
49

Chapter 3

Computer Arithmetic

The arithmetic logic unit (ALU) is the part of the processor that performs
calculation both the arithmetic and the logic operations. It composed of
functional units and registers including some status bit for storing the result of
operations such as zero and overflow. The functional units included adder,
multiplier and shifter. As an ALU is realised using logic gates, it relies on the
computer arithmetic algorithms to perform calculation by repetition such as using
multiple add-shifts to do multiplication. This enables complex calculations such
as floating point operations possible on an economical hardware.

Number representation

Decimal system

A = 195710

A = 1 × 103 + 9 × 102 + 5 × 101 + 7 × 100

A is expressed in a decimal number. The base is 10. This representation has 10
symbols 0, 1, 2, … 9 which constitutes digits.

Binary system

A number is represented as sum of weights that are a power of 2. The base is 2
and there are two symbols 0, 1 called binary digits or bits.

A = 101012
A = 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20
A = 24 + 22 + 20 = 2110

50

A number can be represented by n-bit in many ways. For an integer, there are
unsigned, sign-magnitude and two's complement representation.

unsigned integer

∑
−

=
=

1

0
2

n

i
i

i aA

An unsigned integer ranges over non negative numbers. For n-bit integer its
range is 0…2n − 1.

sign-magnitude

The left most bit is sign, the right most n−1 bit is magnitude. It has several
drawbacks. First addition and subtraction require special treatment of sign and
relative magnitudes. Second, the number zero has two representations +0, −0.

two's complement

We have seen how to represent an unsigned integer but how a negative number
can be represent without using sign-magnitude? Suppose we have 3-bit binary
a2a1a0 which can represent 23 − 8 positive numbers for 000 to 111 (0 to 7). The
fourth bit can be introduced to associate with the negative weight −23. The 4-bit
number can represent 10002 (−810) to 01112 (+710). The decimal value is

A = a3 × −23 + a2 × 22 + a1 × 21 + a0 × 20

The number is negative is A3 = 1. The properties of this representation are

1 Bit A3 gives the sign of the equivalent decimal number, A3 =1 negative,
A3 = 0 positive.

2 There is one zero and it is positive.
3 A positive decimal number is changed to a negative number of the same

absolute value by inverting each bit followed by adding a 1.

51

a3 a2 a1 a0 decimal
1 0 0 0 −8
1 0 0 1 −7
1 0 1 0 −6
1 0 1 1 −5
1 1 0 0 −4
1 1 0 1 −3
1 1 1 0 −2
1 1 1 1 −1
0 0 0 0 +0
0 0 0 1 +1
0 0 1 0 +2
0 0 1 1 +3
0 1 0 0 +4
0 1 0 1 +5
0 1 1 0 +6
0 1 1 1 +7

Figure 3.1 4-bit two complement numbers

Example Convert 1102 (+610) to a negative number −610.
0010 inverse to 1001, 1001 plus 1 is 10102 = −610
This number is called two's complement of the original number.

The following expression defines the two's complement representation for both
positive and negative numbers. if A is positive, the sign bit (a n-1) is zero. The
range of positive number is 0 … 2 n-2 . The range of negative number is
−1 … −2 n-1 .

∑
−

=
−

− +−=
2

0
1

1 22
n

i
i

i
n

n aaA

52

Integer arithmetic

Addition and subtraction

Using two's complement representation, subtraction is performed by adding the
two's complement. For example, 5 − 3 = 2, (+5) + (−3) = 2, (0101) + (1101) =
10010. The left most bit (carry bit) is overflowed. We ignore the overflow and
the result is 0010 = 2. On any addition, the result may be larger than can be held
in the word size being used. This condition is called overflow. When overflow
occurs, the ALU signals the condition codes. The overflow rule is: If two
numbers are added, and they are both positive or both negative, then overflow
occurs if and only if the result has the opposite sign.

Subtraction is achieved using addition. We can demonstrate by the following
example. If B = −A, then A + B = A + (−A) = 0. For n-bit integer, B is a bitwise
complement of A plus 1, that is −A. Let an' be a complement of an .

∑
−

=
−

− +−=
2

0
1

1 22
n

i
i

i
n

n aaA

∑
−

=

− ′++′−=
2

0

1 212
n

i
i

i
n

n aaB

022

212

)(212)(

11

2

0

1

2

0

1

=+−=

++−=

′+++′+−=+

−−

−

=

−

−

=

−

∑

∑

nn

n

i

in

n

i
ii

in
nn aaaaBA

Multiplication

Multiplication is a complex operation. Multiplication firstly generates partial
products, one for each digit in the multiplier, then summed them to produce the
final product. Each successive partial product is shifted one position to the left
relative to the preceding partial product. The multiplication of a binary number 2n
is accomplished by shifting that number to the left by n bits. The multiplication
of two n-bit integers results in a product of up to 2n bits in length.

53

 1 0 1 1 × Multiplicand

 1 1 0 1 Multiplier
 1 0 1 1
 0 0 0 0 Partial products
 1 0 1 1
 1 0 1 1
1 0 0 0 1 1 1 1 Product

Figure 3.2 Multiplication of unsigned integers

One of the well-known algorithms for two's complement multiplication is Booth's
algorithm [BOO51]. Let Q, M, A be three n-bit registers, Q stores multiplier, M
multiplicand, the result appears in AQ. A concatenates to Q and when shifting
right, the least significant bit of A will go to the most significant bit of Q. There
is one bit placed to the right of the least significant bit of Q (Q0), designated Q-.
Booth's algorithm is as follows:

A = 0, Q- = 0, M = multiplicand, Q = multiplier
repeat n times
 if (Q0, Q-) = 01 then A = A + M
 = 10 then A = A − M
 arithmetic shift right A, Q, Q- {preserve sign bit}
end

Note the efficiency of the algorithm. Blocks of 1s or 0s are skipped over, with an
average of one addition or subtraction per block.

 0 1 1 1 ×
 1 1 0 1 (0)
1 1 1 1 1 0 0 1 1-0
0 0 0 0 1 1 1 0-1
1 1 1 0 0 1 1-0
1 1 1 0 1 0 1 1

Figure 3.3 example of Booth's algorithm for (7) × (−3) = −21

54

Why Booth's algorithm work?

Observe that the number to partial product sum can be reduce. Consider a
positive multiplier where one contiguous 1s surrounded by 0s. The number of
shift-and-add can be reduced by observing that

2 n + 2 n-1 + . . . 2 n-K = 2 n+1 − 2 n-K

Example

M* (011110) = M* (2 4 + 2 3 + 2 2 + 2 1) = M * (2 5 − 2 1)

The product can be generated by one addition and one subtraction of the
multiplicand. Booth's algorithm performs subtraction when first 1 of block is
encountered (1-0) and addition when the end of block is encountered (0-1). This
scheme extends to any number of blocks of 1s in a multiplier and negative
number.

Division

unsigned binary division

The division is based on the long division. It involves repetitive shifting and
addition or subtraction. Dividend is examined bit by bit from left to right until it
is greater than or equal to the divisor, 0s are placed in the quotient, when it is
divisible, 1 is placed in the quotient and the divisor is subtract from the partial
dividend. Additional bits from the dividend are appended to the partial
remainder until the result is greater than or equal to the divisor then the cycle
repeat.

 0 0 0 0 1 1 0 1 Quotient
Divisor 1 0 1 1 / 1 0 0 1 0 0 1 1 Dividend
 1 0 1 1
Partial remainders 0 0 1 1 1 0
 1 0 1 1
 0 0 1 1 1 1
 1 0 1 1
 1 0 0 Remainder

Figure 3.4 Division of unsigned binary integers

55

The algorithm is as follows:

{ unsigned integer divide }
A = 0, M = divisor, Q = dividend
repeat n times

shift left A, Q
A = A - M
if A < 0 then Q0 = 0, A = A + M

else Q0 = 1
end {quotient in Q, remainder in A}

two's complement division

This scheme, with some difficulty, can be extended to negative numbers. The
divisor must be expressed as 2n-bit two's complement number.

{ two's complement integer divide }
M = divisor, A Q = dividend
while there are bits in Q

shift left A Q
if (M and A have the same sign) then A = A - M

 else A = A + M
if (sign of A not change) or (A = 0 AND Q = 0) then Q0 = 1
if (sign of A change) and (A ≠ 0 OR Q ≠ 0) then Q0 = 0; restore

the previous A
if (divisor and dividend are not same sign) then two's complement Q
end {quotient is in Q, remainder is in A }

 A Q M = 1101
0 0 0 0 0 1 1 1 Initial value
0 0 0 0 1 1 1 0 Shift
1 1 0 1 Add
0 0 0 0 1 1 1 0 Restore
0 0 0 1 1 1 0 0 Shift
1 1 1 0 Add
0 0 0 1 1 1 0 0 Restore
0 0 1 1 1 0 0 0 Shift
0 0 0 0 Add
0 0 0 0 1 0 0 1 Set Q0 = 1
0 0 0 1 0 0 1 0 Shift
1 1 1 0 Add
0 0 0 1 0 0 1 0 Restore

Figure 3.5 example of two's complement division (7) / (−3)

56

Floating- Point Numbers
Very large and very small numbers can be represent using scientific notation
which separately store significand and exponent, such as 2.14 * 1012 . This allow
a range of very large and very small numbers to be represented using only a few
digits. In binary numbers, a number is represent in the form:

± Significand × Base ± Exponent

This number can be stored in a binary word using three fields: Sign bit,
Significand and Exponent. The base is implicit. The exponent can be stored with
bias, i.e. a bias is subtracted from the field to get the true value. An example of
32-bit floating-point format is 1 bit sign, 8 bits biased exponent and 23 bits
significand. The bias is 128.

 0.11010001 × 2 10100 = 0 10010100 10100010000000000000000
−0.11010001 × 2 10100 = 1 10010100 10100010000000000000000
 0.11010001 × 2 −10100 = 0 01101100 10100010000000000000000
−0.11010001 × 2 −10100 = 1 01101100 10100010000000000000000

Figure 3.6 an example of 32-bit floating-point format

To simplify the operations on floating-point numbers, it is required that they be
normalized in the form:

0.1bbb. . .b × 2 ±E

Therefore the left most bit of significand is always 1 and is "implicit" (no need to
store this bit).

Range of representable numbers

With the above representation the following ranges of numbers are possible:
Negative numbers between −(1 − 2 −24) × 2 127 and −0.5 × 2 −128
Positive numbers between 0.5 × 2 −128 to (1 − 2 −24) × 2 127

Five regions on the number line are not included in these ranges:
 Negative numbers less than −(1 − 2 −24) × 2 127 , called negative overflow
 Negative numbers greater than −0.5 × 2 −128 , called negative underflow

57

 Zero
 Positive numbers less than 0.5 × 2 −128 , called positive underflow
 Positive numbers greater than (1 − 2 −24) × 2 127 , called positive overflow

Remember that the maximum number of different values that can be represented
with 32 bits is still 2 32. The numbers represented in floating-point notation are
not spaced evenly along the number line. The possible values get closer together
near the origin and farther apart as you move away. This is one of the trade-off
of floating-point: Many calculations produce results that are not exact and have to
be rounded to the nearest value that the notation can represent.

IEEE standard 754

The most important floating-point representation is defined in IEEE Standard 754
[IEE85]. The IEEE standard defines both a 32-bit single and a 64-bit double
format. The single format has a sign bit, 8-bit biased exponent, 23-bit
significand. The exponent bias is 127. The double format has a sign bit, 11-bit
biased exponent, 52-bit significand. The exponent bias is 1023. The implied
base is 2. The standard defines two extended formats, single and double, whose
exact format is implementation-dependent. The extended formats are to be used
for intermediate calculations.

There are some bit patterns that are used to represent special numbers such as
zero, plus/minus infinity, NaN (not a number) and denormalized number etc.

numbers bias exponent fraction value
zero 0 0 ± 0
infinity 2047 0 ± infinity
NaN 2047 ≠ 0 NaN
denormalized 0 f ≠ 0 ± 2 e−1022 (0.f)

Figure 3.7 special numbers of IEEE 754 (double precision)

Floating- Point Arithmetic
For addition and subtraction, it is necessary for both operands to have the same
exponent. This may require shifting the radix point to achieve the alignment.
The multiplication and division are more straightforward. When the significand

58

is underflow the rounding operation is required. Likewise when it is overflow the
realignment (normalized) is required.

Let x, y be two floating-point numbers; xs, ys be the significands; xe, ye be the
exponents. Let xe ≤ ye. The floating-point numbers arithmetic operations:

x = xs B xe
y = ys B ye

x + y = (xs B xe − ye + ys) B ye
x − y = (xs B xe − ye − ys) B ye

x × y = (xs × ys) B xe + ye
x / y = (xs / ys) B xe − ye

Addition and Subtraction

There are four basic phases of the algorithm for addition and subtraction:
1. Check for zeros
2. Align the significands
3. Add or subtract the significands
4. Normalized the result

Let msd = most significant digit , S = significand, E = exponent

The addition-subtraction algorithm is as follows:

1. made implicit bit explicit
2. check operand 0
3. align by shifting smaller number to the right (increment its E) until two E

are equal
4. check 0
5. add signed S
6. check 0
7. check S overflow if so shift right
8. check E overflow if so report error
9. normalize result, shift S left until msd is not zero, decrement E, E may

underflow
10. rounded off the result

59

Multiplication

The multiplication and division are simpler than addition and subtraction. The
multiplication algorithm is as follows:

1. check operand 0
2. xe + ye
3. substract bias
4. check E overflow, underflow
5. sign-magnitude multiply S
6. normalized result and rounded (E may underflow)

Division

1. check operand 0
2. xe − ye
3. add bias
4. check E overflow, underflow
5. divide S
6. normalized and rounded result

Precision considerations

Guard bits

For the floating-point operations the significands are loaded into the registers.
The length of the register is almost always greater than the length of significand
plus an implied bit. The register contains an additional bit, called guard bits, the
are used to pad out the right end of the significand with 0s. The purpose is to
prevent the lost of least significant bit when one operand must be shifted right
during floating-point operation. As seen from the following example: a
subtraction without and with guard bits.

Without guard bit
 1.000 . . . 00 × 2
 0.111 . . . 11 × 2 −
= 0.000 . . . 01 × 2
= 1.000 . . . 00 × 2−22

60

With guard bits
 1.000 . . . 00 0000 × 2
 0.111 . . . 11 1000 × 2 −
= 0.000 . . . 01 1000 × 2
= 1.000 . . . 00 0000 × 2−23

Rounding

The rounding policy affects the precision of the result. IEEE standard lists four
approaches:

 Round to nearest − to the nearest representable number
 Round toward positive infinity
 Round toward negative infinity
 Round toward 0 (truncated)

Round to the nearest is the default rounding mode in the standard. The rounding
to plus and minus infinity is useful in implementation of interval arithmetic. In
the interval arithmetic an upper bound and lower bound on the correct answer are
kept. If the range between the upper and lower bounds is sufficiently narrow, it
indicates that a sufficiently accurate result is obtained.

Denormalized number

Denormalized numbers are included in IEEE 754 to handle E underflow, the
result is denormalized by right-shifting S and increment E until E is within
representable range. This method is also referred to as "gradual underflow"
[COO81].

References
[BOO51] Booth, A. "A signed binary multiplication technique." Quarterly

Journal of Mechanical and Applied Mathematics, vol. 4, pt. 2, 1951.
[COO81] Coonen, J. "Underflow and Denormalized numbers", IEEE Computer,

March 1981.
[GOL91] Goldberg, D., "What every computer scientist should know about

floating-point arithmetic,", ACM Computing Surveys 23:1, 5-48.
[IEE85] Institute of Electrical and Electronics Engineers. IEEE Standard for

Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985, 1985.

61

[KNU81] Knuth, D. The art of computer programming, Volume 2:
seminumerical algorithms, Addison-Wesley, 1981.

[OMO94] Omondi, A. Computer Arithmetic Systems: Algorithms, architecture
and implementations, Prentice-Hall, 1994.

[SWA90] Swartzlander, E., ed., Computer arithmetic, Volumes I and II, IEEE
Computer society press, 1990.

62

