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Overview

From bits to qubits: Dirac notation, density matrices, measurement, Bloch sphere
Quantum circuits: basic single-qubit & two-qubit gates, multipartite quantum states
Entanglement: Bell states, Teleportation, Superdense coding

Quantum algorithms: Deutsch-Jozsa algorithm, Grover's algorithm
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« Superpositions allow to perform calculations on many
states at the same time.
» Quantum algorithms with exponential speed-up.
« But: Once we measure the superposition state, it collapse
to one of its states.
« We can use interference effects to keep the right answer.

Photo courtesy of : https://medium.com/gntm/gntm-entering-the-era-of-quantum-computing



Dirac notation & density matrices

* |t used to describe quantum states: Let a, b are 2-dimensional vector with complex entries.

> ket: |a) = (32)
+
> bra: (bl = [b)* = () = (b b7)
> bra-ket:(bla) = aghy” + a;b;” = (alb)* € C (inner product)
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> ket-bra:|a){b| = < > (2x2 matrix)




Dirac notation & density matrices

* The pure states are |[0) = ((1)) 1) = (2) which are orthogonal: (0]1) = 1.0+ 0.1 =0
< loxol =)o =(; o) ma=Qon=( 7)

0 1
P P
P= (POO POl) = Pyo|0XO0| + Py, |0)1| + Py |1){0] + Py |1){1]
10 P11

All quantum states can be described by density matrices.

2
1

All quantum states are normalized, i.e., {(y|ly) = 1, e.g., |y) = \/%(IO) + 1)) = (

S-Sl
Nl

A density matrix is pure, if P = |y)(y|, otherwise it is mixed.

1 0 0 0
> P:(O 0)=|o><0|—>pure,P=(O 1)=|1)(1|—>Pure
> Pzg((l) 2)=§(|o><0|+|1><1|)—>Mixed

> p=2(2 1) =300)01 = [0)(1] = 110l + 11X1) =3 (10) = 1))(I0) - 1)) - Pure




Measurement

X +)

li)

* We choose orthogonal base to describe and measure quantum states e
(projective measurement).

* During a measurement onto the basis {|0),|1)}, the states will collapse into either
state |0) or |1), as those are the eigenstates of g,, we call this a Z-measurement.

e Other differentbases are:

> |+) = \/%(IO) + 1)), |-) = %(IO) —|1)), correspondingto the eigenstates of gy,

> |+i) = \/%(IO) +i|1)), |-i) = % (10) — i|1)), correspondingto the eigenstates of g,,.




Measurement

« Bornrule: the probability that a state |y) collapses during a project measurement onto the basis
{IX), |XJ-> } to the state [X) is given by P(X) = [(X|y)|?, X; P(X;) =1

* Examples:

> |y)= \%(IO) + \/Ell)) is measured in the basis {|0), [1)}:

_ 1 2 |1 V2 2_1 2
P(0) = (0] 10} + V2|12 = | = (010) + Z(oln)| =2 ~ p1) =2

> |y)= \/%(IO) — |1)) is measured in the basis {|+),|—)}:

P(+) = K+ 12 = |5 (10) + 1) = (10) = 10| = 21(010) = (011) + (110) — (111)I? = 0 — expected as {+|-) = 0,
P(—) = ()2 =1



Bloch sphere

1)

« We can write any normalized pure state as |y) = cosg |0) + e sing |1), where ¢ € [0, 27]
describes the relative phase and 6 € [0, ] determines the probability to measure |0), |1):
P(|0)) = cos? g, P(|1)) = sin? g.

 All normalized pure states can be illustrated on the surface of a sphere with radius |r| = 1,
which we call the Bloch sphere.

sin 6 cos @
« The coordinates of such a state are given by the Bloch vector: r = (sin@ sin <p>

cos 6




Bloch sphere
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* Be careful: On the Bloch

sphere, angles are twice as big
as in Hilbert space:

> e.g., |0) & |1) are orthogonal, but
on the Bloch sphere their angle
is 180°.

» Fora general state, |y) =
cosg |0) + --- = B is the angle on

the Bloch sphere, whileg is the
actual angle in Hilbert space!




Quantum circuits: single qubit gates

* Circuitmodel: sequence of building block that carry out computations, called gates.

« Quantum gates are represented by unitary matrices, A unitary matrix is a square
matrix of complex numbers, whose inverse is equal to its conjugate transpose.

- Single qubit gates:

Hadamard _E_ % { i _11 }H creates superposition
rotationaround X-axisby m ——+ Pauli-X  _ [y | H [1]} «— bit flip
rotationaround Y-axisby m —» Pauli-Y’ _E_ B _01 «— bit & phase flip
rotation around Z-axisby m ——+ Pauli-Z —Z— [(1] _01 } < phaseflip
Phase _E _ Ll] ﬂ <« used to change from Z to Y—basi@
CAB A )



Quantum circuits: single qubit gates
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Quantum circuits:
multipartite quantum states

* We use tensor product to describe multiple states:

- o = () (2) = (35)
a,b,

> Example: system A isin state |1), and system B is in state |0)g = (2)@((1)) = < ) states of this form

o rOO

are called uncorrelated.
» Butthere are also bipartite states that cannot be written as |y),®|y),. These states are correlated

and sometimes even entangled (very strong correlation), e.g. |w)20£) = iz (100)ag + [11)4p) = \/ii <8>’
1

it so called Bell state, used for teleportation, cryptography, Bell tests, etc.




multiple-qubit gates

Irculits:
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Quantum circuits: two-qubit gates

« Classical example: XOR

é nX®Y irreversible: given the output, we cannot recoverthe input.

« But as quantum theory is unitary, we only consider unitary and therefore reversible gates
* Quantum example: CNOT gate

Quantum circuits can perform all function
0 that can be calculated classically.




Entanglement

* If a pure state|y)gon system A,B cannot be written as |y),®|d);, it is entangled.

* These are four so called Bell states that are maximally entangled and build on
orthonormal basis:

> |y = =(100) + [11)),
> |w0l) = f(|01> +(10)),
> |w10) =f(|00>—|11>),
> |ytt) = (101) - [10)).




Entanglement

e Creation of Bell states:
ql[o] .
ql[1] é

1 1
[doa1),, Ho ~—=(100)+ [10)) CNOTyy »—=(100) + [11)) = [y°%),

V2 V2
oty Ho = =101+ [11)) CNOTys > —=(101) + [10)) = %),
ois)y Ho == (100) = [10)) CNOToy > —=(100) = 111) = [y'%)
dod1),, Ho —>iz(|o1)— |11)) CN0T01—>l2(|01)— 110)) = |y11).

V2 V2




Teleportation

» Goal:
> Alice want to send her (unknown) state |¢)s == a|0)s + B|1)s to Bob.

» She can only send him two classical bits though.
» They both share the maximally entangled state Iw)g)];)) = iz (]00)ag + |11) aR).
* Initial states of the total system:
| 25 @ Y2 '-lg:-. (slo00g,q + o M S, +(5|400'>5,‘3 *F’M"‘Dsna)
2 fﬁ[ (lcwa‘;»‘,‘q 4 W}SA)g (10> + PI4>3)+ (lon,ﬂ*lwm) a(uhg:fpk))a)
+ (L0025 - 11155, ) @ 10%- Bl 13g) + (1005 - o%g,) & [ "‘%'ﬁ"”s)]
<A T1¥™25, 01658 + | Y70 (6 163)

+ ll}’")_gA & (E'il‘j)?%) + |1V44>m ® (E,,(Tz H»B}]

| Photo courtesy of: IBM quantum summer school 2019




Teleportation

e Protocol:

| ps>
Al
s |00
Reb

1. Ale's measwiement — Bob's shie

Y>> | &>g

| 2O GI'):'¢>B
1Y V)] ld’)g
[Y 6072 Ip>y

1. A&"-& [-"el#rm a meas.
on S& R ca the Belll bascs,

| $>p 3. 8% 6 6xd Yo hs
9b# and geks 1651
3.Bob ofplles — Bb's flrall sk

00 A >z
o1 Ox >
10 b3 “
11 b7, 6% w

Alice's state collapsed during the measurement, so she doesn’t have the initial state |¢)s anymore.

This is expected due to the no-cloning theorem, as she cannot copy her state, but just send her state to Bob

when destroying her own.

Photo courtesy of : IBM guantum summer school 2019



Teleportation

e Quantum circuit:
two classical bits

The qubit she is trying
to send Bob. N

Alice's qubit > q1 —. l
w

do

Bob's qubit — g2
00 — Do nothing
crz vo | _01 - Apply X gate
10 > Apply Z gate
Jo 11 — Apply ZX gate

crx

0xl




Superdense coding

» Superdense coding is a procedure that allows someone to send two classical bits to
another party using just a single qubit of communication.

 Take advantage of quantum mechanicsto more efficientlytransmitclassical information.

* Word “coding” means there are 2 essential processes, encoding and decoding:
» encoding: classical state — quantum state,

» decoding: quantum state — classical state.

Superdense Coding

Transmit one qubit Transmit two classical bits
using two classical bits. using one qubit.




Superdense coding

 Superdense coding
includes 4 steps:

0/1 0/1 .
i i > preparation,
% Preparation Decoding message » encoding message,
» transmission,
q[0] . transmission . mz
. » decoding message.
Q[l] mz
0 1
\ 2




Superdense coding

* Step 1: preparation

> Startwith 2 qubits in the
basis state |0).

» Applying Hadamard gate
SIS (N2 to the first qubit and CNOT
gate (the first qubit as

(|00 + |11 control, another qubit as
target)accordingly.

qlO]

qll] é




Superdense coding

* Step 1: preparation
> Give the first qubit to A and

the second qubit to B.
a©])  » Aand B travelfar away.

/
% %q[ﬂ

qlO]

qll1]




Superdense coding

Message Applied Gate State Result * Step 2: eﬂCOding message
00 I _1§(|00> +11)) » A encodes the classical
1 state in the qubit by
o X f(|10> +101)) applying gate(s).
0/1 01 10 z %5(/00) — [11))
o M L0 -
9 11 ZX v§(|10) 101))

Message Applied Gate

00

01

: :
; =




Superdense coding

* Step 3: transmission

» A sends the first qubit to B.

D¢
transmission




Superdense coding

 Step 4: decoding message

> Applying CNOT gate (th
ot os contel,
irst qubit as control,

9 00 00) another qubit as target)
and Hadamard gate to the
01 01) first qubit accordingly.

qlO] . 10 10)
qll] é 11 11)




Superdense coding

Testthe circuit which encodes message “11” and run on “ibm_oslo”.

e Step 4: decoding message
9 1.00 0.953
» Finally, measure both
o 0751 qubits.

q[0] -~ i;:o.so

: &
q[1] A 0.25 1

IO 31 0.025

v v 0.00 0004 0017




How the noise properties affect the result

ibmg_quito

Error Map

Readout Error (%)

0-

4-

1
000 479 822

H error rate (%) [Avg. = 0.036] CNOT error rate (%) [Avg. = 1.129]

B 00

0.028 0.032 0.036 0.040 0.044 090 105 120 135

* There are often optimizations that the

transpiler can perform that reduce the
overall gate count, and thus total length
of the input circuits.

Qiskit library has a command “backend”
to show the chosen backend

information graphically such as “Error
Map”.

We can select a good initial layout
considering connectivity and error
information that you can find from the
map to initial layout onto the physical
qubits with at least noise.
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