
Lecture 2

The CPU, Instruction Fetch & Execute

In Lecture 1 we learnt that the separation of data from control helped simplify the
definition and design of sequential circuits, particularly when there were many registers
involved only with storage.

We saw that the main memory, as well as holding plain data, could hold the program
data — the ordered list of instructions that specify what you want to machine to do.

We speculated that when an instruction is read from memory, it could be passed im-
mediately to the control part of the machine in order to change the effective transfer
function of the data section.

In this lecture we develop the detailed organization of the CPU to support that idea.

Rather than introduce individual components separately and then stick them together,
we will dive in at the deep end by revealing a “Bog Standard Architecture” for the CPU.

2.1 A Bog Standard Architecture

The CPU contains

• a number of registers, some of which fall on the address side, others on the data
side;

• an arithmetic logic unit;

• the control section or control unit;

• connections to the memory (a large unit of storage) by two buses, the uni-
directional address bus and the bi-directional data bus; and

• internal buses or data pathways which allow the output of one register to connect
to the input of another.
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Figure 2.1: Our Bog Standard Architecture

2.1.1 CPU Registers

K MAR The Memory Address Register is used to store the address to access
memory.

K MBR The Memory Buffer Register stores information that is being sent to, or
received from, the memory along the bidirectional data bus.

K AC The Accumulator is used to store data that is being worked on by the ALU,
and is the key register in the data section of the cpu. Notice that the memory
can’t access the AC directly. The MBR is an intermediary.

K PC Connected to the internal address bus, the Program Counter holds the
address in memory of the next program instruction. Notice that it doesn’t connect
directly to the memory, but must go via the the MAR. (The PC is special in that
it is both a register and a counter. More later.)

K IR When memory is read, the data first goes to the MBR. If the data is an
instruction it gets moved to the Instruction Register. The IR has two parts:

1. IR (opcode) The most significant bits of the instruction make up the opcode.
This the genuine instruction part of the instruction, that tells the cpu what to
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do. The instruction in IR (opcode) gets decoded and executed by the control
unit, CU.

2. IR (address) The least significant bits of the instruction are actually data.
They get moved to IR (address). As the name suggests they usually form
all or part of an address for later use in the MAR. (However, in immediate
addressing they are sent to the AC.)

K SP The Stack Pointer is connected to the internal address bus and is used to
hold the address of a special chunk of main memory used for temporary storage
during program execution.

K All Registers are edge-triggered D-types — we will use falling-edge-triggered de-
vices.

For all their fancy names, the registers comprise nothing more than a row of D-
type latches which share a common clock input providing temporary storage on
the CPU. In our design (and I hope I’ve been consistent) they are falling edge-
triggered (hence the circle on the clock input). Because these registers output
onto buses they have tri-state buffers are connected to a single input OE, for
“Output Enable”, as shown in Fig. 2.2
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Q D Q Q

CLK

Figure 2.2: An 8-bit register with 3-state output enable.

2.1.2 Units in the CPU

K CU The Control Unit is responsible for the timing and execution of the various
register transfers required to fulfill an instruction held in the IR. It has a number
of control lines coming out of it, which transmit CSL and CSP levels and pulses
to the various registers and logic units.

We shall develop its hardware as a one-hot sequencer later.
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K ALU The Arithmetic Logic Unit is responsible for bit operations on data held
in the AC and MBR and for storing the results. It contains arithmetic adders,
logical AND-ers and OR-ers, and so on.

A special requirement in our architecture is a “null operation” or “no-op” which
simply allows the output of the AC to appear at the output of the ALU.

Again we will detail its hardware later.

K SR Closely associated with the ALU is the Status Register or Condition Control
Word or Status Word. It is not quite the same as the other registers in that
it really just a collection of 1bit flags that indicate the outcome of operations
that the ALU has just carried out. There are the flags (you met in P2) Carry C,
Overflow V flags, negative flag N, and zero flag Z. These are monitored by the
CU.

2.1.3 Buses, registers, and their widths

The buses carry words of information which are many bits wide, and on diagrams a
bus is indicated either by a wide line, or by a single line with a dash through it often
accompanied by the bus width in bits.

Data: Microcontrollers have data bus widths of 4 bits, 8-bits, 16-bits and 32-bits, while
the most advanced PCs use 64 bits. In these lectures we will assume that the “memory
width” is 16 bits or 2 Bytes. This means that each location can store 2Bytes. We will
also assume that the data bus is 16 bits wide, and the MBR and AC registers on the
data side of the CPU are therefore also 16 bits wide. The ALU is also 16 bits wide.

16bits

16bits

16bits16

16

16

16

AC

MBR

Memory MBR

(a) (b)

Figure 2.3: (a) The data side is 2 Bytes or 16 bits wide. The ALU has been omitted here, but is also 16
bits wide. (b) You should not think that the MBR register (for example) has grown multiple electrical
inputs. The actual wiring involves tri-state buffers, as becomes clear in Lecture 3.

Address: The address bus does not have to be the same width as the data bus. The
width on CPUs over time has increased in step with contemporary memory technology,
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with the the Intel 8086 (from 1979) having n = 20 address lines to current processors
having n = 36− 40.
Having n address lines means that that there are 2n addresses or locations in the address
space. A convenient method of figuring out 2n is to remember that 210 = 1024, so
n = 10 lines address 1K locations, n = 20 lines address 1M locations, and n = 30 can
address 1G locations. Of course microcontrollers tend to have a smaller amount of
memory, because they are not designed to multitask (i.e., run multiple programs), and
256K locations is the largest number spotted (in 2010).

However, for lecturing purposes it is useful (i) to have different numbers on the address
and data side, and (ii) to keep things in multiple of 8 — so here we will assume a 24
bit address bus, able to access 16M location. (Note this is not necessarily 16MByte
of memory. Why not?) The PC, SP, and MAR in our cpu will therefore be 24 bits
wide.

24

24bits 24bits

24bits 2

locations

24
24 24

SP

MAR

MemoryPC

Figure 2.4: The address side is 24 bits or 3 Bytes wide. The address space has 224 locations.

The IR is special. The IR (opcode) part should be wide enough to take the largest
opcode. We assume the opcode is a fixed 8 bits wide, allowing 256 different instructions
— which is plenty enough. The IR (address) part has to have the same width as the
address bus, 24 bits. So the whole IR is 32 bits wide.

It is however fed from the internal data bus which is only 16 bits wide in our architecture.
We will return to solve this conundrum in §2.6.1.
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Figure 2.5: The IR must be 8 + 24 = 32 bits width.
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2.1.4 Introduction to the Main memory
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Figure 2.6:

The memory will comprise mostly random ac-
cess memory (RAM) with some additional
read-only memory (ROM) to help the ma-
chine start up. The main memory does not
reside in the cpu chip but sits on the mother-
board and is connected to the cpu via a bus
— in fact two (or three) buses, the data bus
and address bus (and also a control bus, which
carries timing pulses and the level to indicate
writing or reading).

The address bus has been chosen to be 24
bits wide, so the address space is from 0x0 to
224 − 1 or 0xFFFFFF in hex. The data bus
is 16 bits wide, and so the contents width is
16 bits. In Fig.2.6, for example, the contents of address 4 are 0x01FF. The largest
(unsigned) integer number that can be held is 216 − 1 or 0xFFFF.
Memory hardware is considered in more detail later in Lecture 3. For now, it is enough
to know how to describe reading from and writing to the memory. The main memory
is effectively just a large stack of registers, each with its own address. To read or write
from memory the register transfers are written as

MBR←〈MAR 〉 read from memory
〈MAR 〉 ←MBR write to memory

〈MAR 〉 means the memory register whose address is given by the MAR. The MAR
is said to point to the memory location.

2.2 The Fetch, Decode, Execute Cycle
With the structure of registers, units, memory and buses laid out, let us be clear that
the overall operational aim is very simple.

We want our CPU repeatedly to

• FETCH the next instruction from memory into the instruction register
• DECODE the instruction (that is, work out which it is)
• EXECUTE the instruction
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Fetching and an Executing an instruction simply require the CPU’s Control Section to
issue Levels and Pulses which set up pathways and fire register transfers so that

• Data is moved from memory to registers, and between registers
• Data is passed (sometimes) through the ALU, and
• Data is stuffed back into the memory

If you are in need of an analogy, we are doing little more than “playing trains” with
data. The Control Secton uses Levels to “set the points” and create the route between
A and B, and uses a Pulse to send the train from A to B.

2.3 Fetching and decoding an instruction
To start processing the cpu needs to fetch the first instruction in the program from
the main memory. The Program Counter is the key register here. The PCalways holds
the address of the next program instruction in the main memory. It is said to point
to the next instruction1. But remember that the memory address register acts as a
gatekeeper to the memory, so the first thing to happen is that the program counter
gets copied into the memory address register. The register transfer is

MAR←PC

Because it is the MAR that is clocked, this leaves the PC unaltered. Now read the
memory into the MBR.

MBR←〈MAR 〉

The next step is to copy the instruction from the MBR to the instruction register.

IR←MBR

In our standard architecture the IR is split into two parts, IR (opcode) and IR (address).
As far as the instruction fetch is concerned it the IR (opcode) that is important. The
opcode is decoded by the control unit, as described later.

Last comes a touch of housekeeping. Usually the next instruction in the program is
located in the next memory location, so the program counter is incremented.

PC←PC + 1
1Any memory address points to the memory contents at that address.
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So to summarize, the instruction fetch requires the following in RTL, where you should
note that the program counter can be incremented at the same clock tick as loading
the instruction register.

Instruction fetch
1. MAR←PC
2. MBR←〈MAR 〉
3. IR←MBR; PC←PC + 1
(Then decode the opcode)

NB: these line numbers will soon turn
into RTL Control Steps!
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2.4 A few instructions
Our CPU uses 8-bit opcodes, so could distinguish 256 different instructions. For the
purpose of explanation we give just nine from our instruction set. Column 1 contains the
assembler language mnemonic, which is shorthand for several lines of RTL. Column
2 gives an overall “RTL-like” description. Column 3 is the binary opcode.

Inst Overall RT Opcode Meaning
HALT 00000000 Stop the clock
LDA x AC←〈x〉 00000001 Load AC with contents of mem address x
STA x 〈x〉 ←AC 00000010 Store AC in memory at address x
ADD x AC←AC + 〈x〉 00000011 Add mem contents at x to AC
AND x AC =AC ∧ 〈x〉 00000100 Logical and ...
JMP x PC←x 00000101 Jump to instruction at address x
BZ x if Z=1 then PC←x 00000110 if Z-flag is set then jump
NOT AC←AC 00000111 Two’s complement the AC
SHR AC←RightShift(AC) 00001000 Shift the AC 1bit to right

An assembler language is designed around a particular cpu, and there is no standard
set of mnemonics. However, once you understand the purpose of the instructions, it is
trivial to convert between languages.

2.5 Executing an instruction
During the instruction fetch, an opcode is put into the IR (opcode), and is decoded by
the control unit (exactly how we will see later). The CU now “knows” which instruction
it should execute, and can therefore output a sequence of of Levels and Pulses to set
up paths and effect the desired the register transfers.
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Let’s suppose the opcode was 00000001. From the table one sees that the opcode’s
mnemonic is LDA, and that its action is to copy the contents of memory at address x
into the accumulator.

Inst Overall RT Opcode Meaning
LDA x AC←〈x〉 00000001 Load AC with contents of mem address x

What is x? It is the operand, a useful piece of data that is bound to the instruction.
At its simplest in our BSA, the operand comprises the remaining 8 bits of the 16 bit
instruction after removing the 8 bit opcode. These are the 8 bits in IR (address).
Thus in six of our model instructions, the instruction contains an actual instruction to
the control unit (the opcode), together with a piece of data (the operand) which the
opcode can utilize.

2.5.1 Execution phase of LDA x

The overall effect of LDA x is AC←〈x〉. This means transfer the contents of the
memory at location x to the AC. Looking at the BSA’s diagram we see that in detail
this must be:

LDA x
10. MAR←IR (address)
11. MBR←〈MAR 〉
12. AC←MBR; →(`fetch)
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Notes:

1. No computation has be been done by this instruction. Information has been moved
around from memory to accumulator, but not altered. The only part of the cpu that
can alter data is the ALU.

2. 10,11,12 will later become RTL Control Step numbers.

3. `fetch is used to denote the RTL step number of the start of fetch. Earlier we place
the instruction fetch at RTL line 1. Hence →(`fetch) could be written as →(1).
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2.5.2 Example of LDA x fetch and execute.

Figure 2.7 gives an example of the information flows in the entire fetch and execute of
LDA x. In the example, the instruction is found in memory location 2, and the actual
instruction is LDA 5.
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i

don’t care
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don’t care

Decode

d
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Figure 2.7: Example of the Fetch and execute of the LDA x instruction with x=5 and starting with PC
=2. The steps follow a,b,c, ...,i.

(a) During the fetch, MAR←PC

(b) Addressing location 2

(c) Reading the memory MBR←〈MAR 〉
(d) Now the MBR is transferred to the IR.

(e) The last part of the fetch is to increment the PC.

(f) Decode, then first step of execute is MAR←IR (operand)

(g) Now addressing location 5.

(h) Reading the memory MBR←〈MAR 〉 again.
(i) Now transfer to the Accumulator AC←MBR.
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2.5.3 Execute STA x

Store the contents of the AC in the memory location x which is held in the IR (operand).

STA x
13. MAR←IR (address); MBR←AC
14. 〈MAR 〉 ←MBR; →(`fetch)
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2.5.4 Execute ADD x

Add the memory contents of x to the AC. This involves the ALU. Looking back at
the BSA diagram we see that the ALU has two inputs one from the AC and the other
from the MBR. To perform this line of RTL we must, before firing the transfer, set up
the ALU to perform the binary addition of its inputs, rather than say the logical AND
or logical OR. As you might guess, and as we will see in Lecture 4, this requires the
configuration of combinational circuitry using a level signal. Obviously we are going to
need a CSL in addition to a CSP for this line of RTL.

ADD x
15. MAR←IR (address)
16. MBR←〈MAR 〉
17. AC←AC + MBR; →(`fetch)
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2.5.5 AND x

This again involves the ALU, but now we are performing a logical AND.

AND x
18. MAR←IR (address)
19. MBR←〈MAR 〉
20. AC←AC ∧ MBR; →(`fetch)
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2.5.6 JMP x

Branch unconditionally to new location for next instruction. The PC is always incre-
mented during the fetch cycle on the assumption that the next instruction is in the
next memory location. This instruction allows an unconditional branching to a non-
consecutive instruction.

JMP x
21. PC←IR (address); →(`fetch)

2.5.7 BZ x

This mnemonic is short for “branch if equal”. To enable conditional branching (that is,
“if (condition is true) then branch") we need a logical condition to test for true or false.
The condition is taken as one of the bits from the status register. Here we use the Z
bit or Z flag, which is set Z=1 by the ALU when it makes a calculation whose result is
zero, and Z=0 when it isn’t. Note that because the PC is always incremented during
the instruction fetch, if the condition is false (ie Z=0) the PC needs no alteration.

BZ x
22. →(Z)/(`fetch)
23. PC←IR (address); →(`fetch)
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2.5.8 NOT and RSH

NOT complements (inverts) the contents of the AC. An ALU operation, so again we
need a level to configure the ALU. RSH involves use of a shifter, often placed at the
back end of the ALU.

NOT
24. AC←AC; →(`fetch)

SHR
25. AC←RightShift(AC); →(`fetch)
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2.6 Decoding the opcode

Earlier on, when discussing the Instruction Fetch, we wrote “then decode the opcode”.
Although it is common to talk of the fetch-execute cycle, it is useful to think about
decoding as a separate distinct phase in a fetch-decode-execute cycle.

Now suppose that

• we have a mechanism of producing a set of level signals [LDA=1, STA=0, ADD=0,
etc] when the opcode is LDA; and similarly for other opcodes; and
• we have written the RTL for all the execute phases, and know that the execute
phases start at control steos 10,13,15,18, and so on;

then we could write a decoding step using RTL’s conditional goto (see lecture 1):

Decoding (NB! this is RTL)
4. →(LDA,STA,ADD,AND, ..., SHR,HALT)/(10,13,15,18,...,25,99)

where 10, etc, are the first lines of the RTL which execute the respective instruction.

2.6.1 Decoding detail — engineering to the rescue

So far, so good. However, in our BSA, theMBR and data bus are 16 bits wide. Hence,
IR←MBR can only supply the 8 bit opcode with an 8 bit operand. If operands are only
8 bits long, we can only access 256 of our 224 locations. How can we fill the operand
up to its full 24 bits?

The engineered solution is to make the LDA instruction (and any other instruction that
needs a full operand) to read the next 16-bit word of memory into the MBR, and then
into the IR (address), building up a 24 bit address for transferral to the MAR.

In our instruction set the first 6 opcodes LDA, STA, ADD, AND, JMP, BZ require this
extra read of memory. We could write the decoding stage in RTL as follows:

Longer Decoding
4. →(NOT,SHR,...)/(24,25,...) //Ie, all that don’t need extra
5. MAR←PC
6. MBR←〈MAR 〉
7. IR [23:8] ←MBR; PC←PC + 1
8. →(LDA,STA,...)/(10,13,...) //Ie, all that do need extra

This solution ef-

fectively divides up the opcodes into two sets: those that need full operands and those
that don’t.
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Figure 2.8: The fetch delivers the opcode and the low Byte of the operand. After decoding, if the
opcode requires a full operand with 3 Bytes another read of the memory can take place.

The detail of this step is often missed out in text books, and it is assumed that the
fetch (lines 1-3) provides an operand of full length. We too will neglect the problem
— unless explicitly asked to worry about it!

(If we want to worry about it, there are changes of detail required to the RTL of line
3 of the instruction fetch. What are they, and once you’ve written the RTL could you
draw the hardware involved?)

2.7 Summary
In this lecture we have

• laid out an architecture for a simple CPU, introduced its components, and de-
scribed how the CPU connects to memory.
• noted that the data section of our CPU divides into two halves, one more con-
cerned with addresses, the other with data, with the instruction register at the
junction
• described using RTL the fetch of an instruction from memory into the instruction
register, and learned that the instruction is made up of opcode and operand
• described, again using RTL, the execute phase of several common instructions
• discussed “simple” decoding, and how it may be made more elaborate to overcome
constraints imposed by the architecture.
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In addition we have realized that

• the Control Unit is responsible for delivering Levels and Pulses involved in the
various control steps. The Levels must (among other things) establish paths
between registers, and Pulses must perform the transfer.

In the next lecture we will

• first work on the design of the control section.

• Then we will design the ALU for the data section, and

• thirdly think more about the main memory.

2.8 Postscript
The architecture of our CPU is inevitably rudimentary, but it may come as a surprise
when you look in textbooks to see that there are other equally rudimentary processors
that appear rather different.

A common alternative is for authors not to differentiate so strongly between data and
address when considering the CPU’s internal buses, with all registers sharing them
equivalently. I find it helps to make a strong distinction while learning the ropes.

Whatever the architecture, the underlying principles really are the same, and as you be-
come comfortable with the operation of our architecture, you will be able to understand
how others function and appreciate the differences.


