Introduction to Algorithms
6.046J/18.401J

LECTURE 3

Divide and conquer

* Binary search

* Powering a number

* Fibonacci numbers

» Matrix multiplication
* Strassen’s algorithm
* VLSI tree layout

ALGORITHMS

Prof. Charles E. Leiserson



|m The divide-and-conquer
des1gn paradigm

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.
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Merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.
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1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

T(n) =2 T(n/2) + On)

\
# subproblems work dividing

subproblem size and combining
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= &+ Master theorem (reprise)
T(n) = a T(n/b) + f(n)
CASE 1: f(n) = O(n'°2b~¢), constant € > 0
= T(n) = O(n'o?) .

CASE 2: f(n) = O(n'°21g"n), constant & > 0
= T(n) = O(n'or 1gh*1n) .

CASE 3: f(n) = Q(n'oere* ¢, constant € > 0,
and regularity condition

= 1(n) =0O(f(n)).
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= &+ Master theorem (reprise)
T(n) = a T(n/b) + f(n)

CASE 1: f(n) = O(n'°2b~¢), constant € > 0
— T(n) = O(nloebe) .

CASE 2: f(n) = O(n'°21g"n), constant & > 0
= T(n) = O(n'or 1gh*1n) .

CASE 3: f(n) = Q(n'oere* ¢, constant € > 0,
and regularity condition

= 1(n) =0O(f(n)).

Merge sort: o =2, b =2 = ploghe = plog? = p
= CASE2 (k=0) = T(n)=0O(nlgn).

© 2001-4 by Charles E. Leiserson

September 15, 2004 Introduction to Algorithms L3.6



ALGORITHMS

—
ey Blnary search

N
Qv

Find an element 1n a sorted array:
1. Divide: Check middle element.

2. Conquer: Recursively search | subarray.

3. Combine: Trivial.
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\"'s-"" ‘" Binary search

N
Qv

Find an element 1n a sorted array:
1. Divide: Check middle element.

2. Conquer: Recursively search | subarray.

3. Combine: Trivial.
Example: Find 9
3 5 7 8 9 12 15
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- "" Binary search

N
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~ &~ Recurrence for binary search

I(n)=11T(n/2) +O(1)

\
# subproblems work dividing

subproblem size and combining
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:\-l.. G 0. RITHMS .
~ &~ Recurrence for binary search
I(n)=11T(n/2) +O(1)

\
# subproblems work dividing

subproblem size and combining

nloghe = plogsl = 0 =1 = CAaSgE 2 (k= 0)
= 1(n)=0(Ign).
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ALGORITHMS

“\‘

Powerlng a number

Problem: Compute a”, where n € V.

Naive algorithm: O(n).
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ALGORITHMS

“\‘

Powerlng a number

Problem: Compute a”, where n € V.
Naive algorithm: O(n).

Divide-and-conquer algorithm:

n/2 n/2

a<-a 1f n 1S even;

a =
q=D72 . 4 (n-1)2

-a 1t n 1s odd.
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= 5~ Powering a number

Problem: Compute a”, where n € V.
Naive algorithm: O(n).

Divide-and-conquer algorithm:

) {a”/z- a™? if 7 is even;
a j—

a2 =02 00 1f s odd.

T(n) = T(n/2) + (1) = T(n)=0O(gn) .
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= &~ Fibonacci numbers

Recursive definition:

0 1fn=0;
F =<1 ifn=1;
F T F 5, iftn>2.

O 1 1 2 3 5 8 1321 34 .-
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= &~ Fibonacci numbers

Recursive definition:

0 1f n =0;
F =451 ifn=1;
F T F 5, iftn>2.

O 1 1 2 3 5 8 1321 34 .-

Naive recursive algorithm: C2(¢")
(exponential time), where ¢=(1+/5)/2
1s the golden ratio.
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g Computing Fibonacci

«>" numbers
Bottom-up:

* Compute v, I\, I, ..., FF,_1n order, forming
each number by summing the two previous.

* Running time: O(n).
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g Computing Fibonacci

«>" numbers
Bottom-up:

* Compute v, I\, I, ..., I/, 1n order, forming
each number by summing the two previous.

* Running time: O(n).
Naive recursive squaring:

F = ¢"/\/5 rounded to the nearest integer.
* Recursive squaring: O(lg ») time.

 This method 1s unreliable, since floating-point
arithmetic 1s prone to round-off errors.
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“" - Recurswe squaring

“\‘

F., F ] 1 17"

Theorem: | " T =
. Fn Fn—l_ _1 O_
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“\‘

' Recurswe squaring

Theorem: . =

F, F_.| |10

n n—

F., F 1 1 17"

Algorithm: Recursive squaring.
Time = O(lg n) .
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e " Recursive squaring

“
F F 1 71 17"
Theorem: | " T =
Fn Fn—l_ _1 O_

Algorithm: Recursive squaring.
Time = O(lg n) .

Proof of theorem. (Induction on 7.)

- 1 1 171
F, K 1 1
Base (n=1): | > " '|=
o o) (10
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Inductive ste;

F F

n+1 n

_Fn Fn—l_

0 (n > 2):

o Recursive squaring

£y

n

F,_

n_

1

2

1 0 -
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Input:
Output:

September 15, 2004

€11 C2 -

Cy1 Cpp

Cnl Cn2

Matrix multiplication

Az[ay]»B=[by].} .
C=lc;]=4-B. i,j=1,2,...,n.

Cln dip dip 0 dyy by by, -+ by,
Con | _| Y21 422 """ dop | by1 byy by,
Con | | 9n1 Gy """ dyy | _bnl bn2 bnn_

n
¢y = D ai by
k=1
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ALGORITHMS

— .
=~ &~ Standard algorithm
fori < | ton
do forj < 1 ton
do ¢, <0
for k< 1 ton
doc; < c;+ay b,
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ALGORITHMS

— .
=~ &~ Standard algorithm
fori < | ton
do forj < 1 ton
do ¢, <0
for k< 1 ton
doc; < c;+ay b,

Running time = O(»°)
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) D1V1de and-conquer algorithm

IDEA:

nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

r =ae+bg
s =af +bh
t =ce+tdg
u=cf +dh_

September 15, 2004

7S a bl|e
— T l=| T || ——d—-

tu| |cd]|g h
C = 4 - B

8 mults of (n/2)x(n/2) submatrices

-
4 adds of (n/2)x(n/2) submatrices
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RN D1V1de and-conquer algorithm

IDEA:

nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

r =ae+bg

S =af+bh
t =ce+dh
u=cf +dg._

September 15, 2004

ris| |ab]|el f]

tu| |cd]|g h

—t = |=| || —d=-

C = A - B

recursive
8 lmults of (n/2)x(n/2) submatrices
4 adds of (n/2)x(n/2) submatrices
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::“‘ Analysis of D&C algorithm

N
NV

T(n) =8 T(n/2) + O(n?)

\
# submatrices work adding

Do submatrices
submatrix size
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— Analysm of D&C algorithm

- e

T(n) =8 T(n/2) + O(n?)

\
# submatrices work adding

Do submatrices
submatrix size

nloght = plogsd = 3 — CASE 1 = T(n) = On?).
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:" Analysis of D&C algorithm

T(n) =8 T(n/2) + O(n?)

\
# submatrices work adding

Do submatrices
submatrix size

nloght = plogsd = 3 — CASE 1 = T(n) = On?).

No better than the ordinary algorithm.
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ALGORITHMS

= 4~ Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.
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= .~ Strassen’s idea

AN
Ve

* Multiply 2x2 matrices with only 7 recursive mults.

Pi=a-(f-h)
P,=(@+b)-h
P,=(c+d)-e
Py=d-(g—e)

Py=(a+d)-(e+h)
Pe=(0b—-d)-(g+h)
P,=(a—-c)-(etf)

September 15, 2004 Introduction to Algorithms
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~ 4~ Strassen’s idea

IS
-
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* Multiply 2x2 matrices with only 7 recursive mults.

P,=a-(f—h) r=P.+P,—P,+ P,
P,=(a+b)-h s =P +P,
P,=(c+d)-e t =P, +P,
P,=d-(g—e) u=Ps+ P —Py— Py

Py=(a+d)-(e+h)
Po=(b—-d)-(g+h)
P,=(a—-c)-(etf)
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= .~ Strassen’s idea

AN
Ve

* Multiply 2x2 matrices with only 7 recursive mults.

P,=a-(f—h) r=P.+P,—P,+ P,
P,=(a+b)-h s =P +P,
P,=(c+d)-e t =P, +P,
P,=d-(g—e) u=Ps+ P —Py— Py

Ps=(a+d)-(e+h)
P.=(b—d)-(g+h) 7 mults, 18 adds/subs.

P,=(a-c) (e+f) Note: No .re.hance on
commutativity of mult!
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ALGORITHMS

Strassen’s idea

= \‘ |

Ve

* Multiply 2x2 matrices with only 7 recursive mults.

P, =a-(f—h) r =P.+P,—P,+ P,
Py=(a+b)-h = (a +d)(e + h)
Py=(c+d)-e +d(g—e)—(a +b)h
Py=d-(g— o) +(b—d)(g+ h)
P.=(@+d) -(et+h) =qae +ah +de + dh
P.=(b-d)-(g+h) + dg —de — ah — bh
P,=(@—c)-(etf) + bg + bh —dg — dh
= ae + bg
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—
\‘,:;‘ Stl‘aSSen S algor]thm

1. Divide: Partition 4 and B into

(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

© 2001-4 by Charles E. Leiserson
September 15, 2004 Introduction to Algorithms L3.40



ALGORITHM
;M‘ Strassen’s algorithm

1. Divide: Partition 4 and B into

(n/2)x(n/2) submatrices. Form terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n) = 7 T(n/2) + O(n?)
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LGORITHMS

:;-' Analysis of Strassen

Lkl

T(n)="7T(n/2) + O(n?)
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" &~ Analysis of Strassen

T(n) = 7 T(n/2) + O(n2)

nlogbt = plowo’ & p? 8l — CASE 1 = T(n) = O(n's").
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,"""""._a‘ Analysis of Strassen

T(n)=7T1(n/2) + O(n?)
nlogbd = plowo’ m 281 — CASE 1 = T(n) = O(n's").

The number 2.81 may not seem much smaller than
3, but because the difference 1s in the exponent, the
impact on running time 1s significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 32 or so.
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- *f_- Analysm of Strassen

Q|
Wy

T(n)=7T1(n/2) + O(n?)
nlogbd = plowo’ m 281 — CASE 1 = T(n) = O(n's").

The number 2.81 may not seem much smaller than
3, but because the difference 1s in the exponent, the
impact on running time 1s significant. In fact,
Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 32 or so.

Best to date (of theoretical interest only): ®(n-7¢).
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:‘“-‘ VLSI layout

N
NV

Problem° Embed a complete binary tree
with 7 leaves 1n a grid using minimal area.
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:‘“-‘ VLSI layout

N
NV

Problem Embed a complete binary tree
with 7 leaves 1n a grid using minimal area.

W(n)
I i B
H (\n) W -
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| ‘:;‘ VLSI layout

N

Problem: Embed a complete binary tree
with 7 leaves 1n a grid using minimal area.

W(n)
I i B
H(\n) ., I

H(n) = H(n/2) + O(1)
= O(Ig n)
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— VLSI layout

Problem Embed a complete binary tree
with 7 leaves 1n a grid using minimal area.

W(n)
I i B
H (\n) B -

H(n) = Hn/2) +©(1)  W(n)=2Wn/2)+ 6(1)
= O(Ig n) = 0(n)
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— VLSI layout

Problem Embed a complete binary tree
with 7 leaves 1n a grid using minimal area.

W(n)

I i H
H(n) B -

|

H(n) = Hn/2) +©(1)  W(n)=2Wn/2)+ 6(1)
= O(Ig n) = 0(n)
Area - ®(n lg n) © 2001-4 by Charles E. Leiserson
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H tree embedding

L(n) .

L(n)

September 15, 2004 Introduction to Algorithms
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;:‘ N H tree embedding

N
Qv

L(n)

L(n)

L4y ©(1) L(n/4) _
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g " H-tree embedding

L(n)

L(n) =2L(n/4) + ©(1)
= O(/n)

L(n)

Area = O(n)

Ln/4) ©(1) L(n/4)
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ALGORITHMS

O

"+~ Conclusion

A\

* D1vide and conquer 1s just one of several
powertful techniques for algorithm design.

 Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

* The divide-and-conquer strategy often leads
to efficient algorithms.
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