
 
 
 
Week 1   lecture 2       
Introduction to algorithms 
 

 
 
 

 
 
Correctness proof 
 
We state these properties of A[1 . . j−1] formally as a loop invariant:   
 

At the start of each iteration of the for loop of lines 1–8, the subarray 
A[1 . . j −1] consists of the elements originally in A[1 . . j −1] but in sorted 
order. 

 
We use loop invariants to help us understand why an algorithm is correct. We 
must show three things about a loop invariant: 
 
Initialization: It is true prior to the first iteration of the loop. 
Maintenance: If it is true before an iteration of the loop, it remains true before the 
next iteration. 
Termination: When the loop terminates, the invariant gives us a useful property 
that helps show that the algorithm is correct. 



 
Analysing insertion sort running time 
 

 
 
 

 
 
Best case running time, array is already sorted. 
 

 
 

an + b,  linear function of n 
 
Worst case running time, array is reverse sorted order. 
 

 



 

 
 

a n 2 + bn + c ,  Quadratic Function of n 

 
Worst and average case analysis 
 
Order  of growth,  Rate of growth  
 
Worst-case running time    Θ (n 2 ) 



 
Designing algorithms 
 
Insertion sort uses   
 
incremental approach:  sort A[1..j-1]  then insert A[j] to yield  sorted A[1..j] 
 
Divide-and-conquer 
 
Divide  the problem into a number of subproblems. 
Conquer  the subproblems by solving them recursively. If the subproblem sizes 

are small enough, however, just solve the subproblems in a 
straightforward manner. 

Combine  the solutions to the subproblems into the solution for the original 
problem. 

 
Merge sort 
 
Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 
elements each. 
Conquer: Sort the two subsequences recursively using merge sort. 
Combine: Merge the two sorted subsequences to produce the sorted answer. 
 

 
 



 

 
 
MERGE procedure takes time Θ (n ), where n = r − p + 1 
 

 
 
MERGE-SORT(A, 1, length[A]), 
 
its running time can often be described by a recurrence equation or recurrence, 
 
division of the problem yields a subproblems, each of which is 1/b the size of the original. If 
we take D(n) time to divide the problem into subproblems and C(n) time to combine 
the solutions to the subproblems into the solution to the original problem. 
 

 



 
Divide: The divide step just computes the middle of the subarray, which takes 
constant time. Thus, D(n) = Θ (1). 
Conquer: We recursively solve two subproblems, each of size n/2, which contributes 
2T (n/2) to the running time. 
Combine: We have already noted that the MERGE procedure on an n-element 
subarray takes time Θ (n), so C(n) = Θ (n). 
 

 
 
To solve this recurrence, let rewrite it to 
 

 
 
We can view it as a recurrent tree 
 



 
 
The tree has  lg n + 1 levels,  each level has the cost cn, total is   cn lg n + cn 
 

Θ ( n lg n) 



 
Homework   
 
What is the worst-case running time of bubble sort? 
 

 


