
S0 Processor 
 
S0 is an accumulator machine, i.e. it has only one register (one-address instruction 
format).  Its aim is to be the tool for teaching assembly language.  The idea is to 
simplify many details in machine instructions founded in modern processors such as: 
register assignment, complex addressing mode and subroutine call.  All variables are 
global resided in the main memory (not in registers). The instruction format is very 
simple.  It has only one format, one-argument instructions of the following form: 

 
op:8 arg:24 

 
where op is the instruction code, arg is the argument which is an unsigned integer 24-
bit. The instruction set is as follows: 
 

arithmetic and logic :add, sub, inc, dec, eq, ne, lt, le, gt, ge 
control: jmp, jt, jf 
data:  ld, st 

 
The following is the meaning of each instruction: 
 

arith & logic        ac = ac op M[arg] 
inc                  ac = M[arg] + 1 
dec                  ac = M[arg] - 1 

 
with logical instructions, the result is true/false where false is 0, true is non-zero. 
 

jmp                  pc = arg 
jt  (jmp if true)    if ac != 0 pc = arg 
jf  (jmp if false)   if ac == 0 pc = arg 
ld  (load)           ac = M[arg] 
st  (store)          M[arg] = ac 

 
Instruction encoding 

1 add   2 sub    3 inc   4 dec   5 eq 
6 ne    7 lt     8 le    9 gt    10 ge 
11 jmp  12 jt    13 jf   14 ld   15 st 

 
With one-address instructions, all constants must be in the memory.  There is no 
indirect addressing hence access to data structures is not possible (no array etc.) 

Assembly language 
 
There are two sections in the assembly language source: data section and code section.  
The data section contains all the symbolic names declaration (for variable names) 
associated with their values.  The code section contains instructions.   
 

.data 
name value 
... 
.end 



 
.code 
[:label] op arg 
... 
.end 

 
A label is used for jump destination in the jump instructions (jmp, jt, jf). A label is 
prefixed with ":" except when it is used as an argument.  The argument of an 
instruction is a name except for the jump instruction, the argument is a label.  By 
default, the code section is started at the memory address 0, the data section starts at 
the address 1000. 
 
Here is an example program to sum 1..10. 
 
a pseudo code 
 

i = 1 
s = 0 
while i <= 10 
   s = s + i 
   i = i + 1 
 

S0 assembly language 
 

.data 
i 1 
s 0 
ten 10 
.end 
 
.code 
:loop 
  ld i 
  le ten 
  jf exit 
  ld s 
  add i 
  st s 
  inc i 
  st i 
  jmp loop 
:exit 
.end 

 
Prabhas Chongstitvatana 
18 December 2006 


