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Chapter 1 

Computer System Engineering 

 
 
This chapter covers basic knowledge of the subject.  An overview and the 
perspective of computer system engineering are given.  The components and the 
organisation of computer systems in many levels of abstractions are discussed.  
The relationship between architecture and computer languages is important and 
several issues have been addressed.  One important aspect of modern computer 
systems, the performance issue, is discussed.  Finally, a brief history of computer 
is narrated.  Computer history itself is a very fascinating subject. 
 

1.1 Introduction 
A computer system consists of many parts.  A part can be divided into subparts 
and forms a hierarchy.  Computer system engineering concerns how to compose 
these parts to provide a system that has desired functions under various 
constraints.  A computer system has a central processing unit (CPU), memory, 
input/output, interconnections.  A CPU consists of an arithmetic logic unit 
(ALU), data path, and a control unit.  The memory subsystem consists of 
hierarchical structure: cache memory (high speed memory), main memory, 
virtual memory.  The input/output system consists of various peripherals such as 
a visual display unit, a keyboard, input devices, an interface to the network, 
various kinds of secondary storage, bulk memory, a hard disk etc.  The 
interconnections link every parts together, the internal bus, the external bus, I/O 
channels, ports.  
 
There are many possibilities of choosing and integrating various components of a 
system to satisfy a set of constraints stated in a requirement.  A computer system 
engineer must make decision how to select and integrate various components 
such as processors, memory, input/output into a computer system. A computer 
system is driven by the advancement of technology.  Various parts of a computer 
system can be either hardware or software.  Hardware and software are 
interchangeable depending on technology.   
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Computation 

A computer system performs computation.  What is computation?  Computation 
can be defined as symbols transformation.  It is a process that transforms input 
symbols to output symbols.  Symbol is an abstraction.  A symbol can represent 
something in the real world, or it can represent some mathematical object.  The 
real world is connected to a computation by sensors and actuators.  A sensor 
transforms real world events, such as temperature, into symbols that are fed into 
computation.  An actuator transforms symbols from a computation to affect the 
real world.  An actuator such as a motor has effect in the real world. It may 
change the state of the world. The relationship between computation and the real 
world can be shown as the figure 1.1. 
   

                     
 

Figure 1.1  Relationship between computation and real world 
 
Software is a specification of a computation.  From this point of view, a software 
does not describe sensors, actuators nor the events in the real world.  Hence, it is 
necessarily incomplete, i.e. it cannot describe the computation plus the real world 
connected to that computation completely.  
   

Hardware and Software 

The most important property of computer systems is it programmability.  This 
property differentiates a computer from all other artifacts.  Software is the result 
of this property.  Software as a specification of computation enables a computer 
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to be multi-function, and even adaptive.  An application software runs on a 
computer system.  At the bottom level of a computer there are electronic circuits 
which are called hardware.  The interface between a program and a hardware is 
the instruction set.  An instruction set defines an abstraction of hardware.  This 
abstraction allows a programmer to program a hardware to perform multiple 
functions.  
 

Components of a computer 

There are many possibilities in realizing a programmable system.  The most 
influencial concept is the stored program concept invented by John Von 
Neumann.  In this model, a computer is composed of two parts: processor and 
memory.  Memory stores both data and program.  Furthurmore, memory can be 
accessed directly at any location.  This is called random access model.  Other 
possible realization of a programmable system includes data flow architecture, 
systolic architecture etc.  We will restrict our study to the stored program 
concept.  
 
A processor is connected to memory through two ports: address and data (Fig. 
1.2).  The access to memory by a processor is done by sending an address to a 
memory device then a value can be read or write through the data port. The size 
of value (measured in the number of bits) that can be accessed is the width of the 
data.  This size defines the bit-size of a processor, such as 8-bit, 16-bit, 32-bit, 
64-bit processor.  
 
A processor contains an arithmetic-logic unit (ALU), registers, a program counter 
(PC), an instruction register (IR) and a countrol unit.  An ALU performs 
arithmetic and logic functions: add, substract, multiply, divide, and, or, not and 
others.  Registers are the fast memory used by a processor to store the 
intermediate results.  A program counter keeps track where the current instruction 
is.  It is changed by instructions that alter the flow of control of a program (if-
then-else, loop, and function call in a high level language). An instruction register 
stores the current instruction fetched from memory.  Its content (the instruction) 
signals the control unit to initiate the execution of that instruction.  The control 
unit sends control signals to all parts in the processor to co-ordinate their 
activities.  The control unit is a large finite state machine.  It is the most complex 
part of a processor.  
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Figure 1.2  Components of a computer  
 
   

1.2 Computer system structure 
A computer system can be seen as many level of descriptions, from the 
applications to the lowest level of electronic circuits.  A computer system 
consists of many parts of which can be regarded as layers (Fig. 1.3).  These 
layers are described at different level of abstraction.  There are many ways to 
define the level of abstractions.  For example, a computer system at the bottom 
level consists of the actual hardware devices: a central processing unit, a 
memory, input/output devices and interconnections.  These hardware devices can 
be described at the level of: functional units, finite state machines, logic gates 
down to the electronic circuits.  On  top of hardware of the system, an operating 
system gives services to application programs. The interface between programs 
and hardware is the instruction set description. A computer system can also be 
viewed as having two aspects:  physical and logical.  The physical system is 
composed of the actual physical components.  The logical system describes the 
design and the organization. 
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Figure 1.3  The level of description of computer systems 

 
Application level is what a user typically sees a computer system, running his/her 
application programs. An application is usually written in a computer language 
which used many system functions provided by the operating system.  An 
operating system is abstraction layers that separate a user program from the 
underlying system-dependent hardware and peripherals.  
 
The level of traditional computer architecture begins at the instruction set.  An 
instruction set is what a programmer at the lowest level sees of a processor 
(programming in an assembly language).  In the past, instruction set design is at 
the very heart of computer design. The concept of the family of computer was 
promoted by IBM around 1970.  They proposed the concept of one instruction set 
with different level of performance for many models.  This concept is possible 
because of the research effort of IBM in using “microprogram” as the method to 
implement a control unit.  However as the present day processor designs 
converge, their instruction sets become more similar than different.  The effort of 
the designer had turned to other important issues in computer design.   
 
Finite state machine description is a mathematical description of the behaviour of 
a system.  It is becoming an important tool for verification of the correct 
behaviour of the hardware during designing of a processor.  As a processor 
becomes more and more complex, a mathematical tool is required in order to 
guarantee the correct working behaviour since an exhaustive testing is impossible 
and partial testing is expensive (but still indispensable).  Presently it is estimated 
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that more than half of the cost in developing a processor is spent on verifying that 
the design works according to its specification.  
 
The lower level of logic gates and electronics describe the logical and actual 
circuits of a computer system and belongs to the realm of an electrical engineer.  
 
This level of abstraction enables separate layers to be designed and implemented 
independently.  It also provides a high degree of tolerance to changes.  A change 
in one layer has limited effect on other layers.  This degree of decoupling is 
important as a computer system is highly changeable and technology-dependent.  
The changes are very frequent; a new microelectronic fabrication process leads to 
a higher speed device, a new version of operating system provides more 
functionality, new applications are created.  Without separation into layers all 
these changes will interact in a complex and uncontrollable way.  The level of 
abstraction is a key concept in designing and implementing a complex system. 
 

1.3 Computer hardware  
The basic elements are logic gates.  A complete set of gates composed of: AND, 
OR, NOT gates.  (This is not the only basis, there are several others).   NAND 
gate (NOR gate) is complete because it can performed the same function as 
AND, OR, NOT gates.  Logic gates are used to build larger functional units 
which are the building blocks of a computer.  There are two types of logic gates, 
one with memory and one without. 
 
A combinational logic has no memory; its output is the function of its input only.  
To create memory, the output is fed back to the input. The resulting circuit is 
called a sequential logic.  
 
A sequential logic is the logic gate with memory.  The basic element is called 
flip-flop.  There are many types of flip-flop such as RS, JK, T and D-type flip-
flop.  A sequential logic has “states”.  The output depends on both inputs and 
states.  There are two types, synchronous and asynchronous. A synchronous logic 
has a common clock.  It is a rule of thumb for design engineers to choose a 
synchronous logic because it is much simpler to design and to debug.  One draw 
back of synchronous design is that the maximum speed of the clock is determined 
by the slowest part of the circuit.  Therefore it is a worst-case design. An 
asynchronous logic has no central clock, hence it can be much faster than 
synchronous design when the clock rate is very high and clock skew becomes a 
problem.  The output of one stage is used to drive the next stage.  It is difficult to 
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arrange the timing for the circuit to operate properly as the delay of each element 
affects the timing of the whole circuit.  There are large variation of delay when 
fabricating each logic element.  This fact often makes asynchronous design 
impractical or very expensive.   
 
An example of asynchronous design illustrates the point above.  The super 
computer ILLIAC from the university of Illinois at Urbana-Champaign has 
asynchronous design to achieve high clock rate [BEL71].  Each connecting wire 
has to be trimmed manually to properly adjusted the delay time of each module.  
In the era of VLSI, most design is synchronous because it is much easier to get 
the design to work properly.  Presently due to the advancement of asynchronous 
design methodology and the promise of very high speed result (and low power 
consumption) the asynchronous design is coming back.  It is an active area of 
research. There are many standard textbooks on digital logic design which 
students can explore the subject in much more details such as the one by Katz 
[KAT93]. 
 
In order for a computer to execute a program, many functional units are 
necessary. Functional units are the building blocks of processors.  These building 
blocks plus the control unit constitute the basic structure of a processor.  Basic 
units to perform arithmetic functions are: adder, multiplier, shifter etc. A 
functional unit may be built on smaller units, for example, in an adder, a Half 
adder is built out of basic gates and two Half adders combined into a Full adder.  
The length of operand affects the speed of adder circuits.  The delay comes from 
the need to propagate the carry bits.  Carry-look-ahead logic, invented by Charles 
Babbage [LEE95] who was considered the father of modern computer, is used to 
speed up the propagation of the carry bits.   
 

Instruction execution cycle 

Instructions reside in memory.  This is why this architecture is called stored 
program.  Instructions can be accessed from a processor similar to any piece of 
data in memory.  A sequence of instructions is a program.  A processor starts 
running a program by reading instructions from memory and executing them one 
instruction at a time.  
 
The cycle starts by a processor sending the address of the current instruction to 
memory via the address bus.  The current instruction is read from the memory via 
the data bus and is stored in the instruction register (IR).  IR causes the control 
unit to co-ordinate activities in the processor to execute that instruction.  The 
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processor then starts to read the next instruction (the program counter is 
increment to point to the next instruction) and executing it and so on.  
 
The result of executing of an instruction can effect many parts: registers, data in 
the memory, or the program counter.  When an instruction changes the program 
counter, it causes the program to change the flow, either the program entering the 
loop or selecting the next statement depending on the flags affected by previous 
instructions. 
 

Hardware level 

A processor consists of a data path and a control unit.  A data path contains all 
the necessary computing elements to carry out a computation task.  The control 
unit sends control signals to harmonise the data flow in the data path so that the 
desired computation occurs.  To give an analogy of a processor to an orchestra, 
the data path is the musician, the control unit is the conductor. 
 
Components in a data path consist of: logic, register, multiplexer and bus. 
 
• Logic is a combinational function, out = f(in1 ... inn) where f is a Boolean 

function {not, and, or}.  For example 
 

out = ⎯x1 + x2 · x3 + x1 ·⎯x2     
 

Where⎯ denotes not, + denotes or, · denotes and functions. A Boolean 
expression can be represented as a truth table.  An enumeration of all cases 
of input values to output values.  Logic minimisation is a process to realise a 
desired function with minimum number of logic elements (such as gates).  
Logic minimisation is an NP-hard problem. 

 
• Registers are storage elements, out(t+1) = in(t), with the control signal “load” 

(the change can be either on the positive or the negative edge of the clock 
depends on the model).  The width of a register defines the number of bits 
that can be stored.   

 
• Muliplexors have n inputs (of width m) and select one input to be the output, 

called n:1 multiplexer.  The control signal to determine the output is called 
the select signal.   
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• Bus consists of wires and buffers.  Wires carry data (signal).  Buffer controls 
the traffic of data from any element to a bus.  A bus can be shared to reduce 
the number of wire within a circuit.  A bus can broadcast data to many 
receivers limited by the fan-out electrical characteristic of the bus, the ability 
to drive other circuits. 

 
With these four elements: logic, register, multiplexor and bus, a processor can be 
built. 

Data path 

The simplest data path consists of a loop from registers to functional units (logic) 
and back (Fig. 1.4). 
 

 
 

Figure 1.4  A simple data path 
 
For example, suppose there are two registers, named A and B, and an adder. This 
data path can perform 
 

A = A + B 
 
with the following control, 
 
1. read two registers into two inputs of the adder. 
2. the adder outputs the result of adding its two inputs. 
3. the result is written back to a register. 
 
There can be multiple function units working in parallel.  The result is more work 
done in one cycle round the loop.  There are complexities involving in doing 
many tasks concurrently such as competing for the same resource.    
 

registers logic
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1.4 How a processor performs computation 
Suppose we want to calculate value of a polynomial  

f(x) = a x + b x2 
 
The functional units required to do this computation are multipliers and adders.  
The desired computation can be performed by directly connecting an appropriate 
number of functional units together (Fig 1.5). 

 

 
Figure 1.5  A computation graph to evaluate a polynomial 

 
 
The solution of this computation problem becomes a graph whose nodes are 
functional units and arcs are connections of data through these units.  The 
computation is performed by the flow of data.  In this model every units can be 
active concurrently.  “Programming” in this model becomes specifying the 
computation graph.  
 
Another way to compute f(x) is by sequentialise the operations. The required 
functional units are memory and a general processing unit (Fig. 1.6).  A memory 
stored all the necessary values: input x, constant a, b, temporary places to keep 
intermediate values t1, t2, and the final result f(x).  The memory can be read and 
written to.  Two values can be read from memory at once and the data is fed to a 
general processing unit, so called Arithmetic Logic Unit (ALU).   
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Figure 1.6  A sequential model of computation 
 
The processing unit can perform multiplication and addition.  It has internal 
storage to store two input values and one output value.  In general, ALU can do a 
number of computations.  Assume its inputs are x, y, output z,  ALU performs      
z = f(x, y) where f = { add, sub, mul, increment, ...}.  The output of the processing 
unit (z) is connected to the write port of the memory.  Now the desired 
computation can be performed by executing these steps:  
 

          read(x,a)  
          alu(mul)  
          write(t1)  
          read(x,x)  
          alu(mul)  
          write(t2)  
          read(t2,b)  
          alu(mul)  
          write(t2)  
          read(t1,t2)  
          alu(add)  
          write(result) 

 
Sequential approach to computation enables functional units to be reused as the 
computation is performed step-by-step.  The intermediate values can be saved in 
the memory and they can be used in the later steps.  The general processing unit 
can perform a number of different functions such as add, subtract, so that only 
one unit is sufficient for most kinds of computation.  The trade-off is the speed as 
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the computation becomes sequential there is no opportunity for concurrent 
operations as in the graph model.  Sequential machines are highly flexible, use 
less resource to implement a computation but are slower than the graph 
machines.  However both graph model and sequential model are similar in the 
sense that the computation is carried out by directing the flow of data through 
functional units.  
 
The step-by-step instructions of computation in sequential machines become 
“program”.  Burks, Goldstein and Von Neumann [BUR46] are the first to 
propose that programs can reside in the same memory as data.  This gives rise to 
a class of architecture called Stored program computer (Fig 1.7).  
 

 

 
Figure 1.7  Von Neumann (or Princeton) architecture 

 
This is the most popular organisation even today.  Storing programs and data in 
the same memory enables a processor to manipulate programs easily.  The main 
disadvantage is the limit of memory bandwidth, which affects the speed of 
running an application.  As the need for more complex applications which 
required large amount of computation increases, having only one connection 
between a processor and a memory becomes bottleneck.  This phenomenon is 
called Von Neumann bottleneck.  
 
Other organisation is possible such as storing programs and data in separate 
memories (Fig. 1.8). 
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Figure 1.8  Harvard architecture 

 
This organisation is called Harvard architecture and is extensively used in the 
high-speed processor for the purpose for signal processing.  This class of 
processors is called Digital Signal Processor (DSP).  DSP has many applications.  
It is used in modems, in sound synthesizer, in graphic generators etc.  
 

1.5 Computer languages and architecture 
Programming techniques influence the design of computers since the early days 
of assembly language programming.  Most computers today are implemented as 
sequential machines.  They are suitable to be programmed in a class of high level 
programming language, procedural languages.  The examples of procedural 
languages are C, Pascal, C++, Java. In these languages, the computation is 
viewed as step-by-step manipulation of values of variables stored in memory.   
 
There are other paradigms of programming.  Backus, the father of FORTRAN, 
gave a lecture in the occasion of his reception of Turing award, titled “Can 
computers be liberated from Von Neumann bottleneck?” [BAC78].   This lecture 
advocated a different programming paradigm called Functional Programming.  In 
functional paradigm, programming is viewed as the activity of composing 
functions.  The computation of a function has an important property of 
referencial transparency.   This means the result of computing a function 
depends only on its arguments and does not change by where the function 
resides.  This property is contrasted to procedural programming which computes 
by side effect, i.e. manipulation of variables depends on states.  Functional 
programming helps to promote the correctness of programs.  As this paradigm of 
programming views computation as composing functions, it maps nicely to the 
graph model of computation.  Many proposals being put forward to build 
machines that are suitable for this class of programming languages, for example a 
graph reduction machine [KOO90].   

program 
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Different programming paradigms lead to different architectures.  Logic 
programming paradigm (Prolog programming language and others) requires 
architecture capable of inferring facts and rules and ability to backtrack 
efficiently, for example [WAR83]. A LISP machine has special instructions to 
manipulate the type-tag bits [STE88].  Japanese proposed and built various types 
of these machines in the period of their research on Fifth generation computer.  
Presently, object-orientated programming paradigm is becoming the dominate 
paradigm.  The object-oriented programming languages (Java, C++, Smalltalk 
etc.) will benefit from machines whose architecture are suitable to implement 
them.  
 

1.6 Performance 
This section discusses the performance issue.  How performance of a computer 
system is defined and measured.  There are many standard references used to 
interpret performance figures.  Performance can be used in a relative sense, it is 
the measurement of one system compares to another system. 
 
The first commercial electronic computer appeared around 1950. In the first 25 
years the performance improvement came mostly from technology and better 
computer architecture.  Later, the improvement mostly came from the advent of 
microelectronics. The speed of components increased 18-35% per year. 
Technology progresses from vacuum tubes to transistors to integrated circuits.  
The birth of microprocessor around 1970 [FAG96] has great impact on 
performance of computers.  The growth of performance has been highest for 
microprocessors.  Since 1980 the performance double every two years.  For 
example, around 1980 the first IBM PC appeared.   Its CPU was an Intel 8088, a 
16-bit CPU with 8 MHz clock.  It had 16K bytes of memory, one floppy disk and 
no hard disk.  The later model offered 5M bytes hard disk (so called IBM XT).  
Today, a PC is equipped with 32/64-bit CPU with 3 GHz clock, 1G bytes of 
memory and 100 G bytes disk. Its performance is around 10,000 times of the first 
PC.  
 
Performance is measured by running mixed jobs.   Therefore it is not an absolute 
figure.  It depends on the kind of jobs that are used to measure the performance. 
One phenomenon that occurs in the computer technology is that the performance 
of a processor has been double every 18 months.  This observation is proposed by 
Moore [SCH97], who is the pioneer (among a number of other engineers) of 
integrated circuit fabrication.  He was with Fairchild, one of the earliest IC 
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manufacturer.  That observation is known as Moore’s law.   The main reason that 
makes this law possible is the rapid advance of the IC manufacturing technique, 
the shrinking of the physical dimension of the electronic circuits.  For the last 30 
years semiconductor technology has been roughly quadrupling every three years.  
This gives an exponential base of about 1.59 instead of the base 2 proposed in 
Moore’s original paper.  A more accurate formula for Moore’s law is: 
 

N device on chip  = 1.59 (year – 1959) 
 
We define performance as: 
 

Performance = how fast a processor complete its job. 
 
Performance is measured by its execution time of a suite of programs called 
benchmark programs.  The execution time depends on three factors. 
 
execution time = number of instruction used × cycle per instruction ×  cycle time 
 
These factors depend on various designs: 
• number of instruction depends on instruction set design  
• cycle per instruction depends on micro architecture  
• cycle time depends on technology  
 
The performance can also be measured by response time and throughput.  The 
response time is the time between the starting of a user job and the time when the 
computer replies.  Under multiple jobs, a better measurement is the throughput.  
Throughput measures how many jobs can be completed in a unit time.  The 
response time is called latency of a system.  The throughput is also called the 
bandwidth of a system. 

 
 

Performance = how fast a computer can run 
performance = response time ( latency) 
performance = throughput  (bandwidth) 

 

Relative performance 

To compare the performance of two machines, it is natural to state “X is n% 
faster than Y”.  The ratio of the execution time is used to state how much one 
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machine is faster than the other machine.  The performance is the inverse of the 
execution time.  The following relationships can be derived. 
  
X is n% faster than Y 
 

execution time Y / execution time X  = 1 + n/100 
performance = 1/ execution time   (or 1/t) 

execution time Y / execution time X = performance X / performance Y 
n = (performance X − performance Y) / performance Y 

 

Amdalh’s law  

The performance improvement can be measured in term of “speedup”.  With the 
advent of speed enhancement design such as pipeline and parallelism, Amdalh’s 
law [AMD67] states how much performance improvement can be achieved for a 
given task using the enhancement.  The speedup is defined as follows. 
 

speedup = Pe / P 
speedup = T / Te 

 
Where Pe is performance with enhancement use, P is performance without 
enhancement use, Te is execution time with enhancement use, T is execution time 
without enhancement use. 
 
If enhancement is used only partially, the speedup will be severely limited. Let f 
be the fraction that enhancement is used. 
 

execution time new = execution time old (  (1 − f) + f / speedup) 
 

speedup overall = 1 / ((1 − f) + f / speedup ) 
 
Therefore the limit depends on how much the enhancement has been used. In 
achieving speedup by parallelization, Amdalh’s law predicts that speedup will be 
limited by the sequential part of the program. Let see some numerical example.  
 
Example: A computer has an enhancement with 10 times speedup.  That 
enhancement is used only 50% of the time.  What is the overall speedup?  
 

speedup overall = 1/ ((1 − 0.5) + 0.5/10 ) = 1.82 
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Please note that Amdalh’s law applies only with the problem of fixed size.  When 
the problem size much larger than the machine, Amdalh’s law does not applied.  
This is why the massively parallel machine is still possible.  
 
  

1.7 Brief history of computer 
The history of computer is full of interesting episodes.  We will to start off with 
asking the question “Who made the first computer?”  To find out the answer we 
need to clarify some definition.  What kind of machine is considered to be a 
computer?   
 
In mechanical era, the computing machine is really a mechanical calculator.  In 
1890, Charles Babbage designed and attempted to build Analytical Engine, which 
contained many ideas that are used in modern computers such as Arithmetic 
Logic Unit.  However, it was never finished as the British government finally 
stopped funding for the construction of Babbage’s Analytical Engine. 
 
The MARK 1 (also known as the IBM automatic sequence controlled calculator) 
developed in 1944 at Harvard University by Howard Aiken with the assistance of 
Grace Hopper. It was used, by the US Navy, for gunnery and ballistic 
calculations, and kept in operation until 1959.  The computer was controlled by 
pre-punched paper tape and could carry out addition, subtraction, multiplication, 
division and reference to previous results. Numbers were stored and counted 
mechanically using 3000 decimal storage wheels. It was electro-mechanical 
computer and was slow requiring 3-5 seconds for a multiplication operation. This 
machine is a configurable calculator, in an essence it is an implementation of 
Babbage’s machine with newer technology.   
 
When does a machine become a computer?  We will define a modern computer 
as a general purpose programmable machine.   The “programmability” is 
considered an essential characteristic of a computer.  Alan Turing was the genius 
who proved that the general purpose computer was possible and simple in 1937 
in his seminal paper “On computable numbers” [TUR37].  To have this 
programmability a computer must have the stored program.   
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Figure 1.9  The ABC diagram [IOW99] 
 
The ABC (Atanasoff Berry Computer) was built in 1937-1942 at Iowa State 
University by John V. Atanasoff  and Clifford Berry [BUR88] [MOL88].  It 
introduced the ideas of binary arithmetic, regenerative memory, and logic 
circuits.  This machine was essentially a powerful configurable calculator.  
Mauchly spent many days with Atanasoff in 1940 studying this machine. This 
was the first computer to use electronic valves (tubes) to perform arithmetic. 
Atanasoff stopped developing this with the advent of war, and never returned to 
it.  This machine doesn’t have the “stored program” ability.   
 
In 1943 Flowers in Bletchley Park built the first Colossus machine, a 
programmable computer specially designed to crack the German Enigma military 
cypher machines.  It is not a general purpose and has no stored program.  In 
1944 Zuse in Germany started work on a truly general purpose programmable 
computer of modern type, known as the Z4. The end of the war interrupted 
development.  Zuse’s earlier machines (Z1-Z3) were elegant and sophisticated in 
design, for example using the much more economical binary representation of 
numbers, but were basically modernised Babbage machines.  
 
A group of scientists and engineers at the University of Pennsylvania, Moore 
School of Electrical Engineering  built ENIAC (Electronic Numerical Integrator 
and Computer) in 1946 [BUR81]. It was programmed by a plug board, which 
wired up the different calculation units in the right configuration, to evaluate a 
particular polynomial. Eckert and Mauchly, the designers, at this time patented a 
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digital computing device, and are often claimed to be the inventors of the first 
computer. It was later proven in a 1973 US court battle between Honeywell and 
Sperry Rand that while spending five days at Atanastoff’s lab, Mauchly observed 
the ABC and read its 35-page manual. Later it was proven that Mauchly had used 
this information in constructing the ENIAC. Therefore, John Vincent Atanasoff is 
now (by some US historians) heralded as the inventor of the first electronic 
computer.    
 
In 1945 John Von Neumann published the EDVAC report, a review of the design 
of the ENIAC, and a proposal for the design of EDVAC. This is widely regarded 
as the origin of the idea of the modern computer, containing the crucial idea of 
the stored program. A processor fetches instructions from memory. It also reads 
and writes data to and from memory. This is called Von Neumann architecture 
where data and instruction co-resides in a memory.  This idea came from the 
proposal of an electronic computer by US Army Ordnance in 1946. Surprisingly, 
Von Neumann himself is not the first author of that proposal [BUR46].  
However, Von Neumann name is honored because of his contribution to the 
development of this type of computer which has now becomes ubiquitous.  The 
implementation of this design was completed in 1952. 
 
In 1946 The National Physical Laboratory appointed Turing, who had been 
developing ideas of implementing his Turing Machine concept of general 
purpose computation in electronic form, to a rival British project intended to 
outclass EDVAC, known as the ACE.  ACE design was at the time the most 
advanced and most detailed computer design in existence.  Its construction was 
completed in 1950 and named the Pilot ACE. 
 
On 21st June 1948 the first stored program ran on the Small-Scale Experimental 
Machine (SSEM), nicknamed “Baby”, the precursor of the Manchester Mk 1 
[LAV80].  So Manchester machine was the first to work. 
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Figure 1.10  SSEM Baby from Manchester University archive [MAN] 
 
The first program was written by Tom Kilburn. It was a program to find the 
highest proper factor of any number a.  This was done by trying every integer b 
from a − 1 downward until one was found that divided exactly into a. The 
necessary divisions were done not by long division but by repeated subtraction of 
b (because the “Baby” only had a hardware subtractor).  
 

 
Figure 1.11  The first program [MAN98] 
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Trying the program on 218; here around 130,000 numbers were tested, which took 
about 2.1 million instructions and involved 3.5 million store accesses. The correct 
answer was obtained in a 52-minute run. 
 
By April 1949 the Manchester Mark 1 had been finished and was generally 
available for scientific computation in the University. With the integration of a 
high speed magnetic drum by the autumn; this was the first machine with a fast 
electronic and magnetic two-level store (i.e. the capability for virtual memory). 
 
In 1951 the UNIVAC 1 commercial computer was produced in US, based on the 
EDVAC design, and made by Eckert and Mauchly, who by this time had sold 
their UNIVAC Company to Remington Rand. It employed decimal arithmetic.  
 
We will stop our trip to the history of computer here.  To find out more, there is a 
wonderful journal devoted to all aspects of history of computing, “Annals of the 
History of Computing”, IEEE Computer Society. 
 

1.8 Summary 
We have outlined the whole spectrum of a computer system.  A computer system 
can be understood as layers of abstraction.  Each layer has well defined 
characteristic.  A computer system engineering requires understanding each 
component and how many components interact in a computer system.  The most 
important character of a computer system is its programmability.    We have 
focused on computation and its relation to the hardware level, the data path.  
Computation can be realised  as parallel or sequential in a data path. There is 
interchangeability between hardware and software.  This fact gives rise to many 
choices in the design of a computer system.   
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Exercises 
1.1 Write two realisations of the computation of summation of 1..n, one is 

data flow paradigm, the other one is in a conventional data path. 
 
1.2 A conventional way of thinking about program is that a program 

processes input to output.  A new way of thinking about program is that 
an event occurs then program responds to it.  One can form “if..then” 
rules into a program to reflect this new thinking.  Write a program to sum 
1..n using the “if..then” rules. 

 
1.3 Suppose we do not have programs.  How can we built a circuit to solve 

Tower of Hanoi problem?  (It requires a recursive program to solve it). 
 
1.4 The performance factors: the number of instruction executed and the 

cycle per instruction are interrelated.  Can it be possible that we design a 
computer system to succeed in reducing both factors at the same time?  
Please give examples from existing computer systems. 

 
1.5 The question “who built the first electronic computer?” was a topic of 

debate in the last decade.  There was the case of Maunchly and Eckert 
versus Atanasoff. In the end Atanasoff is credited.  Look up the detail of 
the case in the internet.  Describe what happened. 
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