

2 Programming Language Principle 2/2023: Compiler

3. Given a following grammar:

E → E AD F,

E → F,

AD → +,

AD → -,

F → F MUL L ,

F → L,

MUL → *,

MUL → /,

L → (E),

L → id

a. Is the grammar LL(1)? Justify your answer.

b. If it’s not LL(1), how to change the grammar to LL(1)?

4. The following is a grammar for regular expressions over symbols a and b only, using

+ in place of | for union, to avoid conflict with the use of vertical bar as a

metasymbol in grammars:

rexpr -> rexpr + rterm | rterm
rterm -> rterm rfactor | rfactor
rfactor -> rfactor * | rprimary
rprimary -> a | b

a. Left factor this grammar.

b. Does left factoring make the grammar suitable for top-down parsing?

c. In addition to left factoring, eliminate left recursion from the original grammar.

d. Is the resulting grammar suitable for top-down parsing? Justify your answer.

