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Chapter 3 

Computer Arithmetic 
 
 
The arithmetic logic unit (ALU) is the part of the processor that performs 
calculation both the arithmetic and the logic operations.  It composed of 
functional units and registers including some status bit for storing the result of 
operations such as zero and overflow.  The functional units included adder, 
multiplier and shifter.  As an ALU is realised using logic gates, it relies on the 
computer arithmetic algorithms to perform calculation by repetition such as using 
multiple add-shifts to do multiplication.  This enables complex calculations such 
as floating point operations possible on an economical hardware. 
 

Number representation 

Decimal system 

A = 195710 

A = 1 × 103 + 9 × 102 + 5 × 101 + 7 × 100 
 
A is expressed in a decimal number.  The base is 10.  This representation has 10 
symbols 0, 1, 2, … 9 which constitutes digits. 
 

Binary system  

A number is represented as sum of weights that are a power of 2.  The base is 2 
and there are two symbols 0, 1 called binary digits or bits. 
 

A = 101012 
A = 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 
A = 24 + 22 + 20   = 2110 
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A number can be represented by n-bit in many ways.  For an integer, there are 
unsigned, sign-magnitude and two's complement representation. 
 

unsigned integer  
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An unsigned integer ranges over non negative numbers.  For n-bit integer its 
range is 0…2n − 1. 
 

sign-magnitude 

The left most bit is sign, the right most n−1 bit is magnitude.  It has several 
drawbacks. First addition and subtraction require special treatment of sign and 
relative magnitudes. Second, the number zero has two representations +0, −0. 
 

two's complement  

We have seen how to represent an unsigned integer but how a negative number 
can be represent without using sign-magnitude?  Suppose we have 3-bit binary 
a2a1a0 which can represent 23 − 8 positive numbers for 000 to 111  (0 to 7).  The 
fourth bit can be introduced to associate with the negative weight −23.  The 4-bit 
number can represent 10002 ( −810 ) to 01112 ( +710 ).  The decimal value is 
 

A = a3 × −23 + a2 × 22 + a1 × 21 + a0 × 20 
 
The number is negative is A3 = 1.  The properties of this representation are 

1 Bit A3 gives the sign of the equivalent decimal number, A3 =1 negative, 
A3 = 0 positive. 

2 There is one zero and it is positive. 
3 A positive decimal number is changed to a negative number of the same 

absolute value by inverting each bit followed by adding a 1.   
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a3 a2 a1 a0 decimal 
1 0 0 0 −8 
1 0 0 1 −7 
1 0 1 0 −6 
1 0 1 1 −5 
1 1 0 0 −4 
1 1 0 1 −3 
1 1 1 0 −2 
1 1 1 1 −1 
0 0 0 0 +0 
0 0 0 1 +1 
0 0 1 0 +2 
0 0 1 1 +3 
0 1 0 0 +4 
0 1 0 1 +5 
0 1 1 0 +6 
0 1 1 1 +7 

 
Figure 3.1  4-bit two complement numbers 

 
 

Example  Convert 1102  (+610) to a negative number −610. 
0010  inverse to 1001, 1001 plus 1  is 10102  =  −610 
This number is called two's complement of the original number. 
 
The following expression defines the two's complement representation for both 
positive and negative numbers. if A is positive, the sign bit (a n-1) is zero.   The 
range of positive number is 0 … 2 n-2 .  The range of negative number is                  
−1 … −2 n-1 . 
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Integer arithmetic 

Addition and subtraction  

Using two's complement representation, subtraction is performed by adding the 
two's complement.  For example, 5 − 3 = 2, (+5) + (−3) = 2, (0101) + (1101) = 
10010.  The left most bit (carry bit) is overflowed.  We ignore the overflow and 
the result is 0010 = 2.  On any addition, the result may be larger than can be held 
in the word size being used.  This condition is called overflow.  When overflow 
occurs, the ALU signals the condition codes.  The overflow rule is: If two 
numbers are added, and they are both positive or both negative, then overflow 
occurs if and only if the result has the opposite sign. 
 
Subtraction is achieved using addition.  We can demonstrate by the following 
example.  If B = −A, then A + B = A + (−A) = 0.  For n-bit integer, B is a bitwise 
complement of A plus 1, that is  −A.  Let an'  be a complement of an . 
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Multiplication 

Multiplication is a complex operation.  Multiplication firstly generates partial 
products, one for each digit in the multiplier, then summed them to produce the 
final product. Each successive partial product is shifted one position to the left 
relative to the preceding partial product. The multiplication of a binary number 2n 
is accomplished by shifting that number to the left by n bits.  The multiplication 
of two n-bit integers results in a product of up to 2n bits in length. 
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              1 0 1 1 × Multiplicand 

        1 1 0 1         Multiplier  
        1 0 1 1 
      0 0 0 0  Partial products 
    1 0 1 1 
  1 0 1 1       
1 0 0 0 1 1 1 1  Product 

 
Figure 3.2  Multiplication of unsigned integers 

 
One of the well-known algorithms for two's complement multiplication is Booth's 
algorithm [BOO51].  Let Q, M, A be three n-bit registers, Q stores multiplier, M 
multiplicand, the result appears in AQ.   A concatenates to Q and when shifting 
right, the least significant bit of A will go to the most significant bit of Q.  There 
is one bit placed to the right of the least significant bit of Q (Q0), designated Q-.  
Booth's algorithm is as follows:  
 

A = 0, Q- = 0, M = multiplicand, Q = multiplier  
repeat n times  
      if (Q0, Q-) = 01 then A = A + M  
                       = 10 then A = A − M  
      arithmetic shift right A, Q, Q-    {preserve sign bit}  
end  

 
Note the efficiency of the algorithm.  Blocks of 1s or 0s are skipped over, with an 
average of one addition or subtraction per block. 
 

        0 1 1 1 ×  
        1 1 0 1 (0) 
1 1 1 1 1 0 0 1     1-0 
0 0 0 0 1 1 1       0-1 
1 1 1 0 0 1         1-0  
1 1 1 0 1 0 1 1  

 

Figure 3.3  example of Booth's algorithm for (7) × (−3) = −21 
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Why Booth's algorithm work?  
 
Observe that the number to partial product sum can be reduce.  Consider a 
positive multiplier where one contiguous 1s surrounded by 0s.  The number of 
shift-and-add can be reduced  by observing that 

2 n + 2 n-1 + . . . 2 n-K  =  2 n+1 − 2 n-K  
 
Example  

M* (011110) = M* (2 4 + 2 3 + 2 2 + 2 1) = M * (2 5 − 2 1) 
 
The product can be generated by one addition and one subtraction of the 
multiplicand.  Booth's algorithm performs subtraction when first 1 of block is 
encountered (1-0) and addition when the end of block is encountered (0-1). This 
scheme extends to any number of blocks of 1s in a multiplier and negative 
number.  
 

Division  

unsigned binary division  

The division is based on the long division.  It involves repetitive shifting and 
addition or subtraction.  Dividend is examined bit by bit from left to right until it 
is greater than or equal to the divisor, 0s are placed in the quotient, when it is 
divisible, 1 is placed in the quotient and the divisor is subtract from the partial 
dividend. Additional bits from the dividend are appended to the partial 
remainder until the result is greater than or equal to the divisor then the cycle 
repeat.  
 
                            0 0 0 0 1 1 0 1    Quotient 
Divisor           1 0 1 1 / 1 0 0 1 0 0 1 1    Dividend 
                              1 0 1 1 
Partial remainders          0 0 1 1 1 0  
                                1 0 1 1 
                                0 0 1 1 1 1 
                                    1 0 1 1 
                                      1 0 0    Remainder 
 

Figure 3.4  Division of unsigned binary integers 
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The algorithm is as follows: 
 

{ unsigned integer divide } 
A = 0, M = divisor, Q = dividend  
repeat n times 

shift left A, Q  
A = A - M  
if A < 0 then Q0 = 0, A = A + M  

else Q0 = 1 
end {quotient in Q, remainder in A}  

two's complement division 

This scheme, with some difficulty, can be extended to negative numbers.  The 
divisor must be expressed as 2n-bit two's complement number. 
 

{ two's complement integer divide }  
M = divisor, A Q = dividend  
while there are bits in Q 

shift left A Q  
if (M and A have the same sign) then A = A - M  

            else A = A + M  
if (sign of A not change) or (A = 0 AND Q = 0 ) then Q0 = 1  
if (sign of A change) and (A ≠ 0 OR Q ≠ 0) then Q0 = 0; restore 

the previous A  
if (divisor and dividend are not same sign) then two's complement Q  
end {quotient is in Q, remainder is in A } 

 
   A          Q       M = 1101 
0 0 0 0    0 1 1 1    Initial value 
0 0 0 0    1 1 1 0    Shift 
1 1 0 1               Add 
0 0 0 0    1 1 1 0    Restore 
0 0 0 1    1 1 0 0    Shift 
1 1 1 0               Add 
0 0 0 1    1 1 0 0    Restore 
0 0 1 1    1 0 0 0    Shift 
0 0 0 0               Add 
0 0 0 0    1 0 0 1    Set Q0 = 1 
0 0 0 1    0 0 1 0    Shift 
1 1 1 0               Add 
0 0 0 1    0 0 1 0    Restore 

Figure 3.5  example of two's complement division (7) / (−3) 
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Floating- Point Numbers 
Very large and very small numbers can be represent using scientific notation 
which separately store significand and exponent, such as 2.14 * 1012 .  This allow 
a range of very large and very small numbers to be represented using only a few 
digits.  In binary numbers, a number is represent in the form: 
 

± Significand  ×  Base ± Exponent 
 
This number can be stored in a binary word using three fields: Sign bit, 
Significand and Exponent.  The base is implicit.  The exponent can be stored with 
bias, i.e. a bias is subtracted from the field to get the true value.   An example of 
32-bit floating-point format is 1 bit sign, 8 bits biased exponent and 23 bits 
significand.  The bias is 128. 
 
 0.11010001 × 2 10100 = 0 10010100 10100010000000000000000 
−0.11010001 × 2 10100 = 1 10010100 10100010000000000000000 
 0.11010001 × 2 −10100 = 0 01101100 10100010000000000000000 
−0.11010001 × 2 −10100 = 1 01101100 10100010000000000000000 

Figure 3.6  an example of 32-bit floating-point format 
 
To simplify the operations on floating-point numbers, it is required that they be 
normalized in the form: 

0.1bbb. . .b × 2 ±E 
 
Therefore the left most bit of significand is always 1 and is "implicit" (no need to 
store this bit).  
 

Range of representable numbers 

With the above representation the following ranges of numbers are possible: 
Negative numbers between −(1 − 2 −24) × 2 127  and −0.5 × 2 −128 
Positive numbers between 0.5 × 2 −128  to (1 − 2 −24) × 2 127 
 
Five regions on the number line are not included in these ranges: 
 Negative numbers less than −(1 − 2 −24) × 2 127  , called negative overflow 
 Negative numbers greater than −0.5 × 2 −128 , called negative underflow 
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 Zero 
 Positive numbers less than 0.5 × 2 −128  , called positive underflow 
 Positive numbers greater than  (1 − 2 −24) × 2 127 , called positive overflow   

 
Remember that the maximum number of different values that can be represented 
with 32 bits is still 2 32.  The numbers represented in floating-point notation are 
not spaced evenly along the number line.  The possible values get closer together 
near the origin and farther apart as you move away.  This is one of the trade-off 
of floating-point: Many calculations produce results that are not exact and have to 
be rounded to the nearest value that the notation can represent. 
  

IEEE standard 754 

The most important floating-point representation is defined in IEEE Standard 754 
[IEE85].  The IEEE standard defines both a 32-bit single and a 64-bit double 
format.  The single format has a sign bit, 8-bit biased exponent, 23-bit 
significand.  The exponent bias is 127.  The double format has a sign bit, 11-bit 
biased exponent, 52-bit significand.  The exponent bias is 1023.  The implied 
base is 2.  The standard defines two extended formats, single and double, whose 
exact format is implementation-dependent.  The extended formats are to be used 
for intermediate calculations. 
 
There are some bit patterns that are used to represent special numbers such as 
zero, plus/minus infinity, NaN (not a number) and denormalized number etc. 
 

numbers bias exponent fraction value 
zero   0 0 ± 0 
infinity  2047 0 ± infinity 
NaN  2047 ≠ 0 NaN 
denormalized  0 f ≠ 0 ± 2 e−1022 (0.f) 

 
Figure 3.7  special numbers of IEEE 754 (double precision) 

 

Floating- Point Arithmetic 
For addition and subtraction, it is necessary for both operands to have the same 
exponent.  This may require shifting the radix point to achieve the alignment.  
The multiplication and division are more straightforward.  When the significand 
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is underflow the rounding operation is required.  Likewise when it is overflow the 
realignment (normalized) is required. 
 
Let x, y be two floating-point numbers; xs, ys be the significands; xe, ye be the 
exponents. Let xe ≤ ye. The floating-point numbers arithmetic operations: 

x = xs B xe  
y = ys B ye  

 
x + y = (xs B xe − ye + ys) B ye  
x − y = (xs B xe − ye − ys) B ye  

x × y = (xs × ys) B xe + ye  
x / y = (xs / ys) B xe − ye  

 

Addition and Subtraction  

There are four basic phases of the algorithm for addition and subtraction: 
1. Check for zeros 
2. Align the significands 
3. Add or subtract the significands 
4. Normalized the result 
 

Let msd = most significant digit , S = significand, E = exponent  
 
The addition-subtraction algorithm is as follows: 
 

1. made implicit bit explicit  
2. check operand 0  
3. align by shifting smaller number to the right (increment its E) until two E 

are equal  
4. check 0  
5. add signed S  
6. check 0  
7. check S overflow if so shift right  
8. check E overflow if so report error  
9. normalize result, shift S left until msd is not zero, decrement E, E may 

underflow  
10. rounded off the result 
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Multiplication  

The multiplication and division are simpler than addition and subtraction.  The 
multiplication algorithm is as follows: 
 

1. check operand 0  
2. xe + ye  
3. substract bias  
4. check E overflow, underflow  
5. sign-magnitude multiply S  
6. normalized result and rounded (E may underflow) 

 

Division  

1. check operand 0  
2. xe − ye  
3. add bias  
4. check E overflow, underflow  
5. divide S  
6. normalized and rounded result 

 

Precision considerations 

Guard bits  

For the floating-point operations the significands are loaded into the registers.  
The length of the register is almost always greater than the length of significand 
plus an implied bit.  The register contains an additional bit, called guard bits, the 
are used to pad out the right end of the significand with 0s.  The purpose is to 
prevent the lost of least significant bit when one operand must be shifted right 
during floating-point operation.  As seen from the following example: a 
subtraction without and with guard bits. 
 

Without guard bit 
  1.000 . . . 00 × 2 
  0.111 . . . 11 × 2  − 
= 0.000 . . . 01 × 2 
= 1.000 . . . 00 × 2−22 
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With guard bits 
  1.000 . . . 00 0000 × 2 
  0.111 . . . 11 1000 × 2  − 
= 0.000 . . . 01 1000 × 2 
= 1.000 . . . 00 0000 × 2−23 

 

Rounding  

The rounding policy affects the precision of the result.  IEEE standard lists four 
approaches: 

 Round to nearest − to the nearest representable number 
 Round toward positive infinity 
 Round toward negative infinity  
 Round toward 0 (truncated) 

 
Round to the nearest is the default rounding mode in the standard.  The rounding 
to plus and minus infinity is useful in implementation of interval arithmetic.  In 
the interval arithmetic an upper bound and lower bound on the correct answer are 
kept.  If the range between the upper and lower bounds is sufficiently narrow, it 
indicates that a sufficiently accurate result is obtained. 
 

Denormalized number  

Denormalized numbers are included in IEEE 754 to handle E underflow, the 
result is denormalized by right-shifting S and increment E until E is within 
representable range. This method is also referred to as "gradual underflow" 
[COO81]. 
 

References 
[BOO51] Booth, A. "A signed binary multiplication technique."  Quarterly 

Journal of Mechanical and Applied Mathematics, vol. 4, pt. 2, 1951. 
[COO81] Coonen, J. "Underflow and Denormalized numbers", IEEE Computer, 

March 1981. 
[GOL91] Goldberg, D., "What every computer scientist should know about 

floating-point arithmetic,", ACM Computing Surveys 23:1, 5-48. 
[IEE85] Institute of Electrical and Electronics Engineers.  IEEE Standard for 

Binary Floating-Point Arithmetic.  ANSI/IEEE Std 754-1985, 1985. 



61 

[KNU81] Knuth, D. The art of computer programming, Volume 2: 
seminumerical algorithms, Addison-Wesley, 1981. 

[OMO94] Omondi, A. Computer Arithmetic Systems: Algorithms, architecture 
and implementations,  Prentice-Hall, 1994. 

[SWA90] Swartzlander, E., ed., Computer arithmetic, Volumes I and II, IEEE 
Computer society press, 1990. 

 



62 

 


