Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 16

Prof. Charles E. Leiserson

Graphs (review)

Definition. A directed graph (digraph)
G = (V, E) 1s an ordered pair consisting of
* a set I of vertices (singular: vertex),
caset £ V' x Vof edges.

In an undirected graph G = (V, E), the edge
set £ consists of unordered pairs of vertices.

In either case, we have |E| = O(V?). Moreover,
if G 1s connected, then |E|>| V| — 1, which
implies that Ig | £| = O(lg V).

(Review CLRS, Appendix B.)

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 Ll16.2

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V=1{1,2,...,n},1sthe matrix A[1 . . n, 1 .. n]

given by
4 J L af(,)) € E,
Ali, /] {OH@ﬁ&E.

A1 2 3 4
g ﬂ 110 1 1 0 O(V?) storage
’ 210 01 0 = dense
a a 3/]0 0 O O representation.
410 01 O

© 2001 by Charles E. Leiserson Introduc

~

ion to Algorithms Day 27 L16.3

Adjacency-list representation

An adjacency list of a vertex v € V' 1s the list Adj| V]
of vertices adjacent to v.

Adi[1]= {2, 3}
g’a Aa;:2:={3}

Adj[3] = {}
G—@) agi-)

For undirected graphs, | Adj[v]| = degree(v).
For digraphs, |Adj[v]| = out-degree(v).

Handshaking Lemma: > _, = 2|E| for undirected
graphs = adjacency lists use O() + E) storage —
a sparse representation (for either type of graph).

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 Ll16.4

Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight function w : £ — RR.

» For simplicity, assume that all edge weights are
distinct. (CLRS covers the general case.)

Output: A spanning tree T'— a tree that connects
all vertices — of minimum weight:

w(T) = Zw(u,v).

(u,v)el

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.5

Example of MST

10

ISO

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.6

Optimal substructure

MST T U

(Other edges of G T,
are not shown.) ’

1

V

Remove any edge (1, v) € 7. Then, 7'1s partitioned
into two subtrees 7 and 7.

Theorem. The subtree 7, 1s an MST of G, = (V, £),
the subgraph of G induced by the vertices of 7':

V, = vertices of 7',
E={(x,y)eE:x,yeV, }.
Similarly for 7-.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.7

Proof of optimal substructure

Proof. Cut and paste:
w(T) =w(u, v) + w(T,) + w(T5).
If 7," were a lower-weight spanning tree than 7', for

G, then 7" = {(u,v)} U T," U T, would be a
lower-weight spanning tree than 7" for G.

Do we also have overlapping subproblems?
*Yes.

Great, then dynamic programming may work!
*Yes, but MST exhibits another powerful property
which leads to an even more efficient algorithm.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.8

Hallmark for “greedy”

algorithms

L)

-

Greedy-choice property
A locally optimal choice
is globally optimal.

—/

Theorem. Let 7'be the MST of G = (V, E),
and let 4 < V. Suppose that (u, v) € £ 1s the
least-weight edge connecting 4 to V' — A.

Then, (u, v) € T.

© 2001 by Charles E. Leiserson Introduction to Algorithms

Day 27 L16.9

Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

T: O\
Q eA./

e c /-4

(u, v) = least-weight edge
connecting 4 to ' — A4

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.10

Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

T: O\

Q € 4
e c /-4

(u, v) = least-weight edge
connecting 4 to ' — A4

Consider the unique simple path from u to v in 7.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 Ll6.11

Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

T: O\

Q € 4
e c /-4

(u, v) = least-weight edge
connecting 4 to ' — A4

Consider the unique simple path from u to v in 7.

Swap (u, v) with the first edge on this path that
connects a vertex in 4 to a vertex in V' — A.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.12

Proof of theorem
Proof. Suppose (u, v) ¢ T. Cut and paste.

T O\
Q eA./

e c /-4

(u, v) = least-weight edge
connecting 4 to ' — A4

Consider the unique simple path from u to v in 7.

Swap (u, v) with the first edge on this path that
connects a vertex in 4 to a vertex in V' — A.

A lighter-weight spanning tree than 7' results.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.13

Prim’s algorithm

IDEA: Maintain /' — 4 as a priority queue (. Key
each vertex 1n O with the weight of the least-
weight edge connecting 1t to a vertex in A.

Q« TV
key|v] <— o forallv e V
key|s| <— 0 for some arbitrary s €
while O = &
do u < EXTRACT-MIN(QO)
for each v € Adj|u]
doif v € O and w(u, v) < key|v]
then key[v] < w(u,v) > DECREASE-KEY
nv] < u

At the end, {(v, [v])} forms the MST.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 Ll16.14

Example of Prim’s algorithm

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 Ll16.15

Example of Prim’s algorithm

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.16

Example of Prim’s algorithm

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.17

Example of Prim’s algorithm

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.18

Example of Prim’s algorithm

12
O
OR(

10

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.19

Example of Prim’s algorithm

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.20

Example of Prim’s algorithm

Q € 4

e c V-4 0 %
(b -Q
14 7

14 TS 15@

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.21

Example of Prim’s algorithm

Q € 4 6

e c V-4 0 %
(b -Q
14 7

14 TS 15@

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.22

Example of Prim’s algorithm

Q € 4 6

e c V-4 0 O%
(b — -Q
14 7

14 TS 15@

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.23

Example of Prim’s algorithm

Q0 € 4
e c -4

10

”@

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.24

Example of Prim’s algorithm

Q0 € 4
e c -4

10

”@

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.25

Example of Prim’s algorithm

Q0 € 4
e c -4

10

”@

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.26

Example of Prim’s algorithm

Q0 € 4
e c -4

10

15@

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.27

Analysis of Prim

(O« V

O(V) < keylv]«-ooforallveV

total

V] y

times | degree(u)

times

N

_ key[s] < 0 for some arbitrary s € V/
4 while O # &

do 1 < EXTRACT-MIN(Q)

>

" for each v € Adj[u]
do if v € O and w(u, v) < key|V]
then key[v] < w(u, v)

_ n[v] < u /

Handshaking Lemma = ©(£) implicit DECREASE-KEY’s.

Time = O(V) T EXTRACT-MIN T O(L) T DECREASE-KEY

© 2001 by Charles E. Leiserson

Introduction to Algorithms Day 27 L16.28

Analysis of Prim (continued)

Time = O(V) Ty rract-Min T OE) TDpcrEAsE-KEY

O Tgxrract-MiN IDecreassKey ~— Total
array o(V) O(1) O(V?)
binar
heap OUgN) 0(gh) OElgY)
Fibonacc1 O(lg V) O(1) OFE+ Vigh)

heap amortized amortized worst case

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.29

MST algorithms

Kruskal’s algorithm (see CLRS):
 Uses the disjoint-set data structure (Lecture 20).
* Running time = O(E'1g V).

Best to date:

» Karger, Klein, and Tarjan [1993].
* Randomized algorithm.

* O(V + E) expected time.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 27 L16.30

