ac

y

DDAG

ADAG

Experiments

• 2 data sets
– Thai vowel data set (12 classes)

– UCI letter data set (26 classes)

• ADAG should have much advantage when
the number of classes increases.

• Another factor is the accuracy of binary
classifiers (the value of (1-p) in previous
theorems).

Experiments: Thai Vowel Data Set

• 12-Class

• Use Polynomial kernel and RBF kernel
– Polynomial : |(x⋅y+1)/72|d

– RBF : exp(− |x−y|2/72c)

• For each value of d or c

– no. of experiments = 20,000 with several different
sequences of classes in the implementation list
chosen randomly

Thai Vowel

0.0384.2784.3012

0.0384.5584.5811

0.0485.0585.0910

0.0685.3385.399

0.0785.9185.988

0.0486.0886.127

0.0386.0986.126

DIFFDDAGADAGd

Polynomial

• No. of training examples: 6,192
• No. of test examples: 3,096

Thai Vowel (Cont.)

0.0186.6386.640.5

0.0286.7586.770.4

0.0386.5286.550.3

0.0284.4884.500.2

0.0174.3174.320.1

DIFFDDAGADAGc

RBF

Experiments: UCI Letter Data Set

• 26-Class

• Use Polynomial kernel and RBF kernel

• No. of experiments = 50,000 with several
different sequences of classes in the
implementation list chosen randomly

UCI Letter

0.80++++91.6292.4210

0.77++++92.4593.229

0.69++++93.1493.838

0.53++++94.2594.787

0.48++++94.8795.356

0.49++++95.3495.835

0.42++++95.4695.884

0.45++++95.5195.963

0.42++++95.1795.592

0.52++++83.3183.831

DIFFDDAGADAGd

Polynomial

• ++++ denotes 99.99% confidence level for difference

UCI Letter (Cont.)

0.05+97.1597.200.8

0.06+97.2297.280.7

0.06+96.9797.030.6

0.09++96.3996.480.5

0.10++96.2196.310.4

0.10++95.3695.460.3

0.16+++93.9794.130.2

0.17++90.6490.810.1

DIFFDDAGADAGc

RBF

• +++ denotes 99.00% confidence level for difference
• ++ denotes 95.00% confidence level for difference
• + denotes 90.00% confidence level for difference

UCI Letter (Cont.)

0.0497.3497.381.0

0.05+97.2297.270.9

0.0197.7997.804.0

0.0097.8497.843.5

0.0197.9097.913.0

0.0097.7697.762.5

0.0197.6297.632.0

0.0497.5597.591.5

DIFFDDAGADAGc

RBF

• + denotes 90.00% confidence level for difference

