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Random Processes

Monte Carlo Simulation
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Random or Stochastic processesRandom or Stochastic processes

You cannot predict from the observation of one event, 
how the next will come out

Examples:

Coin: the only prediction about outcome –
50% the coin will land on its tail

Dice: In large number of throws –
probability 1/6
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Question: What is the most probable number for 
the sum of two dice?

121110987|6
11109876|5
1098765|4
987654|3
876543|2
765432|1
654321

36 possibilities

6 times – for 7
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Applications for MC simulation

Stochastic processes

Complex systems (science)

Numerical integration

Risk management

Financial planning

…
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How do we do that?

You let the computer to throw “the coin” and record 
the outcome

You need a program that generates randomly a 
variable
… with relevant probability distribution
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Random Number Generators (RNG)

There are no true random number generators  but 
pseudo RNG!

Reason: computers have only a limited number of bits 
to represent a number

It means: the sequence of random numbers will repeat 
itself (period of the generator)
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Good  Random Number Generators

equal probability for any number inside interval [a,b]

yet independent of the previous number

long period

produce the same sequence if started with same initial 
conditions

fast
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Linear Congruent Method for RNG
Generates a random sequence of numbers 
{x1, x2, …xk} of length M over the interval [0,M-1]

starting value x0 is called “seed”

coefficients  a and c should be chosen very 
carefully

note:
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Example:

a=4, c=1, M=9, x1=3 
x2 = 4
x3 = 8
x4 = 6
x5-10 = 7, 2, 0, 1, 5, 3
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interval: 0-8, i.e. [0,M-1]
period:   9 i.e. M numbers  (then repeat)
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Random Numbers on interval [A,B]

Scale results from xi on [0,M-1] to yi on [0,1]

Scale results from xi on [0,1] to yi on [A,B]
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Magic numbers for Linear Congruent Method

M (length of the sequence) is quite large

However there is no overflow
(for 32 bit machines M=231 ≈ 2*109)

Good “magic” number for linear congruent method:

a = 16,807, c = 0, M = 2,147,483,647

),mod( 1 Mcaxx ii += −
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How can we be check the RNG?

Plots:
2D figure, where xi and yi are from two random 
sequences (parking lot test)

3D figure (xi, yi, zi)

2D figure for correlation (xi, xi+k)
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How can we check the RNG?
Example of other assessments

Uniformity. A random number sequence should contain 
numbers distributed in the unit interval with equal 
probability. Use bins.

k-th momentum

near-neighbor correlation
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“Industrial” methods

rand

random

drand48

rn

drand

srand

…

For real applications use “industrial”
random number generators

1. call SEED
Changes the starting point of the 
pseudorandom number generator. 

2. call RANDOM
Returns a pseudorandom number 
greater than or equal to zero and 
less than one from the uniform 
distribution.
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Practice 1 (homework)

1. Write a program to generate random numbers using 
the linear congruent method

2. Plot 2D distribution for two random sequences xi and yi

3. Plot 2D distribution for correlation (xi, xi+4)

4. Evaluate 5-th moment of the random number 
distribution

5. Use some built-in RNG for problems 2-4.
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Random Walk 

A random walk is a sequence of unit steps where each step is 
taken in the direction of one of the coordinate axis, and each 
possible direction has equal probability of being chosen. 

Random walk on a lattice:
In two dimensions, a single step starting at the point with 
integer coordinates (x,y) would be equally likely to move to 
any of one of the four neighbors (x+1,y), (x-1,y), (x,y+1) and 
(x,y-1). 
In one dimension walk there are two possible neighbors
In three dimensions there are six possible neighbors.
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Random Walk simulates:

Brownian motion
(answer the question - how many collisions, on 
average, a particle must take to travel a distance 
R).

Electron transport in metals, …

…
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Practice 2 (random walk)

1. Write a program that simulate a random 2D walk with the 
same step size . Four directions are possible (N, E, S, W).
Your program will involve two large integers, M = the number of 
random walks to be taken and N = the maximum number of steps in a 
single walk.

2. Find the average distance to be from the origin point after 
N steps

3. Is there any finite bound on the expected number of steps 
before the first return to the origin? 
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Monte Carlo IntegrationMonte Carlo Integration

There are very many methods for numerical 
integration

Can MC approach compete with sophisticated 
methods? 

Can we gain anything from integration by 
“gambling”?
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Problem: HighProblem: High--Dimensional IntegrationDimensional Integration

Example: Integration for a system with 12 electrons.

3*12=36 dimensional integral

If 64 points for each integration then =6436 points 
to evaluate

For 1 Tera Flop computer =  1053 seconds

That is … 3 times more then the age of the 
universe!
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Integration by rejection
hit and miss method

Example: area of a circle
Radius: R
Area of the square: 4R2

1. loop over N
2. generate a pair of random numbers 

x and y on [-1,1]
3. if (x*x+y*y) < 1 then m=m+1
4. since Acircle/Asquare = m/N
5. Acircle = m/N*Asquare = (m/N)*4R2

R
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One more 
example

Compute N pairs of random numbers xi and yi with 
0.0 ≤x ≤2.0 and -1.5 ≤ y ≤1.5.
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Integration by mean value
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Traditional methods (Simpson, …) – the N points are 
chosen with equal spacing

Monte Carlo method – random spacing
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Multidimensional Monte Carlo
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Error in Monte Carlo integration

error in Monte Carlo 1D integration

error in “common” 1D integration

error in “common nD integration

error in Monte Carlo nD integration 
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at n=4 the error in Monte Carlo integration is similar 
to that of conventional scheme
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Practice: Integration

Use Monte Carlo integration (both rejection and mean 
value methods) to evaluate

and 

Evaluate 7-D integral

∫ −
3

0

)exp( dxx ∫
5

0

2 )2sin( dxx

7
2

72

1

0

1

0

1

0
1

1

0
6

1

0
5

1

0
432

1

0
1 )( dxxxxdxdxdxdxdxdx +++∫ ∫ ∫∫∫∫∫ K

27

Non-uniform distributions

Most situation in physics – random numbers with non-
uniform distribution

radioactive decay

experiments with different types of distributions

…

Principal idea: Generating non-uniform random number 
distributions with a uniform random number generators
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Method 1: von Neumann rejectionMethod 1: von Neumann rejection
Generating non-uniform distribution with a probability 
distribution w(x)

• generate (xi,yi)
• if  yi < w(xi), accept
• if  yi > w(xi), reject
• The xi so accepted will 

have the weighting w(x)
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Method 2: Inversion method
Works if the function you are trying to use for a 
distribution has an inverse

Example: exponential distribution
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very many program libraries have most 
common non-uniform distributions
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Practice: nonPractice: non--uniform distributionuniform distribution

Use the von Neumann rejection technique to generate a 
normal distribution of standard deviation 1.0


