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Chapter 7

Performance Enhancement

In  this  chapter,  we  will  concentrate  on  performance  of  the  processor. 
Performance  improvement  starts  with  an  analysis  of  the  execution  profile  to 
understand  where  the  data  path  spends  most  of  its  time.   The  effort  is  then 
directed to redesign the data path, usually by increasing the concurrent operations 
in the data path.  There are interactions amongst choices of design.  Choosing one 
will affect another.  The gain in terms of performance must be weighted against 
the increased complexity in terms of the circuit size or the resource.   For the 
purpose of our study we will not change the instruction set.  The performance 
improvement will come from the change of micro-architecture only.  

Profile analysis
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Figure 7.1  The most frequently used instructions

The  profile  is  collected  from running  the  benchmark  programs  in  Chapter  6 
(Table 6.3).  In an analysis of the profile of execution of instructions (Fig. 7.1), 
most frequently used instructions are:
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get, lit, ld, add, put, ldx, jt, lt, jf. 
These instructions altogether are more than 80% of all instructions executed in 
the suite of benchmark programs1. To improve the performance, the effort should 
be spent on improving these instructions.

Let the shorthand notation of  push/pop be

push x is   
  sp+1->sp
  x->mW(sp)

pop x is
  mR(sp)->x
  sp-1->sp

The microprograms for the instructions:  get,  lit,  ld,  add,  put,  ldx,  jt,  lt, 
jf are:

<get>
  push ts
  alu(fp-arg)->tbus, mR(tbus)->ts

<lit>
  push ts
  arg->ts

<ld>
  push ts
  mR(arg)->ts

<bop> 
     pop ff
  alu(ts op ff)->ts

<put>
  alu(fp-arg)->tbus, ts->mW(tbus)
  pop ts

<ldx>                    ; {ads idx}

1 Notable  is  the  “inc v”  instruction  which  is  not  generated  from this  compiler 
(gen.txt).  It is used often but has not been included in this experiment.
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  pop ff
  alu(ts+ff)->tbus, mR(tbus)->ts

<jt>
  alu(ts=0), ifT <j3>   ; if true, don't jump
<j2>
  pc+arg 
  pop ts

<jf>
  alu(ts=0), ifT <j2>   ; if true, jump
<j3>
  pc+1
  pop ts

We can observe that all instructions perform push and pop.  This is because two 
reasons. The first reason is that it is the nature of the stack-based instruction set to 
access data from the evaluation stack. The second reason is that the top of stack is 
cached in TS, therefore there is a lot of traffic between TS and the stack segment. 
In  Sx  processor,  push and  pop do  one  memory access  and use  ALU to  do 
increment/decrement SP.

Key ideas

There are two key ideas to improve the performance of Sx data path.
1. The  operations  push/pop can  be  done  in  one  cycle  if  SP can  be 

incremented/decremented independent of ALU and they can achieve pre-
increment and post-decrement at the proper negative-edge of the clock. 

2. To  improve  “get”,  the  most  frequently  used  instruction,  the  local 
variable must be stored in a register instead of memory as  push/pop 
also access memory.  If it is done properly “get” will take just one cycle. 
Let v[.] denotes the caching register bank.  It is connected to TS in the 
data path (see Fig. 7.3).

The “get” can be done in one cycle.

<get>
  $1 push ts, $2 v[arg]->ts
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Where $1 denotes positive-edge and $2 denotes negative-edge, v[.] is the cache 
register.  The old value  TS is pushed into memory at  $1, before the new value 
from v[arg] is written to TS at $2. 

Push/pop

To push a register to memory in one cycle, the “sp+1” must appear at the address 
bus from the beginning of $1, TS is presented to data bus at the same time, at the 
beginning of  $2 memory write signal is ended (it is assumed that the value is 
written into memory here), the value of “sp+1” is also written to SP at this time.

push ts is   
  sp+1->sp
  ts->mW(sp)

With the new scheme, it becomes

$1 sp+1->abus, ts->dbus, $2 mW(abus), sp+1->sp

Popping a register can be done in one cycle.  The value “sp” is presented to the 
address bus at $1. The memory is read.  At $2, the data is latched to a register, at 
the same time, “sp-1” is written to SP (post-decrement).

pop x is
  mR(sp)->x
  sp-1->sp

It becomes

$1 sp->abus, mR(abus)->dbus, $2 dbus->x, sp-1->sp

With this new push/pop, other instructions will also improve. “lit” takes only 
one cycle for execution.

<lit> 
  $1 push ts, $2 arg->ts

“ld” cannot be done in one cycle as it reads the memory twice, the first one to 
push TS, the second one for getting the value. Therefore “ld” takes 2 cycles.

<ld>
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  push ts
  mR(arg)->ts   

All the binary operations now take 2 cycles. 
<bop> 
  pop ff
  alu(ts op ff)->ts

“put” can be done in one cycle.  TS is read at  $1 and transfers to  v[arg].  A 
value in the evaluation stack is popped into TS at $2.

<put>
  ts->v[arg], pop ts

Similarly to bop, “ldx” takes 2 cycles. “jt” and “jf” take 3 cycles.

Implementing the SP unit

To perform increment/decrement on SP in concurrent with other ALU operations, 
SP must  be  a separate  unit.  The SP unit  performs pre-increment  at  $1,  post-
decrement at $2, and loads a value from bus at $2.  There is a feed forward path 
from  the  adder  “sp+1”  to  achieve  the  pre-increment.   All  multiplexors  are 
asserted at $1, latching the register SP is at $2 (Fig. 7.2).

Figure 7.2   The SP unit
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A number of registers are used to cache a part of stack frame. This is called the  
stack frame caching [CHO06].  The stack frame remains unchanged from the 
original design. The local variables, lv1..lvn, are cached into v[1]..v[n] the 
cache registers.  When the context is changed by call/ret, these registers are 
affected.  Before a new activation record is created the old cached registers must 
be written back to the current activation record.  And vice versa, upon returned 
from a call, after the activation record is deleted and the old one restored, the  
cache registers must  be refreshed (re-cached) from the activation record. This  
behaviour is the same as saving/restoring registers upon call/ret on a register-
based processor.  However, in Sx, these saving/restoring are performed at the 
microprogram level instead of at the instruction level.  The execution steps of 
call/ret are as follows. 

call
* save v to the current stack frame
  push ts (flush stack)
  create a new frame
  save fp' and return address
* cache v from the new frame
  update sp

ret
  restore return address, sp
  restore the old frame
* cache v of this current frame (restore old v)
  if it is “ret” pop ts

The lines with * are the additional work that must  be done to do stack frame 
caching.   The  microprograms  for  call/ret for  saving/caching  v[.] are  as 
follows.

<save v>
  alu(fp-n)->fp
  vn->mW(fp), alu(fp+1)->fp
  ...
  v1->mW(fp), alu(fp+1)->fp 

<cache v>
  alu(fp-n)->fp
  mR(fp)->vn, alu(fp+1)->fp
  ...
  mR(fp)->v1, alu(fp+1)->fp
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If the size of caching register is n then the extra cycle in call/ret instruction is 
O(3(n+1)).

New data path

The enhanced Sx, or Sx2, has many additional functional units (Fig. 7.3), notably 
the SP unit and the v[.], cache registers. The number of v[.] is 4.  However, 
the major change is in the control unit.  There are many more control signals to 
control the additional functional units and there are more steps of control.  

The events in the data path are defined as follows.

multiplexor x selects {ts, fs, nx}
multiplexor y selects {ff, u, arg}
multiplexor b selects {tbus, dbus, sp}
multiplexor d selects {fp, ts, v, u}
multiplexor a selects {pc, tbus, fp, spu}
multiplexor j selects {pc+1, pc+arg, tbus}
multiplexor si selects {sp+1, sp-1, sp+arg, tbus}
multiplexor so selects {spx, sp}
multiplexor z selects {dbus, ts}
multiplexor w selects {v1, v2, v3, v4, varg}
multiplexor t selects {vout, pc, bus} 
multiplexor u selects {dbus, iru}
ALU events are {add, sub, inc, dec, z, eq, op, p1, p2, 

add2}
load registers events are {ir, ts, fp, sp, nx, ff, pc, v1, 

v2, v3, v4, varg, u}
memory events are  {mR, mW}
next micro-address events are  {ifT, ifF, decode, ifu0, ifp0, 

ifargm, skipu, trap}

The new events on the next micro-address {ifu0, ifp0, ifargm, skipu} 
and the register U require further explanation.  They are necessary for the control 
of saving/caching the stack frame.  The simple analysis of the previous section 
has  the  worst  case  additional  running  time  for  using  stack  frame  caching  in 
O(3(n+1)) cycles.  However, it is not the case that a function call will use all  v 
registers.   Let  maxv be the number of  v registers,  fs be the size of activation 



172

record.  If the size of activation record is less than maxv then only v[1]..v[fs] 
must be saved/cached. Let u be max(fs, maxv); it is stored in the register U. The 

Figure 7.3  The Sx2 data path
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U register is used to skip a number of microprogram words to achieve this effect.  
The control signal is “skipu”.  “skipu” sets the next microprogram address to 
mpc+(maxv-u). This offset is already stored in the next microprogram address 
field.  The microprogram below shows the part to save v registers at the function 
call. 
 

<save v>
   alu(fp-u)->fp, skipu
   v[4]->mW(fp), fp+1->fp
   v[3]->mW(fp), fp+1->fp
   v[2]->mW(fp), fp+1->fp
   v[1]->mW(fp), fp+1->fp, <fetch>    

Caching v registers can be achieved similarly.  In fact, when calling a function, 
not even u registers need to be cached, only the passing parameters (p) need to be 
cached from the evaluation stack (it is a save when p < u).  However, it becomes 
too complex to do in a simple microprogram such as this due to the ordering the 
variables.  Therefore,  a tradeoff  has been made not  to exploit  this fact.   One  
special case has been implemented, when p = 0 to bypass the passing parameter 
caching (using the event “ifp0”).  These two parameters, p and u, are encoded in 
the argument of “fun” instruction with the following format.

  fun.p.u.k

8 8 8 8

p u k op

Where k is the frame size, p is the arity, u is max(fs, maxv).  This is done by the 
code generator or at the loader of the processor simulator.  The U register is valid 
throughout the current context; it is used when “call” and “ret”.

Microprogram of Sx2

Here is the microprogram of the Sx2 processor in whole with the explanation.
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<fetch>  [micro 205]
  mR(pc)->ir, decode

The effect of concurrency of SP unit with other operations can be observed in  
almost every instruction.

<bop>  [micro 207]
  mR(sp)->ff, sp+1->sp
  alu(ts op ff)->ts, pc+1, <fetch>

<uop>  [micro 210]
  alu(ts op ?)->ts, pc+1, <fetch>

When  arg > maxv, the “get” accesses normal memory.   Even in this case the 
step of execution is shortening due to the SP unit. When arg <= maxv, the access 
in on  v registers and the execution takes only one cycle. The “decode” event 
performs a check on the argument of “get” and branches to the proper “get x” 
microprogram address  where  x is  1..maxv.   The pre-increment  using  “sp+1” 
feed-forward path can be seen.

<get>  [micro 212]
  ts->mW(sp+1), sp+1->sp ; push ts
  alu(fp-arg)->tbus, mR(tbus)->ts, pc+1, <fetch>

<get1>
  ts->mW(sp+1), v[1]->ts, sp+1->sp, pc+1, <fetch>

<get2>
  ts->mW(sp+1), v[2]->ts, sp+1->sp, pc+1, <fetch>

<get3>
  ts->mW(sp+1), v[3]->ts, sp+1->sp, pc+1, <fetch>

<get4>
  ts->mW(sp+1), v[4]->ts, sp+1->sp, pc+1, <fetch>

“put” is similarly decoded.  The post-decrement of SP unit allows the instruction 
to be executed in one cycle.

<put>  [micro 223]
  alu(fp-arg)->tbus, ts->mW(tbus)
  mR(sp)->ts, sp-1->sp, pc+1, <fetch>
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<put1>
  ts->v[1], mR(sp)->ts, sp-1->sp, pc+1, <fetch>
<put2>
  ts->v[2], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<put3>
  ts->v[3], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<put4>
  ts->v[4], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<ld>  [micro 235]
  ts->mW(sp+1), sp+1->sp
  mR(arg)->ts, pc+1, <fetch>

<st>  [micro 238]
  ts->mW(arg)
  mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<ldx>  [micro 240]                ; {ads idx}
  mR(sp)->ff, sp-1->sp          ; pop ads
  alu(ff+ts)->tbus, mR(tbus)->ts, pc+1, <fetch>

“stx” benefits from the SP unit the most as it pops the stack many times.  In the 
original Sx, “stx” takes 7 cycles, now it takes 4 cycles.

<stx>  [micro 243]                    ;  {ads idx val}
  mR(sp)->nx, sp-1->sp         ; pop idx
  mR(sp)->ff, sp-1->sp         ; pop ads
  alu(nx+ff)->tbus, ts->mW(tbus)
  mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<lit>  [micro 247]
  ts->mW(sp+1), sp+1->sp, arg->ts, pc+1, <fetch>

<jmp>  [micro 249]
  pc+arg, <fetch>

<jt>  [micro 251]
  alu(ts=0), ifT j3             ; if true, don't jump
<j2>
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  pc+arg, mR(sp)->ts, sp-1->sp, <fetch>



177

<jf>  [micro 256]
  alu(ts=0), ifT j2                 ; if true, jump
<j3>
  pc+1, mR(sp)->ts, sp-1->sp, <fetch>

Sx2 breaks call/fun into two instructions to reduce the maximum length of any 
single instruction.  The “call” instruction saves the return address to  TS and 
saves  v registers.  The “fun” creates the new activation record and caches the 
passing parameters from the evaluation stack to v registers.

<call>  [micro 261]                       ; store  ret ads on ts
  ts->mW(sp+1), sp+1->sp, pc+1     ; flush ts
  pc->ts, arg->pc, if u=0 <fetch>  ; save ret ads
<save v>
  alu(fp-u)->fp, skipu   
  v[4]->mW(fp), fp+1->fp
  v[3]->mW(fp), fp+1->fp
  v[2]->mW(fp), fp+1->fp
  v[1]->mW(fp), fp+1->fp, <fetch>

<fun>  [micro 270]                  ; fun.p.u.k
  fp->mW(sp+k), sp+k->sp           ; save old fp, new sp
  sp->fp                           ; new fp
  u->mW(sp+1), iru->u, sp+1->sp    ; push u
  pc+1, if p=0 <fetch>
<cache v>
  alu(fp-u)->fp, skipu
  mR(fp)->v[4], fp+1->fp
  mR(fp)->v[3], fp+1->fp
  mR(fp)->v[2], fp+1->fp
  mR(fp)->v[1], fp+1->fp, <fetch>

<ret>  [micro 281]
  sp-1->ff
  alu(fp=ff), ifF <r2>              ; test for retv
  ts->pc                            ;  ret ads on TS
  mR(sp)->u                         ; pop u
  alu(fp-arg)->sp
  mR(sp)->ts, sp-1->sp, if u=0 <r3> ; if u=0 skip cachev
  mR(fp)->fp, <cachev>
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<r2>
  alu(fp+2)->tbus, mR(tbus)->ff     ; ret ads on frame
  ff->pc
  alu(fp+1)->tbus, mR(tbus)->u      ; pop u
  alu(fp-arg)->sp, if u=0 <r3>      ; skip cachev
  mR(fp)->fp, <cachev>
<r3>
  mR(fp)->fp, <fetch>               ; restore fp

In writing the microprogram for the instructions “inc” and “dec”, a different 
style is used.  Instead of decoding to “inc1” .. “inc4”, a test is made to check 
the range of the argument.  If arg > maxv then it is a normal operation, else the 
access is on v registers.  The event “ifargm” does the test.  The TS is saved to 
NX as the operation uses  TS.  When the operation is completed,  TS is restored 
from NX.

<inc>  [micro 300]
  ts->nx, v[arg]->ts, ifargm <inc2> ; save ts to nx
  alu(ts+1)->ts                     ; op on v reg
  ts->v[arg], nx->ts, pc+1, <fetch>
<inc2>
  alu(fp-arg)->tbus, mR(tbus)->ts   ; a normal op
  alu(ts+1)->ts
  alu(fp-arg)->tbus, ts->mW(tbus)
  nx->ts, pc+1, <fetch>

<dec>  [micro 310]
  ts->nx, v[arg]->ts  ifargm <dec2>
  alu(ts-1)->ts
  ts->v[arg], nx->ts, pc+1, <fetch>
<dec2>
  alu(fp-arg)->tbus, mR(tbus)->ts
  alu(ts-1)->ts
  alu(fp-arg)->tbus, ts->mW(tbus)
  nx->ts, pc+1, <fetch>

<sys>  [micro 320]
<array>
<end>
  trap, pc+1, <fetch>
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Performance

Table 7.1 shows the number of cycle used by each instruction.  The number in 
parentheses is  the  number  of  cycle  of the  original  Sx for  comparison.  Please 
observe that almost all instructions are faster.  The “call/fun”, “ret” are slow 
in the worst case, for example, call+fun is 16 cycles (Sx is only 8 cycles).  “inc” 
and “dec” in a normal case are the same as Sx (due to the test for the range of  
argument) but they are twice as fast if the argument is in the cache register.

Table 7.1  The number of cycle used by each instruction of Sx2. (n) shows the 
number of cycle of Sx.

bop 3 (4) uop 2 (3) get 3 (4) get1..4 2 (4)
Put 3 (4) put1..4 2 (4) ld 3 (4) st 3 (4)
Ldx 3 (4) stx 5 (8) lit 2 (4) jmp 2 (2)
jt 3 (4) jf 3 (4) call max 7 (8) fun max 9 (0)
ret max 12 (8) retv max 12 (7) retv max 12 (7) inc1..4 3 (6)
dec 6 (6) dec1..4 3 (6)

A  number  of  benchmark  programs  are  compiled  and  then  run  on  the  Sx2 
processor simulator.   The table below reports the number of instruction (noi), the 
number  of  cycle  (cycle)  and  the  cycle-per-instruction  number  (cpi)  for  each 
program.

The average CPI of Sx2 is 2.9.  From the table, comparing the number of clock 
between the original Sx and Sx2, the average ratio is 0.70.  That is, Sx2 is 30% 
faster than the original Sx.

Other interesting observation is the size of microprogram.  Sx2 is obviously more 
complex.  The  size  of  its  microprogram  is  larger.   We  calculate  the  size  of 
microprogram as the number of bit in the ROM.  Here is the comparison.

Sx   width 38  length 62  38×62 = 2356 bits
Sx2 width 71  length 74  71×74 = 5254 bits

Therefore, the complexity in the control unit of Sx2 is double of Sx.
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Table 7.2  The performance of Sx2 processor

Sx Sx2

program noi cycle cpi noi cycle cpi

bubble 10068 44214 4.39 10262 32090 3.13
hanoi 2312 10092 4.37 2377 7544 3.17
matmul 3043 12880 4.23 3097 9348 3.02
perm 4868 20932 4.30 4935 14663 2.97
queen 618665 2576210 4.16 620724 1717782 2.77
quick 3172 13539 4.27 3224 9551 2.96
sieve 28026 124338 4.44 28029 75204 2.68
aes 30579 131560 4.29 30724 90498 2.95

Summary

To improve the performance of Sx processor, we employ the technique of stack 
frame caching.  The stack frame caching relies on fast registers to cache a part of  
the stack frame so that the access to these variables takes only one cycle. The 
separation of SP from the ALU path to have its own increment/decrement, the SP 
unit, helps to shorten the cycle of the push/pop values from the evaluation stack. 
There  are  many  approaches  to  enhance  the  performance  of  a  processor.  In 
general, the memory sub-system has the major impact on performance. However, 
in our presentation, the speed of memory, its access time, is assumed to be one 
cycle, therefore it does not affect our design.  This is not a realistic assumption 
for a general purpose processor but in the context of implementing the design on 
FPGA with its internal memory block, this is correct.

Further reading 

The conventional  approaches to performance enhancement  are to use pipeline 
and multiple functional units.  These techniques have been used successfully in 
every  commercial  processor  available  today.   Most  computer  architecture 
textbook described these methods.   The most  widely used text  written by the 
computer architects who invent the concept of reduced instruction set computer 
(RISC), is the text by Hennessy and Patterson [HEN03].  The pipeline technique 
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is perhaps the earliest technique for performance enhancement.  It has been used 
for many complex functional units such as floating-point calculation [KOG81]. 
Multiple functional units were the landmark of super computer in its era.  In fact, 
the first one to employ multiple function units successfully is CDC6600, the most 
exciting computer architecture of its day [THO70].
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Exercises

7.1 Run Sx2, try to write a microprogram for some new instruction and test 
it. 

7.2 Compare the performance of new instructions in Exercise 7.1 with Sx.

7.3 Discuss the finding, suggest some way to improve the performance by 
adding some new instruction (counting the total cycle used to complete a 
task).

7.4 Improve the microstep of some instruction.  You don’t have to simulate 
the execution.  You can calculate the number clock from the profile.

7.5 If the number of cache registers is changed, for example, 8, what is the 
impact on the performance?
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7.6 The memory latency is one of the most important factors in determining 
the  performance  of  a  processor.   Suppose  the  latency  of  memory  is 
increased to 2 cycles for read and write to memory.  What is its impact 
on performance?  Assume the cache register latency is one cycle.
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