Number theory

Elementary number theory and its applications, 2ed, K. Rosen. Addison-Wesley, 1988.

<u>Definition</u> Let m be a positive integer. If a and b are integers, we say that *a* is congruent to b modulo m if $m \mid (a-b)$, denoted by $a \equiv b \pmod{m}$.

<u>Definition</u>. The integers a and b are called *relatively* prime if a and b have greatest common divisor (a,b) = 1.

<u>Definition</u>. Let n be a positive integer. *The Euler phi-function* $\phi(n)$ is defined to be the number of positive integers not exceeding n which are relatively prime to n.

n	1	2	3	4	5	6	7	8	9	10	11	12
φ(n)	1	1	2	2	4	2	6	4	6	4	10	4

<u>Euler's theorem</u>. If m is a positive integer and a is an integer with (a,m) = 1, then $a^{\phi(n)} \equiv 1 \pmod{m}$.

<u>Definition</u>. Let a and m be relatively prime positive integers. Then the least positive integer x such that $a^x \equiv 1 \pmod{m}$ is called *the order of a modulo m* denoted by ord m a.

Example Find the order of 2 modulo 7. $2^{-1} = 2 \pmod{7}$, $2^{-2} = 4 \pmod{7}$, $2^{-3} = 1 \pmod{7}$. Therefore ord $7^{-2} = 3$.

<u>Definition</u>. If r and n are relatively prime integers with n > 0 and if ord $n = \phi(n)$, then r is called a *primitive root modulo n*.

Theorem 1 If ord $_m$ a = t and if u is a positive integer, then ord $_m$ (a u) = t / (t,u)

Corollary 1 Let r be a primitive root modulo m where m is an integer m > 1. Then r u is a primitive root modulo m if and only if $(u, \phi(n)) = 1$.

Proof By Theorem 1 we know that

ord
$$_{m}$$
 r u = ord $_{m}$ r / (u, ord $_{m}$ r) = ϕ (m) / (u, ϕ (m)).

Consequently, ord $_m$ r $^u = \phi$ (m), and r u is a primitive root modulo m, if and only if $(u, \phi(m)) = 1$.

Pseudo – Random Numbers

Middle square method
 John von Neumann (invent game theory, first computer, atomic bomb)

6139 37687321

6873

Linear congruential method

$$x_{n+1} \equiv ax_n + c \pmod{m}, \ 0 \le x_{n+1} \le m$$

$$m > 0, 2 \le a \le m, 0 \le c \le m, 0 \le x_0 \le m.$$

<u>Theorem</u> The terms of the sequence generated by the linear congruential method are given by

$$x_k \equiv a^k x_0 + c(a^k - 1) / (a - 1) \pmod{m}, 0 \le x_k < m.$$

Proof by mathematical induction. for k = 1, the formula is obviously true, since $x_1 \equiv ax_0 + c \pmod{m}$, $0 \le x_1 < m$. Assume that the formula is valid for the k th term, so that

$$x_k \equiv a^k x_0 + c(a^k - 1) / (a - 1) \pmod{m}, 0 \le x_k < m.$$

since

$$x_{k+1} \equiv a x_k + c \pmod{m}, 0 \le x_{k+1} < m.$$

we have

$$x_{k+1} \equiv a(a^{k} x_{0} + c(a^{k} - 1)/(a-1)) + c$$

$$\equiv a^{k+1} x_{0} + c(a(a^{k-1})/(a-1) + 1)$$

$$\equiv a^{k+1} x_{0} + c(a^{k+1} - 1)/(a-1) \pmod{m}$$

which is the correct formula for the (k+1)th term. This demonstrates that the formula is correct for all positive integers k.

The period length of a linear congruential pseudo-random number generator is the maximum length of the sequence obtained without repetition.

<u>Theorem</u> The linear congruential generator produces a sequence of period length m if and only if (c,m) = 1, $a \equiv 1 \pmod{p}$ for all primes p dividing m, and $a \equiv 1 \pmod{4}$ if $4 \mid m$.

For the proof see D. E. Knuth, "The art of computer programming" vol 2, "seminumerical algorithms", 2nd ed Addison Wesley, 1981. pp. 9-20.

A special case where c = 0 is called *multiplicative congruential method*.

$$x_{n+1} \equiv a x_n \pmod{m}, 0 \le x_{n+1} \le m.$$

or

$$x_n \equiv a^n x_0 \pmod{m}, \ 0 \le x_{n+1} \le m.$$

For many applications, the generator is used with the modulus m equal to the Mersenne prime $M_{31} = 2^{31}$ -1. When the modulus m is prime, the maximum period length is m-1, and this is obtained when a is a primitive root of m. To find a primitive root of M $_{31}$ that can be used with the good results, we first demonstrate that 7 is a primitive root of M $_{31}$

<u>Theorem</u> The integer 7 is a primitive root of M $_{31} = 2^{31} - 1$.

Proof To show that 7 is a primitive root of M_{31} , it is sufficient to show that

$$7^{(M \, 31 \, - \, 1)/q} /= 1 \pmod{M_{31}}$$

for all prime divisors q of M $_{31}$ -1. With this information we can conclude that ord $_{M\,31}$ 7 = M $_{31}$ -1. To find factorization of M $_{31}$ -1, we note that

$$M_{31} - 1 = 2^{31} - 2 = 2(2^{30} - 1) = 2(2^{15} - 1)(2^{15} + 1)$$
$$= 2(2^{5} - 1)(2^{10} + 2^{5} + 1)(2^{5} + 1)(2^{10} - 2^{5} + 1)$$
$$= 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 31 \cdot 151 \cdot 331$$

if we show that

$$7^{(M31-1)/q} /= 1 \pmod{M_{31}}$$

for q = 2,3,7,11,31,151,331, then we know that 7 is a primitive root of $M_{31} = 2147483647$. Since

$$\begin{array}{l} 7^{(M31-1)/2} \equiv 2147483546 \ /\!\!\equiv 1 \ (mod\ M_{31}) \\ 7^{(M31-1)/3} \equiv 1513477735 \ /\!\!\equiv 1 \ (mod\ M_{31}) \\ 7^{(M31-1)/7} \equiv 120536285 \ /\!\!\equiv 1 \ (mod\ M_{31}) \\ 7^{(M31-1)/11} \equiv 1969212174 \ /\!\!\equiv 1 \ (mod\ M_{31}) \\ 7^{(M31-1)/31} \equiv 512 \ /\!\!\equiv 1 \ (mod\ M_{31}) \\ 7^{(M31-1)/31} \equiv 535044134 \ /\!\!\equiv 1 \ (mod\ M_{31}) \\ 7^{(M31-1)/331} \equiv 1761885083 \ /\!\!\equiv 1 \ (mod\ M_{31}) \end{array}$$

we see that 7 is a primitive root of M_{31} .

In practice we do not want to use the primitive root 7 as the generator, since the first few integers generated are small. We find a larger primitive root using Corollary 1. We take a power of 7 where the exponent is relatively prime to M_{31} - 1. For instance, since $(5,M_{31})=1$, Corollary 1 tells us that $7^5=16807$ is also a primitive root. Since $(13,M_{31}-1)=1$, another possibility is to use $7^{13}\equiv 252246292 \pmod{M_{31}}$ as the multiplier.

Choice of modulus

Let w be the computer's word size, or 2 e on an e-bit binary computer. Use m = w \pm 1.

Why not m = w?

When m = w the right-hand digits of x_n are much less random than the left-hand digits. If d is a divisor of m, and if

$$y_n = x_n \mod d$$

we can easily show that

$$y_{n+1} = (a y_n + c) \mod d$$

for $x_{n+1} = a x_n + c$ – qm for some integer q, and taking both sides mod d cause the quantity qm to drop out when d is a factor of m.

This shows that the low-order form a congruential sequence that has a period of length d or less.

Other methods

Linear congruential method can be generalized to, say, a quadratic congruential method

$$x_{n+1} = (dx^2_n + ax_n + c) \mod m$$

additive number generator (Mitchell and Moore 1958)

$$x_n = (x_{n-24} + x_{n-55}) \mod m \quad n \ge 55$$

the least significant bits " $x_n \mod 2$ " have a period of length $2^{55} - 1$. Therefore the generator must have a period at least this long.

Chi-square test

We can say how probable or improbable certain types of events are.

The difference between observed Y_s and expected np_s

$$V = (Y_2 - np_2)^2 + (Y_3 - np_3)^2 + ... + (Y_{12} - np_{12})^2$$

What is the probability what V is this high using true dice?

Suppose that every observation can fall into one of k categories. We take n *independent* observations. Let p_s be the probability that each observation falls into category s, and let Y_s be the number of observations that actually do fall into category s.

Weighted by the prob. of occurrence nps

$$V = \sum_{1 \le s \le k} \frac{(Y_s - np_s)^2}{np_s}$$

Expanding
$$(Y_s - np_s)^2 = Y_2 - 2np_s Y_s + n^2 p_s^2$$
 and $Y_1 + Y_2 + ... Y_k = n$
 $p_1 + p_2 + ... p_k = 1$

$$V = \frac{1}{n} \sum_{1 \le s \le k} \left(\frac{Y_s^2}{p_s} \right) - n$$

v = k - 1 the number of degree of freedom is k - 1.

Chi-square distribution table says "The quantity V will be less than or equal to x with approximate probability p, if n is large enough".

How large should n be? Rule of thumb is $np_s \ge 5$

Range of V	Indication
0-1 %, 99-100 %	Reject X
1-5 %, 95-99 %	Suspect ?
5-10 %, 90-95 %	Almost reject +

Example five Chi-square test on three data of four generators.

	В			C			D		F	
		+							X	X
			+					?	?	X
?						+	+	X	X	X
+				X	+			X	X	?
								X	X	X

B:
$$x_0 = 0$$
, $a = 3141592653$, $c = 2718281829$, $m = 2^{35}$
C: $x_0 = 0$, $a = 2^{7} + 1$, $c = 1$, $m = 2^{35}$

C:
$$x_0 = 0$$
, $a = 2^7 + 1$, $c = 1$, $m = 2^{35}$

D:
$$x_0 = 47194118$$
, $a = 23$, $c = 0$, $m = 10^8 + 1$
F: $x_0 = 314159265$, $a = 2^{18} + 1$, $c = 1$, $m = 2^{35}$

Conclusion, B and D are satisfactory, C is on the borderline, F is unsatisfactory.