Introduction to Algorithms
6.046J/18.401J

LECTURE 3

Divide and conquer

* Binary search

* Powering a number

* Fibonacci numbers

» Matrix multiplication
* Strassen’s algorithm
* VLSI tree layout

ALGORITHMS

Prof. Charles E. Leiserson

|m The divide-and-conquer
des1gn paradigm

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.2

ALG OR![H\1'§

“\‘

Merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.3

| ‘-\.1_(;(,-,‘{ —

- e

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

T(n) =2 T(n/2) + On)

\
subproblems work dividing

subproblem size and combining

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.4

= &+ Master theorem (reprise)
T(n) = a T(n/b) + f(n)
CASE 1: f(n) = O(n'°2b~¢), constant € > 0
= T(n) = O(n'o?) .

CASE 2: f(n) = O(n'°21g"n), constant & > 0
= T(n) = O(n'or 1gh*1n) .

CASE 3: f(n) = Q(n'oere* ¢, constant € > 0,
and regularity condition

= 1(n) =0O(f(n)).

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.5

= &+ Master theorem (reprise)
T(n) = a T(n/b) + f(n)

CASE 1: f(n) = O(n'°2b~¢), constant € > 0
— T(n) = O(nloebe) .

CASE 2: f(n) = O(n'°21g"n), constant & > 0
= T(n) = O(n'or 1gh*1n) .

CASE 3: f(n) = Q(n'oere* ¢, constant € > 0,
and regularity condition

= 1(n) =0O(f(n)).

Merge sort: o =2, b =2 = ploghe = plog? = p
= CASE2 (k=0) = T(n)=0O(nlgn).

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.6

ALGORITHMS

—
ey Blnary search

N
Qv

Find an element 1n a sorted array:
1. Divide: Check middle element.

2. Conquer: Recursively search | subarray.

3. Combine: Trivial.

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.7

\"'s-"" ‘" Binary search

N
Qv

Find an element 1n a sorted array:
1. Divide: Check middle element.

2. Conquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.8

\"'s-"" ‘" Binary search

N
Qv

Find an element 1n a sorted

1. Divide: Check middle e

array:

ement.

2. Conquer: Recursively search | subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9

12 15

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.9

- "" Binary search

N
Qv

Find an element 1n a sorted

1. Divide: Check middle e

array:

ement.

2. Conquer: Recursively search | subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9

12 15

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.10

- "" Binary search

N
Qv

Find an element 1n a sorted array:
1. Divide: Check middle element.

2. Conquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.11

- "" Binary search

N
Qv

Find an element 1n a sorted array:
1. Divide: Check middle element.

2. Conquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.12

- "" Binary search

N
Qv

Find an element 1n a sorted

1. Divide: Check middle e

array:

ement.

2. Conquer: Recursively search | subarray.

3. Combine: Trivial.

Example: Find 9

3 5 7 8 9

12 15

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.13

.:.(-;()'l‘;:i"r'i-l:\tl.'s' .
~ &~ Recurrence for binary search

I(n)=11T(n/2) +O(1)

\
subproblems work dividing

subproblem size and combining

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.14

:\-l.. G 0. RITHMS .
~ &~ Recurrence for binary search
I(n)=11T(n/2) +O(1)

\
subproblems work dividing

subproblem size and combining

nloghe = plogsl = 0 =1 = CAaSgE 2 (k= 0)
= 1(n)=0(Ign).

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.15

ALGORITHMS

“\‘

Powerlng a number

Problem: Compute a”, where n € V.

Naive algorithm: O(n).

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.16

ALGORITHMS

“\‘

Powerlng a number

Problem: Compute a”, where n € V.
Naive algorithm: O(n).

Divide-and-conquer algorithm:

n/2 n/2

a<-a 1f n 1S even;

a =
q=D72 . 4 (n-1)2

-a 1t n 1s odd.

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.17

= 5~ Powering a number

Problem: Compute a”, where n € V.
Naive algorithm: O(n).

Divide-and-conquer algorithm:

) {a”/z- a™? if 7 is even;
a j—

a2 =02 00 1f s odd.

T(n) = T(n/2) + (1) = T(n)=0O(gn) .

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.18

= &~ Fibonacci numbers

Recursive definition:

0 1fn=0;
F =<1 ifn=1;
F T F 5, iftn>2.

O 1 1 2 3 5 8 1321 34 .-

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.19

= &~ Fibonacci numbers

Recursive definition:

0 1f n =0;
F =451 ifn=1;
F T F 5, iftn>2.

O 1 1 2 3 5 8 1321 34 .-

Naive recursive algorithm: C2(¢")
(exponential time), where ¢=(1+/5)/2
1s the golden ratio.

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.20

g Computing Fibonacci

«>" numbers
Bottom-up:

* Compute v, I\, I, ..., FF,_1n order, forming
each number by summing the two previous.

* Running time: O(n).

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.21

g Computing Fibonacci

«>" numbers
Bottom-up:

* Compute v, I\, I, ..., I/, 1n order, forming
each number by summing the two previous.

* Running time: O(n).
Naive recursive squaring:

F = ¢"/\/5 rounded to the nearest integer.
* Recursive squaring: O(lg ») time.

 This method 1s unreliable, since floating-point
arithmetic 1s prone to round-off errors.

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.22

AL (ORITH\d‘S

“" - Recurswe squaring

“\‘

F., F] 1 17"

Theorem: | " T =
. Fn Fn—l_ _1 O_

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.23

“\‘

' Recurswe squaring

Theorem: . =

F, F_.| |10

n n—

F., F 1 1 17"

Algorithm: Recursive squaring.
Time = O(lg n) .

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.24

e " Recursive squaring

“
F F 1 71 17"
Theorem: | " T =
Fn Fn—l_ _1 O_

Algorithm: Recursive squaring.
Time = O(lg n) .

Proof of theorem. (Induction on 7.)

- 1 1 171
F, K 1 1
Base (n=1): | > " '|=
o o) (10

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.25

Inductive ste;

F F

n+1 n

Fn Fn—l

0 (n > 2):

o Recursive squaring

£y

n

F,_

n_

1

2

1 0 -

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.26

ALGORITHMS

—
===
VY \‘

Input:
Output:

September 15, 2004

€11 C2 -

Cy1 Cpp

Cnl Cn2

Matrix multiplication

Az[ay]»B=[by].} .
C=lc;]=4-B. i,j=1,2,...,n.

Cln dip dip 0 dyy by by, -+ by,
Con | _| Y21 422 """ dop | by1 byy by,
Con | | 9n1 Gy """ dyy | _bnl bn2 bnn_

n
¢y = D ai by
k=1

© 2001-4 by Charles E. Leiserson
Introduction to Algorithms L3.27

ALGORITHMS

— .
=~ &~ Standard algorithm
fori < | ton
do forj < 1 ton
do ¢, <0
for k< 1 ton
doc; < c;+ay b,

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.28

ALGORITHMS

— .
=~ &~ Standard algorithm
fori < | ton
do forj < 1 ton
do ¢, <0
for k< 1 ton
doc; < c;+ay b,

Running time = O(»°)

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.29

) D1V1de and-conquer algorithm

IDEA:

nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

r =ae+bg
s =af +bh
t =ce+tdg
u=cf +dh_

September 15, 2004

7S a bl|e
— T l=| T || ——d—-

tu| |cd]|g h
C = 4 - B

8 mults of (n/2)x(n/2) submatrices

-
4 adds of (n/2)x(n/2) submatrices

© 2001-4 by Charles E. Leiserson
Introduction to Algorithms L3.30

RN D1V1de and-conquer algorithm

IDEA:

nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

r =ae+bg

S =af+bh
t =ce+dh
u=cf +dg._

September 15, 2004

ris| |ab]|el f]

tu| |cd]|g h

—t = |=| || —d=-

C = A - B

recursive
8 lmults of (n/2)x(n/2) submatrices
4 adds of (n/2)x(n/2) submatrices

© 2001-4 by Charles E. Leiserson

Introduction to Algorithms L3.31

::“‘ Analysis of D&C algorithm

N
NV

T(n) =8 T(n/2) + O(n?)

\
submatrices work adding

Do submatrices
submatrix size

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.32

— Analysm of D&C algorithm

- e

T(n) =8 T(n/2) + O(n?)

\
submatrices work adding

Do submatrices
submatrix size

nloght = plogsd = 3 — CASE 1 = T(n) = On?).

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.33

:" Analysis of D&C algorithm

T(n) =8 T(n/2) + O(n?)

\
submatrices work adding

Do submatrices
submatrix size

nloght = plogsd = 3 — CASE 1 = T(n) = On?).

No better than the ordinary algorithm.

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.34

ALGORITHMS

= 4~ Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

© 20014 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.35

= .~ Strassen’s idea

AN
Ve

* Multiply 2x2 matrices with only 7 recursive mults.

Pi=a-(f-h)
P,=(@+b)-h
P,=(c+d)-e
Py=d-(g—e)

Py=(a+d)-(e+h)
Pe=(0b—-d)-(g+h)
P,=(a—-c)-(etf)

September 15, 2004 Introduction to Algorithms

© 2001-4 by Charles E. Leiserson
L3.36

~ 4~ Strassen’s idea

IS
-
Ve

* Multiply 2x2 matrices with only 7 recursive mults.

P,=a-(f—h) r=P.+P,—P,+ P,
P,=(a+b)-h s =P +P,
P,=(c+d)-e t =P, +P,
P,=d-(g—e) u=Ps+ P —Py— Py

Py=(a+d)-(e+h)
Po=(b—-d)-(g+h)
P,=(a—-c)-(etf)

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.37

= .~ Strassen’s idea

AN
Ve

* Multiply 2x2 matrices with only 7 recursive mults.

P,=a-(f—h) r=P.+P,—P,+ P,
P,=(a+b)-h s =P +P,
P,=(c+d)-e t =P, +P,
P,=d-(g—e) u=Ps+ P —Py— Py

Ps=(a+d)-(e+h)
P.=(b—d)-(g+h) 7 mults, 18 adds/subs.

P,=(a-c) (e+f) Note: No .re.hance on
commutativity of mult!

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.38

ALGORITHMS

Strassen’s idea

= \‘ |

Ve

* Multiply 2x2 matrices with only 7 recursive mults.

P, =a-(f—h) r =P.+P,—P,+ P,
Py=(a+b)-h = (a +d)(e + h)
Py=(c+d)-e +d(g—e)—(a +b)h
Py=d-(g— o) +(b—d)(g+ h)
P.=(@+d) -(et+h) =qae +ah +de + dh
P.=(b-d)-(g+h) + dg —de — ah — bh
P,=(@—c)-(etf) + bg + bh —dg — dh
= ae + bg

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.39

—
\‘,:;‘ Stl‘aSSen S algor]thm

1. Divide: Partition 4 and B into

(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.40

ALGORITHM
;M‘ Strassen’s algorithm

1. Divide: Partition 4 and B into

(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n) = 7 T(n/2) + O(n?)

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.41

LGORITHMS

:;-' Analysis of Strassen

Lkl

T(n)="7T(n/2) + O(n?)

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.42

" &~ Analysis of Strassen

T(n) = 7 T(n/2) + O(n2)

nlogbt = plowo’ & p? 8l — CASE 1 = T(n) = O(n's").

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.43

,"""""._a‘ Analysis of Strassen

T(n)=7T1(n/2) + O(n?)
nlogbd = plowo’ m 281 — CASE 1 = T(n) = O(n's").

The number 2.81 may not seem much smaller than
3, but because the difference 1s in the exponent, the
impact on running time 1s significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 32 or so.

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.44

- *f_- Analysm of Strassen

Q|
Wy

T(n)=7T1(n/2) + O(n?)
nlogbd = plowo’ m 281 — CASE 1 = T(n) = O(n's").

The number 2.81 may not seem much smaller than
3, but because the difference 1s in the exponent, the
impact on running time 1s significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 32 or so.

Best to date (of theoretical interest only): ®(n-7¢).

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.45

\l G ()I{i IH\I\

:‘“-‘ VLSI layout

N
NV

Problem° Embed a complete binary tree
with 7 leaves 1n a grid using minimal area.

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.46

:‘“-‘ VLSI layout

N
NV

Problem Embed a complete binary tree
with 7 leaves 1n a grid using minimal area.

W(n)
I i B
H (\n) W -

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.47

| ‘:;‘ VLSI layout

N

Problem: Embed a complete binary tree
with 7 leaves 1n a grid using minimal area.

W(n)
I i B
H(\n) ., I

H(n) = H(n/2) + O(1)
= O(Ig n)

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.48

— VLSI layout

Problem Embed a complete binary tree
with 7 leaves 1n a grid using minimal area.

W(n)
I i B
H (\n) B -

H(n) = Hn/2) +©(1) W(n)=2Wn/2)+ 6(1)
= O(Ig n) = 0(n)

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.49

— VLSI layout

Problem Embed a complete binary tree
with 7 leaves 1n a grid using minimal area.

W(n)

I i H
H(n) B -

|

H(n) = Hn/2) +©(1) W(n)=2Wn/2)+ 6(1)
= O(Ig n) = 0(n)
Area - ®(n lg n) © 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.50

\l G ()R! IH\l‘a

t"_h_““
C N ¥
Y

H tree embedding

L(n) .

L(n)

September 15, 2004 Introduction to Algorithms

© 2001-4 by Charles E. Leiserson
L3.51

;:‘ N H tree embedding

N
Qv

L(n)

L(n)

L4y ©(1) L(n/4) _

September 15, 2004 Introduction to Algorithms L3.52

I .‘.\‘1._(-;0.}& ITHMS .
g " H-tree embedding

L(n)

L(n) =2L(n/4) + ©(1)
= O(/n)

L(n)

Area = O(n)

Ln/4) ©(1) L(n/4)

September 15, 2004 Introduction to Algorithms L3.53

ALGORITHMS

O

"+~ Conclusion

A\

* D1vide and conquer 1s just one of several
powertful techniques for algorithm design.

 Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

* The divide-and-conquer strategy often leads
to efficient algorithms.

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.54

