
1

Chapter 1

Computer System Engineering

This chapter covers basic knowledge of the subject. An overview and the
perspective of computer system engineering are given. The components and the
organisation of computer systems in many levels of abstractions are discussed.
The relationship between architecture and computer languages is important and
several issues have been addressed. One important aspect of modern computer
systems, the performance issue, is discussed. Finally, a brief history of computer
is narrated. Computer history itself is a very fascinating subject.

1.1 Introduction
A computer system consists of many parts. A part can be divided into subparts
and forms a hierarchy. Computer system engineering concerns how to compose
these parts to provide a system that has desired functions under various
constraints. A computer system has a central processing unit (CPU), memory,
input/output, interconnections. A CPU consists of an arithmetic logic unit
(ALU), data path, and a control unit. The memory subsystem consists of
hierarchical structure: cache memory (high speed memory), main memory,
virtual memory. The input/output system consists of various peripherals such as
a visual display unit, a keyboard, input devices, an interface to the network,
various kinds of secondary storage, bulk memory, a hard disk etc. The
interconnections link every parts together, the internal bus, the external bus, I/O
channels, ports.

There are many possibilities of choosing and integrating various components of a
system to satisfy a set of constraints stated in a requirement. A computer system
engineer must make decision how to select and integrate various components
such as processors, memory, input/output into a computer system. A computer
system is driven by the advancement of technology. Various parts of a computer
system can be either hardware or software. Hardware and software are
interchangeable depending on technology.

2

Computation

A computer system performs computation. What is computation? Computation
can be defined as symbols transformation. It is a process that transforms input
symbols to output symbols. Symbol is an abstraction. A symbol can represent
something in the real world, or it can represent some mathematical object. The
real world is connected to a computation by sensors and actuators. A sensor
transforms real world events, such as temperature, into symbols that are fed into
computation. An actuator transforms symbols from a computation to affect the
real world. An actuator such as a motor has effect in the real world. It may
change the state of the world. The relationship between computation and the real
world can be shown as the figure 1.1.

Figure 1.1 Relationship between computation and real world

Software is a specification of a computation. From this point of view, a software
does not describe sensors, actuators nor the events in the real world. Hence, it is
necessarily incomplete, i.e. it cannot describe the computation plus the real world
connected to that computation completely.

Hardware and Software

The most important property of computer systems is it programmability. This
property differentiates a computer from all other artifacts. Software is the result
of this property. Software as a specification of computation enables a computer

Computation process

Real world

Actuators

Sensors

Input symbols Output symbols

3

to be multi-function, and even adaptive. An application software runs on a
computer system. At the bottom level of a computer there are electronic circuits
which are called hardware. The interface between a program and a hardware is
the instruction set. An instruction set defines an abstraction of hardware. This
abstraction allows a programmer to program a hardware to perform multiple
functions.

Components of a computer

There are many possibilities in realizing a programmable system. The most
influencial concept is the stored program concept invented by John Von
Neumann. In this model, a computer is composed of two parts: processor and
memory. Memory stores both data and program. Furthurmore, memory can be
accessed directly at any location. This is called random access model. Other
possible realization of a programmable system includes data flow architecture,
systolic architecture etc. We will restrict our study to the stored program
concept.

A processor is connected to memory through two ports: address and data (Fig.
1.2). The access to memory by a processor is done by sending an address to a
memory device then a value can be read or write through the data port. The size
of value (measured in the number of bits) that can be accessed is the width of the
data. This size defines the bit-size of a processor, such as 8-bit, 16-bit, 32-bit,
64-bit processor.

A processor contains an arithmetic-logic unit (ALU), registers, a program counter
(PC), an instruction register (IR) and a countrol unit. An ALU performs
arithmetic and logic functions: add, substract, multiply, divide, and, or, not and
others. Registers are the fast memory used by a processor to store the
intermediate results. A program counter keeps track where the current instruction
is. It is changed by instructions that alter the flow of control of a program (if-
then-else, loop, and function call in a high level language). An instruction register
stores the current instruction fetched from memory. Its content (the instruction)
signals the control unit to initiate the execution of that instruction. The control
unit sends control signals to all parts in the processor to co-ordinate their
activities. The control unit is a large finite state machine. It is the most complex
part of a processor.

4

Figure 1.2 Components of a computer

1.2 Computer system structure
A computer system can be seen as many level of descriptions, from the
applications to the lowest level of electronic circuits. A computer system
consists of many parts of which can be regarded as layers (Fig. 1.3). These
layers are described at different level of abstraction. There are many ways to
define the level of abstractions. For example, a computer system at the bottom
level consists of the actual hardware devices: a central processing unit, a
memory, input/output devices and interconnections. These hardware devices can
be described at the level of: functional units, finite state machines, logic gates
down to the electronic circuits. On top of hardware of the system, an operating
system gives services to application programs. The interface between programs
and hardware is the instruction set description. A computer system can also be
viewed as having two aspects: physical and logical. The physical system is
composed of the actual physical components. The logical system describes the
design and the organization.

register ALU

Control units

Instruction register

Program counter

program

data

data

address

memory processor

5

Figure 1.3 The level of description of computer systems

Application level is what a user typically sees a computer system, running his/her
application programs. An application is usually written in a computer language
which used many system functions provided by the operating system. An
operating system is abstraction layers that separate a user program from the
underlying system-dependent hardware and peripherals.

The level of traditional computer architecture begins at the instruction set. An
instruction set is what a programmer at the lowest level sees of a processor
(programming in an assembly language). In the past, instruction set design is at
the very heart of computer design. The concept of the family of computer was
promoted by IBM around 1970. They proposed the concept of one instruction set
with different level of performance for many models. This concept is possible
because of the research effort of IBM in using “microprogram” as the method to
implement a control unit. However as the present day processor designs
converge, their instruction sets become more similar than different. The effort of
the designer had turned to other important issues in computer design.

Finite state machine description is a mathematical description of the behaviour of
a system. It is becoming an important tool for verification of the correct
behaviour of the hardware during designing of a processor. As a processor
becomes more and more complex, a mathematical tool is required in order to
guarantee the correct working behaviour since an exhaustive testing is impossible
and partial testing is expensive (but still indispensable). Presently it is estimated

Applications

Operating system

Instruction set

Functional units

Finite state machine

Logic gates

Electronics

6

that more than half of the cost in developing a processor is spent on verifying that
the design works according to its specification.

The lower level of logic gates and electronics describe the logical and actual
circuits of a computer system and belongs to the realm of an electrical engineer.

This level of abstraction enables separate layers to be designed and implemented
independently. It also provides a high degree of tolerance to changes. A change
in one layer has limited effect on other layers. This degree of decoupling is
important as a computer system is highly changeable and technology-dependent.
The changes are very frequent; a new microelectronic fabrication process leads to
a higher speed device, a new version of operating system provides more
functionality, new applications are created. Without separation into layers all
these changes will interact in a complex and uncontrollable way. The level of
abstraction is a key concept in designing and implementing a complex system.

1.3 Computer hardware
The basic elements are logic gates. A complete set of gates composed of: AND,
OR, NOT gates. (This is not the only basis, there are several others). NAND
gate (NOR gate) is complete because it can performed the same function as
AND, OR, NOT gates. Logic gates are used to build larger functional units
which are the building blocks of a computer. There are two types of logic gates,
one with memory and one without.

A combinational logic has no memory; its output is the function of its input only.
To create memory, the output is fed back to the input. The resulting circuit is
called a sequential logic.

A sequential logic is the logic gate with memory. The basic element is called
flip-flop. There are many types of flip-flop such as RS, JK, T and D-type flip-
flop. A sequential logic has “states”. The output depends on both inputs and
states. There are two types, synchronous and asynchronous. A synchronous logic
has a common clock. It is a rule of thumb for design engineers to choose a
synchronous logic because it is much simpler to design and to debug. One draw
back of synchronous design is that the maximum speed of the clock is determined
by the slowest part of the circuit. Therefore it is a worst-case design. An
asynchronous logic has no central clock, hence it can be much faster than
synchronous design when the clock rate is very high and clock skew becomes a
problem. The output of one stage is used to drive the next stage. It is difficult to

7

arrange the timing for the circuit to operate properly as the delay of each element
affects the timing of the whole circuit. There are large variation of delay when
fabricating each logic element. This fact often makes asynchronous design
impractical or very expensive.

An example of asynchronous design illustrates the point above. The super
computer ILLIAC from the university of Illinois at Urbana-Champaign has
asynchronous design to achieve high clock rate [BEL71]. Each connecting wire
has to be trimmed manually to properly adjusted the delay time of each module.
In the era of VLSI, most design is synchronous because it is much easier to get
the design to work properly. Presently due to the advancement of asynchronous
design methodology and the promise of very high speed result (and low power
consumption) the asynchronous design is coming back. It is an active area of
research. There are many standard textbooks on digital logic design which
students can explore the subject in much more details such as the one by Katz
[KAT93].

In order for a computer to execute a program, many functional units are
necessary. Functional units are the building blocks of processors. These building
blocks plus the control unit constitute the basic structure of a processor. Basic
units to perform arithmetic functions are: adder, multiplier, shifter etc. A
functional unit may be built on smaller units, for example, in an adder, a Half
adder is built out of basic gates and two Half adders combined into a Full adder.
The length of operand affects the speed of adder circuits. The delay comes from
the need to propagate the carry bits. Carry-look-ahead logic, invented by Charles
Babbage [LEE95] who was considered the father of modern computer, is used to
speed up the propagation of the carry bits.

Instruction execution cycle

Instructions reside in memory. This is why this architecture is called stored
program. Instructions can be accessed from a processor similar to any piece of
data in memory. A sequence of instructions is a program. A processor starts
running a program by reading instructions from memory and executing them one
instruction at a time.

The cycle starts by a processor sending the address of the current instruction to
memory via the address bus. The current instruction is read from the memory via
the data bus and is stored in the instruction register (IR). IR causes the control
unit to co-ordinate activities in the processor to execute that instruction. The

8

processor then starts to read the next instruction (the program counter is
increment to point to the next instruction) and executing it and so on.

The result of executing of an instruction can effect many parts: registers, data in
the memory, or the program counter. When an instruction changes the program
counter, it causes the program to change the flow, either the program entering the
loop or selecting the next statement depending on the flags affected by previous
instructions.

Hardware level

A processor consists of a data path and a control unit. A data path contains all
the necessary computing elements to carry out a computation task. The control
unit sends control signals to harmonise the data flow in the data path so that the
desired computation occurs. To give an analogy of a processor to an orchestra,
the data path is the musician, the control unit is the conductor.

Components in a data path consist of: logic, register, multiplexer and bus.

• Logic is a combinational function, out = f(in1 ... inn) where f is a Boolean

function {not, and, or}. For example

out = ⎯x1 + x2 · x3 + x1 ·⎯x2

Where⎯ denotes not, + denotes or, · denotes and functions. A Boolean
expression can be represented as a truth table. An enumeration of all cases
of input values to output values. Logic minimisation is a process to realise a
desired function with minimum number of logic elements (such as gates).
Logic minimisation is an NP-hard problem.

• Registers are storage elements, out(t+1) = in(t), with the control signal “load”

(the change can be either on the positive or the negative edge of the clock
depends on the model). The width of a register defines the number of bits
that can be stored.

• Muliplexors have n inputs (of width m) and select one input to be the output,

called n:1 multiplexer. The control signal to determine the output is called
the select signal.

9

• Bus consists of wires and buffers. Wires carry data (signal). Buffer controls
the traffic of data from any element to a bus. A bus can be shared to reduce
the number of wire within a circuit. A bus can broadcast data to many
receivers limited by the fan-out electrical characteristic of the bus, the ability
to drive other circuits.

With these four elements: logic, register, multiplexor and bus, a processor can be
built.

Data path

The simplest data path consists of a loop from registers to functional units (logic)
and back (Fig. 1.4).

Figure 1.4 A simple data path

For example, suppose there are two registers, named A and B, and an adder. This
data path can perform

A = A + B

with the following control,

1. read two registers into two inputs of the adder.
2. the adder outputs the result of adding its two inputs.
3. the result is written back to a register.

There can be multiple function units working in parallel. The result is more work
done in one cycle round the loop. There are complexities involving in doing
many tasks concurrently such as competing for the same resource.

registers logic

10

1.4 How a processor performs computation
Suppose we want to calculate value of a polynomial

f(x) = a x + b x2

The functional units required to do this computation are multipliers and adders.
The desired computation can be performed by directly connecting an appropriate
number of functional units together (Fig 1.5).

Figure 1.5 A computation graph to evaluate a polynomial

The solution of this computation problem becomes a graph whose nodes are
functional units and arcs are connections of data through these units. The
computation is performed by the flow of data. In this model every units can be
active concurrently. “Programming” in this model becomes specifying the
computation graph.

Another way to compute f(x) is by sequentialise the operations. The required
functional units are memory and a general processing unit (Fig. 1.6). A memory
stored all the necessary values: input x, constant a, b, temporary places to keep
intermediate values t1, t2, and the final result f(x). The memory can be read and
written to. Two values can be read from memory at once and the data is fed to a
general processing unit, so called Arithmetic Logic Unit (ALU).

× ×

×

+

a

b

 f(x)

x

11

Figure 1.6 A sequential model of computation

The processing unit can perform multiplication and addition. It has internal
storage to store two input values and one output value. In general, ALU can do a
number of computations. Assume its inputs are x, y, output z, ALU performs
z = f(x, y) where f = { add, sub, mul, increment, ...}. The output of the processing
unit (z) is connected to the write port of the memory. Now the desired
computation can be performed by executing these steps:

 read(x,a)
 alu(mul)
 write(t1)
 read(x,x)
 alu(mul)
 write(t2)
 read(t2,b)
 alu(mul)
 write(t2)
 read(t1,t2)
 alu(add)
 write(result)

Sequential approach to computation enables functional units to be reused as the
computation is performed step-by-step. The intermediate values can be saved in
the memory and they can be used in the later steps. The general processing unit
can perform a number of different functions such as add, subtract, so that only
one unit is sufficient for most kinds of computation. The trade-off is the speed as

x

a

b

t1

t2

f(x)

R
ead

W
rite z

x

y

Memory
ALU

. . .

. . .

12

the computation becomes sequential there is no opportunity for concurrent
operations as in the graph model. Sequential machines are highly flexible, use
less resource to implement a computation but are slower than the graph
machines. However both graph model and sequential model are similar in the
sense that the computation is carried out by directing the flow of data through
functional units.

The step-by-step instructions of computation in sequential machines become
“program”. Burks, Goldstein and Von Neumann [BUR46] are the first to
propose that programs can reside in the same memory as data. This gives rise to
a class of architecture called Stored program computer (Fig 1.7).

Figure 1.7 Von Neumann (or Princeton) architecture

This is the most popular organisation even today. Storing programs and data in
the same memory enables a processor to manipulate programs easily. The main
disadvantage is the limit of memory bandwidth, which affects the speed of
running an application. As the need for more complex applications which
required large amount of computation increases, having only one connection
between a processor and a memory becomes bottleneck. This phenomenon is
called Von Neumann bottleneck.

Other organisation is possible such as storing programs and data in separate
memories (Fig. 1.8).

program

data

processor

13

Figure 1.8 Harvard architecture

This organisation is called Harvard architecture and is extensively used in the
high-speed processor for the purpose for signal processing. This class of
processors is called Digital Signal Processor (DSP). DSP has many applications.
It is used in modems, in sound synthesizer, in graphic generators etc.

1.5 Computer languages and architecture
Programming techniques influence the design of computers since the early days
of assembly language programming. Most computers today are implemented as
sequential machines. They are suitable to be programmed in a class of high level
programming language, procedural languages. The examples of procedural
languages are C, Pascal, C++, Java. In these languages, the computation is
viewed as step-by-step manipulation of values of variables stored in memory.

There are other paradigms of programming. Backus, the father of FORTRAN,
gave a lecture in the occasion of his reception of Turing award, titled “Can
computers be liberated from Von Neumann bottleneck?” [BAC78]. This lecture
advocated a different programming paradigm called Functional Programming. In
functional paradigm, programming is viewed as the activity of composing
functions. The computation of a function has an important property of
referencial transparency. This means the result of computing a function
depends only on its arguments and does not change by where the function
resides. This property is contrasted to procedural programming which computes
by side effect, i.e. manipulation of variables depends on states. Functional
programming helps to promote the correctness of programs. As this paradigm of
programming views computation as composing functions, it maps nicely to the
graph model of computation. Many proposals being put forward to build
machines that are suitable for this class of programming languages, for example a
graph reduction machine [KOO90].

program

processor

data

14

Different programming paradigms lead to different architectures. Logic
programming paradigm (Prolog programming language and others) requires
architecture capable of inferring facts and rules and ability to backtrack
efficiently, for example [WAR83]. A LISP machine has special instructions to
manipulate the type-tag bits [STE88]. Japanese proposed and built various types
of these machines in the period of their research on Fifth generation computer.
Presently, object-orientated programming paradigm is becoming the dominate
paradigm. The object-oriented programming languages (Java, C++, Smalltalk
etc.) will benefit from machines whose architecture are suitable to implement
them.

1.6 Performance
This section discusses the performance issue. How performance of a computer
system is defined and measured. There are many standard references used to
interpret performance figures. Performance can be used in a relative sense, it is
the measurement of one system compares to another system.

The first commercial electronic computer appeared around 1950. In the first 25
years the performance improvement came mostly from technology and better
computer architecture. Later, the improvement mostly came from the advent of
microelectronics. The speed of components increased 18-35% per year.
Technology progresses from vacuum tubes to transistors to integrated circuits.
The birth of microprocessor around 1970 [FAG96] has great impact on
performance of computers. The growth of performance has been highest for
microprocessors. Since 1980 the performance double every two years. For
example, around 1980 the first IBM PC appeared. Its CPU was an Intel 8088, a
16-bit CPU with 8 MHz clock. It had 16K bytes of memory, one floppy disk and
no hard disk. The later model offered 5M bytes hard disk (so called IBM XT).
Today, a PC is equipped with 32/64-bit CPU with 3 GHz clock, 1G bytes of
memory and 100 G bytes disk. Its performance is around 10,000 times of the first
PC.

Performance is measured by running mixed jobs. Therefore it is not an absolute
figure. It depends on the kind of jobs that are used to measure the performance.
One phenomenon that occurs in the computer technology is that the performance
of a processor has been double every 18 months. This observation is proposed by
Moore [SCH97], who is the pioneer (among a number of other engineers) of
integrated circuit fabrication. He was with Fairchild, one of the earliest IC

15

manufacturer. That observation is known as Moore’s law. The main reason that
makes this law possible is the rapid advance of the IC manufacturing technique,
the shrinking of the physical dimension of the electronic circuits. For the last 30
years semiconductor technology has been roughly quadrupling every three years.
This gives an exponential base of about 1.59 instead of the base 2 proposed in
Moore’s original paper. A more accurate formula for Moore’s law is:

N device on chip = 1.59 (year – 1959)

We define performance as:

Performance = how fast a processor complete its job.

Performance is measured by its execution time of a suite of programs called
benchmark programs. The execution time depends on three factors.

execution time = number of instruction used × cycle per instruction × cycle time

These factors depend on various designs:
• number of instruction depends on instruction set design
• cycle per instruction depends on micro architecture
• cycle time depends on technology

The performance can also be measured by response time and throughput. The
response time is the time between the starting of a user job and the time when the
computer replies. Under multiple jobs, a better measurement is the throughput.
Throughput measures how many jobs can be completed in a unit time. The
response time is called latency of a system. The throughput is also called the
bandwidth of a system.

Performance = how fast a computer can run
performance = response time (latency)
performance = throughput (bandwidth)

Relative performance

To compare the performance of two machines, it is natural to state “X is n%
faster than Y”. The ratio of the execution time is used to state how much one

16

machine is faster than the other machine. The performance is the inverse of the
execution time. The following relationships can be derived.

X is n% faster than Y

execution time Y / execution time X = 1 + n/100
performance = 1/ execution time (or 1/t)

execution time Y / execution time X = performance X / performance Y
n = (performance X − performance Y) / performance Y

Amdalh’s law

The performance improvement can be measured in term of “speedup”. With the
advent of speed enhancement design such as pipeline and parallelism, Amdalh’s
law [AMD67] states how much performance improvement can be achieved for a
given task using the enhancement. The speedup is defined as follows.

speedup = Pe / P
speedup = T / Te

Where Pe is performance with enhancement use, P is performance without
enhancement use, Te is execution time with enhancement use, T is execution time
without enhancement use.

If enhancement is used only partially, the speedup will be severely limited. Let f
be the fraction that enhancement is used.

execution time new = execution time old ((1 − f) + f / speedup)

speedup overall = 1 / ((1 − f) + f / speedup)

Therefore the limit depends on how much the enhancement has been used. In
achieving speedup by parallelization, Amdalh’s law predicts that speedup will be
limited by the sequential part of the program. Let see some numerical example.

Example: A computer has an enhancement with 10 times speedup. That
enhancement is used only 50% of the time. What is the overall speedup?

speedup overall = 1/ ((1 − 0.5) + 0.5/10) = 1.82

17

Please note that Amdalh’s law applies only with the problem of fixed size. When
the problem size much larger than the machine, Amdalh’s law does not applied.
This is why the massively parallel machine is still possible.

1.7 Brief history of computer
The history of computer is full of interesting episodes. We will to start off with
asking the question “Who made the first computer?” To find out the answer we
need to clarify some definition. What kind of machine is considered to be a
computer?

In mechanical era, the computing machine is really a mechanical calculator. In
1890, Charles Babbage designed and attempted to build Analytical Engine, which
contained many ideas that are used in modern computers such as Arithmetic
Logic Unit. However, it was never finished as the British government finally
stopped funding for the construction of Babbage’s Analytical Engine.

The MARK 1 (also known as the IBM automatic sequence controlled calculator)
developed in 1944 at Harvard University by Howard Aiken with the assistance of
Grace Hopper. It was used, by the US Navy, for gunnery and ballistic
calculations, and kept in operation until 1959. The computer was controlled by
pre-punched paper tape and could carry out addition, subtraction, multiplication,
division and reference to previous results. Numbers were stored and counted
mechanically using 3000 decimal storage wheels. It was electro-mechanical
computer and was slow requiring 3-5 seconds for a multiplication operation. This
machine is a configurable calculator, in an essence it is an implementation of
Babbage’s machine with newer technology.

When does a machine become a computer? We will define a modern computer
as a general purpose programmable machine. The “programmability” is
considered an essential characteristic of a computer. Alan Turing was the genius
who proved that the general purpose computer was possible and simple in 1937
in his seminal paper “On computable numbers” [TUR37]. To have this
programmability a computer must have the stored program.

18

Figure 1.9 The ABC diagram [IOW99]

The ABC (Atanasoff Berry Computer) was built in 1937-1942 at Iowa State
University by John V. Atanasoff and Clifford Berry [BUR88] [MOL88]. It
introduced the ideas of binary arithmetic, regenerative memory, and logic
circuits. This machine was essentially a powerful configurable calculator.
Mauchly spent many days with Atanasoff in 1940 studying this machine. This
was the first computer to use electronic valves (tubes) to perform arithmetic.
Atanasoff stopped developing this with the advent of war, and never returned to
it. This machine doesn’t have the “stored program” ability.

In 1943 Flowers in Bletchley Park built the first Colossus machine, a
programmable computer specially designed to crack the German Enigma military
cypher machines. It is not a general purpose and has no stored program. In
1944 Zuse in Germany started work on a truly general purpose programmable
computer of modern type, known as the Z4. The end of the war interrupted
development. Zuse’s earlier machines (Z1-Z3) were elegant and sophisticated in
design, for example using the much more economical binary representation of
numbers, but were basically modernised Babbage machines.

A group of scientists and engineers at the University of Pennsylvania, Moore
School of Electrical Engineering built ENIAC (Electronic Numerical Integrator
and Computer) in 1946 [BUR81]. It was programmed by a plug board, which
wired up the different calculation units in the right configuration, to evaluate a
particular polynomial. Eckert and Mauchly, the designers, at this time patented a

19

digital computing device, and are often claimed to be the inventors of the first
computer. It was later proven in a 1973 US court battle between Honeywell and
Sperry Rand that while spending five days at Atanastoff’s lab, Mauchly observed
the ABC and read its 35-page manual. Later it was proven that Mauchly had used
this information in constructing the ENIAC. Therefore, John Vincent Atanasoff is
now (by some US historians) heralded as the inventor of the first electronic
computer.

In 1945 John Von Neumann published the EDVAC report, a review of the design
of the ENIAC, and a proposal for the design of EDVAC. This is widely regarded
as the origin of the idea of the modern computer, containing the crucial idea of
the stored program. A processor fetches instructions from memory. It also reads
and writes data to and from memory. This is called Von Neumann architecture
where data and instruction co-resides in a memory. This idea came from the
proposal of an electronic computer by US Army Ordnance in 1946. Surprisingly,
Von Neumann himself is not the first author of that proposal [BUR46].
However, Von Neumann name is honored because of his contribution to the
development of this type of computer which has now becomes ubiquitous. The
implementation of this design was completed in 1952.

In 1946 The National Physical Laboratory appointed Turing, who had been
developing ideas of implementing his Turing Machine concept of general
purpose computation in electronic form, to a rival British project intended to
outclass EDVAC, known as the ACE. ACE design was at the time the most
advanced and most detailed computer design in existence. Its construction was
completed in 1950 and named the Pilot ACE.

On 21st June 1948 the first stored program ran on the Small-Scale Experimental
Machine (SSEM), nicknamed “Baby”, the precursor of the Manchester Mk 1
[LAV80]. So Manchester machine was the first to work.

20

Figure 1.10 SSEM Baby from Manchester University archive [MAN]

The first program was written by Tom Kilburn. It was a program to find the
highest proper factor of any number a. This was done by trying every integer b
from a − 1 downward until one was found that divided exactly into a. The
necessary divisions were done not by long division but by repeated subtraction of
b (because the “Baby” only had a hardware subtractor).

Figure 1.11 The first program [MAN98]

21

Trying the program on 218; here around 130,000 numbers were tested, which took
about 2.1 million instructions and involved 3.5 million store accesses. The correct
answer was obtained in a 52-minute run.

By April 1949 the Manchester Mark 1 had been finished and was generally
available for scientific computation in the University. With the integration of a
high speed magnetic drum by the autumn; this was the first machine with a fast
electronic and magnetic two-level store (i.e. the capability for virtual memory).

In 1951 the UNIVAC 1 commercial computer was produced in US, based on the
EDVAC design, and made by Eckert and Mauchly, who by this time had sold
their UNIVAC Company to Remington Rand. It employed decimal arithmetic.

We will stop our trip to the history of computer here. To find out more, there is a
wonderful journal devoted to all aspects of history of computing, “Annals of the
History of Computing”, IEEE Computer Society.

1.8 Summary
We have outlined the whole spectrum of a computer system. A computer system
can be understood as layers of abstraction. Each layer has well defined
characteristic. A computer system engineering requires understanding each
component and how many components interact in a computer system. The most
important character of a computer system is its programmability. We have
focused on computation and its relation to the hardware level, the data path.
Computation can be realised as parallel or sequential in a data path. There is
interchangeability between hardware and software. This fact gives rise to many
choices in the design of a computer system.

References
[AMD67] Amdahl, G., “Validity of the single processor approach to achieving

large scale computing capabilities”, AFIPS Conf. Proc., April 1967, pp. 483-
485.

[BAC78] Backus, J. “Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs”, Communications of
the ACM, August 1978, 20(8):613-641.

22

[BEL71] Bell, C., and Newell, A. Computer structure: Readings and examples.
McGraw-Hill, 1971.

[BUR46] Burks, A. W., Goldstein, H. H. and von Neumann, “Preliminary
discussion of the logical design of an electronic computing instrument”, US
Army Ordnance Department Report 1946.

[BUR81] Burks, A., and Burks, A., The ENIAC: First General Purpose
Electronic Computer, The University of Michigan Press, Ann Arbor,
Michigan, 1981.

[BUR88] Burks, A., and Burks, A., The First Electronic Computer: The
Atanasoff Story, the University of Michigan Press, Ann Arbor, Michigan,
1988.

[FAG96] Faggin, F., Hoff, M., Mazor, S., and Shima, M., “The history of 4004”,
IEEE Micro, December, 1996, pp.10-20.

[GOL47] Goldstein, H., von Neumann, J., and Burks, A., “Report on the
mathematical and logical aspects of an electronic computing instrument”,
Institute of advanced study, 1947.

[IOW99] Iowa State University, Department of computer science, http://
www.cs.iastate.edu/jva/jva-archive.shtml

[KAT93] Katz, R., Contemporary Logic Design, Addison-Wesley, 1993.

[KOO90] Koopman, P., An Architecture for Combinator Graph Reduction,
Academic Press, 1990.

[LAV80] Lavington, S., Early British Computers, Manchester University Press,
1980.

[LEE95] Lee, J., Computer Pioneers, IEEE CS Press, Los Alamitos, California,
1995.

[MAN98] Manchester university, computer science department, MARK1, http://
www.computer50.org/mark1/firstprog.html

[MAN] The university of Manchester celebrates the birth of the modern
computer, http://www.computer50.org/mark1/

[MOL88] Mollenhoff, C., Atanasoff: Forgotten Father of the Computer, ISU
Press, 1988.

[SCH97] Schaller, R., “Moore’s Law: Past, Present and Future”, IEEE Spectrum,
June, 1997.

23

[STE88] Steenkiste, P., Hennessy, J., “Lisp on a reduced-instruction-set
computer: characterization and optimization”, Computer, vol.21, no. 7, July
1988, pp.34-45.

[STN80] Stern, N., “Who invented the first electronic digital computer?”,
Annals of the History of Computing, 2:4 (October), 375-376.

[TUR37] Turing, A., “On Computable Numbers, with an application to the
Entscheidungsproblem”, Proc. Lond. Math. Soc. (2) 42 pp 230-265 (1936-
7); correction ibid. 43, pp 544-546 (1937).

[WAR83] Warren, D., “An abstract Prolog instruction set, Technical report 309,
SRI, 1983.

Exercises
1.1 Write two realisations of the computation of summation of 1..n, one is

data flow paradigm, the other one is in a conventional data path.

1.2 A conventional way of thinking about program is that a program

processes input to output. A new way of thinking about program is that
an event occurs then program responds to it. One can form “if..then”
rules into a program to reflect this new thinking. Write a program to sum
1..n using the “if..then” rules.

1.3 Suppose we do not have programs. How can we built a circuit to solve

Tower of Hanoi problem? (It requires a recursive program to solve it).

1.4 The performance factors: the number of instruction executed and the

cycle per instruction are interrelated. Can it be possible that we design a
computer system to succeed in reducing both factors at the same time?
Please give examples from existing computer systems.

1.5 The question “who built the first electronic computer?” was a topic of

debate in the last decade. There was the case of Maunchly and Eckert
versus Atanasoff. In the end Atanasoff is credited. Look up the detail of
the case in the internet. Describe what happened.

24

