
165

Chapter 7

Performance Enhancement

In this chapter, we will concentrate on performance of the processor.
Performance improvement starts with an analysis of the execution profile to
understand where the data path spends most of its time. The effort is then
directed to redesign the data path, usually by increasing the concurrent operations
in the data path. There are interactions amongst choices of design. Choosing one
will affect another. The gain in terms of performance must be weighted against
the increased complexity in terms of the circuit size or the resource. For the
purpose of our study we will not change the instruction set. The performance
improvement will come from the change of micro-architecture only.

Profile analysis

get

lit

ld add put ldx jt lt jf

0

5

10

15

20

25

30

35

Figure 7.1 The most frequently used instructions

The profile is collected from running the benchmark programs in Chapter 6
(Table 6.3). In an analysis of the profile of execution of instructions (Fig. 7.1),
most frequently used instructions are:

166

get, lit, ld, add, put, ldx, jt, lt, jf.
These instructions altogether are more than 80% of all instructions executed in
the suite of benchmark programs1. To improve the performance, the effort should
be spent on improving these instructions.

Let the shorthand notation of push/pop be

push x is
 sp+1->sp
 x->mW(sp)

pop x is
 mR(sp)->x
 sp-1->sp

The microprograms for the instructions: get, lit, ld, add, put, ldx, jt, lt,
jf are:

<get>
 push ts
 alu(fp-arg)->tbus, mR(tbus)->ts

<lit>
 push ts
 arg->ts

<ld>
 push ts
 mR(arg)->ts

<bop>
 pop ff
 alu(ts op ff)->ts

<put>
 alu(fp-arg)->tbus, ts->mW(tbus)
 pop ts

<ldx> ; {ads idx}

1 Notable is the “inc v” instruction which is not generated from this compiler
(gen.txt). It is used often but has not been included in this experiment.

167

 pop ff
 alu(ts+ff)->tbus, mR(tbus)->ts

<jt>
 alu(ts=0), ifT <j3> ; if true, don't jump
<j2>
 pc+arg
 pop ts

<jf>
 alu(ts=0), ifT <j2> ; if true, jump
<j3>
 pc+1
 pop ts

We can observe that all instructions perform push and pop. This is because two
reasons. The first reason is that it is the nature of the stack-based instruction set to
access data from the evaluation stack. The second reason is that the top of stack is
cached in TS, therefore there is a lot of traffic between TS and the stack segment.
In Sx processor, push and pop do one memory access and use ALU to do
increment/decrement SP.

Key ideas

There are two key ideas to improve the performance of Sx data path.
1. The operations push/pop can be done in one cycle if SP can be

incremented/decremented independent of ALU and they can achieve pre-
increment and post-decrement at the proper negative-edge of the clock.

2. To improve “get”, the most frequently used instruction, the local
variable must be stored in a register instead of memory as push/pop
also access memory. If it is done properly “get” will take just one cycle.
Let v[.] denotes the caching register bank. It is connected to TS in the
data path (see Fig. 7.3).

The “get” can be done in one cycle.

<get>
 $1 push ts, $2 v[arg]->ts

168

Where $1 denotes positive-edge and $2 denotes negative-edge, v[.] is the cache
register. The old value TS is pushed into memory at $1, before the new value
from v[arg] is written to TS at $2.

Push/pop

To push a register to memory in one cycle, the “sp+1” must appear at the address
bus from the beginning of $1, TS is presented to data bus at the same time, at the
beginning of $2 memory write signal is ended (it is assumed that the value is
written into memory here), the value of “sp+1” is also written to SP at this time.

push ts is
 sp+1->sp
 ts->mW(sp)

With the new scheme, it becomes

$1 sp+1->abus, ts->dbus, $2 mW(abus), sp+1->sp

Popping a register can be done in one cycle. The value “sp” is presented to the
address bus at $1. The memory is read. At $2, the data is latched to a register, at
the same time, “sp-1” is written to SP (post-decrement).

pop x is
 mR(sp)->x
 sp-1->sp

It becomes

$1 sp->abus, mR(abus)->dbus, $2 dbus->x, sp-1->sp

With this new push/pop, other instructions will also improve. “lit” takes only
one cycle for execution.

<lit>
 $1 push ts, $2 arg->ts

“ld” cannot be done in one cycle as it reads the memory twice, the first one to
push TS, the second one for getting the value. Therefore “ld” takes 2 cycles.

<ld>

169

 push ts
 mR(arg)->ts

All the binary operations now take 2 cycles.
<bop>
 pop ff
 alu(ts op ff)->ts

“put” can be done in one cycle. TS is read at $1 and transfers to v[arg]. A
value in the evaluation stack is popped into TS at $2.

<put>
 ts->v[arg], pop ts

Similarly to bop, “ldx” takes 2 cycles. “jt” and “jf” take 3 cycles.

Implementing the SP unit

To perform increment/decrement on SP in concurrent with other ALU operations,
SP must be a separate unit. The SP unit performs pre-increment at $1, post-
decrement at $2, and loads a value from bus at $2. There is a feed forward path
from the adder “sp+1” to achieve the pre-increment. All multiplexors are
asserted at $1, latching the register SP is at $2 (Fig. 7.2).

Figure 7.2 The SP unit

Stack frame

sp
+/−

bus

 1

sp + 1

170

A number of registers are used to cache a part of stack frame. This is called the
stack frame caching [CHO06]. The stack frame remains unchanged from the
original design. The local variables, lv1..lvn, are cached into v[1]..v[n] the
cache registers. When the context is changed by call/ret, these registers are
affected. Before a new activation record is created the old cached registers must
be written back to the current activation record. And vice versa, upon returned
from a call, after the activation record is deleted and the old one restored, the
cache registers must be refreshed (re-cached) from the activation record. This
behaviour is the same as saving/restoring registers upon call/ret on a register-
based processor. However, in Sx, these saving/restoring are performed at the
microprogram level instead of at the instruction level. The execution steps of
call/ret are as follows.

call
* save v to the current stack frame
 push ts (flush stack)
 create a new frame
 save fp' and return address
* cache v from the new frame
 update sp

ret
 restore return address, sp
 restore the old frame
* cache v of this current frame (restore old v)
 if it is “ret” pop ts

The lines with * are the additional work that must be done to do stack frame
caching. The microprograms for call/ret for saving/caching v[.] are as
follows.

<save v>
 alu(fp-n)->fp
 vn->mW(fp), alu(fp+1)->fp
 ...
 v1->mW(fp), alu(fp+1)->fp

<cache v>
 alu(fp-n)->fp
 mR(fp)->vn, alu(fp+1)->fp
 ...
 mR(fp)->v1, alu(fp+1)->fp

171

If the size of caching register is n then the extra cycle in call/ret instruction is
O(3(n+1)).

New data path

The enhanced Sx, or Sx2, has many additional functional units (Fig. 7.3), notably
the SP unit and the v[.], cache registers. The number of v[.] is 4. However,
the major change is in the control unit. There are many more control signals to
control the additional functional units and there are more steps of control.

The events in the data path are defined as follows.

multiplexor x selects {ts, fs, nx}
multiplexor y selects {ff, u, arg}
multiplexor b selects {tbus, dbus, sp}
multiplexor d selects {fp, ts, v, u}
multiplexor a selects {pc, tbus, fp, spu}
multiplexor j selects {pc+1, pc+arg, tbus}
multiplexor si selects {sp+1, sp-1, sp+arg, tbus}
multiplexor so selects {spx, sp}
multiplexor z selects {dbus, ts}
multiplexor w selects {v1, v2, v3, v4, varg}
multiplexor t selects {vout, pc, bus}
multiplexor u selects {dbus, iru}
ALU events are {add, sub, inc, dec, z, eq, op, p1, p2,

add2}
load registers events are {ir, ts, fp, sp, nx, ff, pc, v1,

v2, v3, v4, varg, u}
memory events are {mR, mW}
next micro-address events are {ifT, ifF, decode, ifu0, ifp0,

ifargm, skipu, trap}

The new events on the next micro-address {ifu0, ifp0, ifargm, skipu}
and the register U require further explanation. They are necessary for the control
of saving/caching the stack frame. The simple analysis of the previous section
has the worst case additional running time for using stack frame caching in
O(3(n+1)) cycles. However, it is not the case that a function call will use all v
registers. Let maxv be the number of v registers, fs be the size of activation

172

record. If the size of activation record is less than maxv then only v[1]..v[fs]
must be saved/cached. Let u be max(fs, maxv); it is stored in the register U. The

Figure 7.3 The Sx2 data path

arg

1

tbus

x

FP

TS

V

FF

NX

b

tbus

SP

arg

alu

p1

p2

bus

y

M

IR

j

a

dbus

abus

SPBIU
din

U

TS

d

PC

U
dbus

iru

PC
tbustbus

+

FP

FP

V

so si

sin

spx

z
w

vout

t

u

+/-

173

U register is used to skip a number of microprogram words to achieve this effect.
The control signal is “skipu”. “skipu” sets the next microprogram address to
mpc+(maxv-u). This offset is already stored in the next microprogram address
field. The microprogram below shows the part to save v registers at the function
call.

<save v>
 alu(fp-u)->fp, skipu
 v[4]->mW(fp), fp+1->fp
 v[3]->mW(fp), fp+1->fp
 v[2]->mW(fp), fp+1->fp
 v[1]->mW(fp), fp+1->fp, <fetch>

Caching v registers can be achieved similarly. In fact, when calling a function,
not even u registers need to be cached, only the passing parameters (p) need to be
cached from the evaluation stack (it is a save when p < u). However, it becomes
too complex to do in a simple microprogram such as this due to the ordering the
variables. Therefore, a tradeoff has been made not to exploit this fact. One
special case has been implemented, when p = 0 to bypass the passing parameter
caching (using the event “ifp0”). These two parameters, p and u, are encoded in
the argument of “fun” instruction with the following format.

 fun.p.u.k

8 8 8 8

p u k op

Where k is the frame size, p is the arity, u is max(fs, maxv). This is done by the
code generator or at the loader of the processor simulator. The U register is valid
throughout the current context; it is used when “call” and “ret”.

Microprogram of Sx2

Here is the microprogram of the Sx2 processor in whole with the explanation.

174

<fetch> [micro 205]
 mR(pc)->ir, decode

The effect of concurrency of SP unit with other operations can be observed in
almost every instruction.

<bop> [micro 207]
 mR(sp)->ff, sp+1->sp
 alu(ts op ff)->ts, pc+1, <fetch>

<uop> [micro 210]
 alu(ts op ?)->ts, pc+1, <fetch>

When arg > maxv, the “get” accesses normal memory. Even in this case the
step of execution is shortening due to the SP unit. When arg <= maxv, the access
in on v registers and the execution takes only one cycle. The “decode” event
performs a check on the argument of “get” and branches to the proper “get x”
microprogram address where x is 1..maxv. The pre-increment using “sp+1”
feed-forward path can be seen.

<get> [micro 212]
 ts->mW(sp+1), sp+1->sp ; push ts
 alu(fp-arg)->tbus, mR(tbus)->ts, pc+1, <fetch>

<get1>
 ts->mW(sp+1), v[1]->ts, sp+1->sp, pc+1, <fetch>

<get2>
 ts->mW(sp+1), v[2]->ts, sp+1->sp, pc+1, <fetch>

<get3>
 ts->mW(sp+1), v[3]->ts, sp+1->sp, pc+1, <fetch>

<get4>
 ts->mW(sp+1), v[4]->ts, sp+1->sp, pc+1, <fetch>

“put” is similarly decoded. The post-decrement of SP unit allows the instruction
to be executed in one cycle.

<put> [micro 223]
 alu(fp-arg)->tbus, ts->mW(tbus)
 mR(sp)->ts, sp-1->sp, pc+1, <fetch>

175

<put1>
 ts->v[1], mR(sp)->ts, sp-1->sp, pc+1, <fetch>
<put2>
 ts->v[2], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<put3>
 ts->v[3], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<put4>
 ts->v[4], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<ld> [micro 235]
 ts->mW(sp+1), sp+1->sp
 mR(arg)->ts, pc+1, <fetch>

<st> [micro 238]
 ts->mW(arg)
 mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<ldx> [micro 240] ; {ads idx}
 mR(sp)->ff, sp-1->sp ; pop ads
 alu(ff+ts)->tbus, mR(tbus)->ts, pc+1, <fetch>

“stx” benefits from the SP unit the most as it pops the stack many times. In the
original Sx, “stx” takes 7 cycles, now it takes 4 cycles.

<stx> [micro 243] ; {ads idx val}
 mR(sp)->nx, sp-1->sp ; pop idx
 mR(sp)->ff, sp-1->sp ; pop ads
 alu(nx+ff)->tbus, ts->mW(tbus)
 mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<lit> [micro 247]
 ts->mW(sp+1), sp+1->sp, arg->ts, pc+1, <fetch>

<jmp> [micro 249]
 pc+arg, <fetch>

<jt> [micro 251]
 alu(ts=0), ifT j3 ; if true, don't jump
<j2>

176

 pc+arg, mR(sp)->ts, sp-1->sp, <fetch>

177

<jf> [micro 256]
 alu(ts=0), ifT j2 ; if true, jump
<j3>
 pc+1, mR(sp)->ts, sp-1->sp, <fetch>

Sx2 breaks call/fun into two instructions to reduce the maximum length of any
single instruction. The “call” instruction saves the return address to TS and
saves v registers. The “fun” creates the new activation record and caches the
passing parameters from the evaluation stack to v registers.

<call> [micro 261] ; store ret ads on ts
 ts->mW(sp+1), sp+1->sp, pc+1 ; flush ts
 pc->ts, arg->pc, if u=0 <fetch> ; save ret ads
<save v>
 alu(fp-u)->fp, skipu
 v[4]->mW(fp), fp+1->fp
 v[3]->mW(fp), fp+1->fp
 v[2]->mW(fp), fp+1->fp
 v[1]->mW(fp), fp+1->fp, <fetch>

<fun> [micro 270] ; fun.p.u.k
 fp->mW(sp+k), sp+k->sp ; save old fp, new sp
 sp->fp ; new fp
 u->mW(sp+1), iru->u, sp+1->sp ; push u
 pc+1, if p=0 <fetch>
<cache v>
 alu(fp-u)->fp, skipu
 mR(fp)->v[4], fp+1->fp
 mR(fp)->v[3], fp+1->fp
 mR(fp)->v[2], fp+1->fp
 mR(fp)->v[1], fp+1->fp, <fetch>

<ret> [micro 281]
 sp-1->ff
 alu(fp=ff), ifF <r2> ; test for retv
 ts->pc ; ret ads on TS
 mR(sp)->u ; pop u
 alu(fp-arg)->sp
 mR(sp)->ts, sp-1->sp, if u=0 <r3> ; if u=0 skip cachev
 mR(fp)->fp, <cachev>

178

<r2>
 alu(fp+2)->tbus, mR(tbus)->ff ; ret ads on frame
 ff->pc
 alu(fp+1)->tbus, mR(tbus)->u ; pop u
 alu(fp-arg)->sp, if u=0 <r3> ; skip cachev
 mR(fp)->fp, <cachev>
<r3>
 mR(fp)->fp, <fetch> ; restore fp

In writing the microprogram for the instructions “inc” and “dec”, a different
style is used. Instead of decoding to “inc1” .. “inc4”, a test is made to check
the range of the argument. If arg > maxv then it is a normal operation, else the
access is on v registers. The event “ifargm” does the test. The TS is saved to
NX as the operation uses TS. When the operation is completed, TS is restored
from NX.

<inc> [micro 300]
 ts->nx, v[arg]->ts, ifargm <inc2> ; save ts to nx
 alu(ts+1)->ts ; op on v reg
 ts->v[arg], nx->ts, pc+1, <fetch>
<inc2>
 alu(fp-arg)->tbus, mR(tbus)->ts ; a normal op
 alu(ts+1)->ts
 alu(fp-arg)->tbus, ts->mW(tbus)
 nx->ts, pc+1, <fetch>

<dec> [micro 310]
 ts->nx, v[arg]->ts ifargm <dec2>
 alu(ts-1)->ts
 ts->v[arg], nx->ts, pc+1, <fetch>
<dec2>
 alu(fp-arg)->tbus, mR(tbus)->ts
 alu(ts-1)->ts
 alu(fp-arg)->tbus, ts->mW(tbus)
 nx->ts, pc+1, <fetch>

<sys> [micro 320]
<array>
<end>
 trap, pc+1, <fetch>

179

Performance

Table 7.1 shows the number of cycle used by each instruction. The number in
parentheses is the number of cycle of the original Sx for comparison. Please
observe that almost all instructions are faster. The “call/fun”, “ret” are slow
in the worst case, for example, call+fun is 16 cycles (Sx is only 8 cycles). “inc”
and “dec” in a normal case are the same as Sx (due to the test for the range of
argument) but they are twice as fast if the argument is in the cache register.

Table 7.1 The number of cycle used by each instruction of Sx2. (n) shows the
number of cycle of Sx.

bop 3 (4) uop 2 (3) get 3 (4) get1..4 2 (4)
Put 3 (4) put1..4 2 (4) ld 3 (4) st 3 (4)
Ldx 3 (4) stx 5 (8) lit 2 (4) jmp 2 (2)
jt 3 (4) jf 3 (4) call max 7 (8) fun max 9 (0)
ret max 12 (8) retv max 12 (7) retv max 12 (7) inc1..4 3 (6)
dec 6 (6) dec1..4 3 (6)

A number of benchmark programs are compiled and then run on the Sx2
processor simulator. The table below reports the number of instruction (noi), the
number of cycle (cycle) and the cycle-per-instruction number (cpi) for each
program.

The average CPI of Sx2 is 2.9. From the table, comparing the number of clock
between the original Sx and Sx2, the average ratio is 0.70. That is, Sx2 is 30%
faster than the original Sx.

Other interesting observation is the size of microprogram. Sx2 is obviously more
complex. The size of its microprogram is larger. We calculate the size of
microprogram as the number of bit in the ROM. Here is the comparison.

Sx width 38 length 62 38×62 = 2356 bits
Sx2 width 71 length 74 71×74 = 5254 bits

Therefore, the complexity in the control unit of Sx2 is double of Sx.

180

Table 7.2 The performance of Sx2 processor

Sx Sx2

program noi cycle cpi noi cycle cpi

bubble 10068 44214 4.39 10262 32090 3.13
hanoi 2312 10092 4.37 2377 7544 3.17
matmul 3043 12880 4.23 3097 9348 3.02
perm 4868 20932 4.30 4935 14663 2.97
queen 618665 2576210 4.16 620724 1717782 2.77
quick 3172 13539 4.27 3224 9551 2.96
sieve 28026 124338 4.44 28029 75204 2.68
aes 30579 131560 4.29 30724 90498 2.95

Summary

To improve the performance of Sx processor, we employ the technique of stack
frame caching. The stack frame caching relies on fast registers to cache a part of
the stack frame so that the access to these variables takes only one cycle. The
separation of SP from the ALU path to have its own increment/decrement, the SP
unit, helps to shorten the cycle of the push/pop values from the evaluation stack.
There are many approaches to enhance the performance of a processor. In
general, the memory sub-system has the major impact on performance. However,
in our presentation, the speed of memory, its access time, is assumed to be one
cycle, therefore it does not affect our design. This is not a realistic assumption
for a general purpose processor but in the context of implementing the design on
FPGA with its internal memory block, this is correct.

Further reading

The conventional approaches to performance enhancement are to use pipeline
and multiple functional units. These techniques have been used successfully in
every commercial processor available today. Most computer architecture
textbook described these methods. The most widely used text written by the
computer architects who invent the concept of reduced instruction set computer
(RISC), is the text by Hennessy and Patterson [HEN03]. The pipeline technique

181

is perhaps the earliest technique for performance enhancement. It has been used
for many complex functional units such as floating-point calculation [KOG81].
Multiple functional units were the landmark of super computer in its era. In fact,
the first one to employ multiple function units successfully is CDC6600, the most
exciting computer architecture of its day [THO70].

References

[CHO06] Chongstitvatana, P., “Stack frame caching”, Proc. of National
Computer Science and Engineering Conference, Thailand, 2006.

[HEN03] Hennessy, J., and Patterson, D., Computer Architecture: a quantitative
approach, 3rd ed. Morgan Kaufmann, 2003.

[KOG81] Kogge, P., The architecture of pipelined computers, McGraw-Hill,
1981.

[THO70] Thornton, J., Design of a computer: the Control Data 6600, Scott,
Foresman and Company, 1970.

Exercises

7.1 Run Sx2, try to write a microprogram for some new instruction and test
it.

7.2 Compare the performance of new instructions in Exercise 7.1 with Sx.

7.3 Discuss the finding, suggest some way to improve the performance by
adding some new instruction (counting the total cycle used to complete a
task).

7.4 Improve the microstep of some instruction. You don’t have to simulate
the execution. You can calculate the number clock from the profile.

7.5 If the number of cache registers is changed, for example, 8, what is the
impact on the performance?

182

7.6 The memory latency is one of the most important factors in determining
the performance of a processor. Suppose the latency of memory is
increased to 2 cycles for read and write to memory. What is its impact
on performance? Assume the cache register latency is one cycle.

183

	Chapter 7
	Performance Enhancement
	Profile analysis
	Key ideas
	Push/pop
	Implementing the SP unit
	Stack frame

	New data path
	

	Microprogram of Sx2
	Performance
	Summary
	Further reading
	References
	Exercises

