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Chapter 8 

Nut Operating System 
 
 
In this chapter we develop Nut operating system (Nos).  This operating system 
runs on the Sx processor.  Nos is a preemptive multitask operating system.  This 
operating system has many services: interprocess communication, shared 
resources, process synchronisation, and a real time clock.  As we have the 
processor simulator, the implementation of interrupt and task switching can be 
studied in details down to the level of machine cycle.  A supervisor program (Nos 
supervisor) is created to interface between Nos and the Sx processor simulator.  
Nos is designed to be very limited.  It does not have virtual memory, the file 
system nor the network.  Although it is very limited, it does offer an insight into 
the essential part of operating systems.  
  

8.1 Operating system concepts 
 
A process is a basic unit of abstraction to build concurrent execution of multiple 
programs.  A process is a program in execution.  A program is static whereas a 
process is dynamic.  One program can be executed by many processes.  A process 
consists of:  code segment, data segment, stack segment.  They can be shared or 
separated.  When they are shared, only a single address space is needed hence the 
implementation is simple.   
 
To achieve concurrency using one processor, each process will be allocated a 
slice of time for its execution.  All processes will be scheduled to be executed by 
time multiplexing.  For example, two processes A and B, to run concurrently they 
will be executed like this: 
 

A B A B A B A B 
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A simple programming abstraction to achieve this is co-routine where A calls B 
then B calls A but not starting A at the beginning. A resumes the execution at the 
point where it has previously stopped. 
 
Several processes can be active at the same time.  The concurrency is achieved 
via multi-threading (light weight process).  A light weight process has single 
address space.  A heavy weight process is a process with a separate address 
space.  It needs a mechanism to do the address mapping between virtual address 
and physical address.  A thread is a trace of execution. Concurrency with a single 
thread process is achieved by co-operative process (via co-routine).  A multi-
thread process has several traces at the same time.  This can be accomplished by 
pre-emptive scheduler with time-slicing.  A light weight process is much cheaper 
to create than a heavy weight process. 
 
To manage multiple programs, a scheduler keeps a list of all processes.  When 
starting an execution of a time slice, a process will be selected to be run 
according to some policy.   A process is run until it is: 
 

1. time-out   using up its allotted time. 
2. blocked    the process requests a resource and has to wait for it. 
3. terminated   the process runs to its completion. 

 
We can model the behaviour of the process as a state machine as shown in Table 
8.1. 
 
Table 8.1  The state of a process 
 

State Event Next state 

   
READY Task switch RUNNING 

RUNNING Time-out READY 
RUNNING Terminate DEAD 
RUNNING Block WAIT 

WAIT Wakeup READY 

 
 
To execute a process on a processor, the computation state (C-state), i.e.  all 
variables pertain to that process must be saved/restored properly upon a task 
switching.  These are PC, FP, SP, and TS  including separate stack segment for 
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each process.  These values are stored in a data structure called the process 
descriptor.  The task-switch is defined as follows. 
 

task-switch 
   if only one process do nothing 
   save current state, set it to READY 
   select next process 
   make it runnable, set it to RUNNING 

 
To understand how a process requests a resource we first study how a resource is 
shared. 
 
In sharing a resource, it is necessary to ensure mutual exclusion.  That is, during a 
period of one process possessing that resource, other process that also wants that 
resource must wait.  Dijkstra invented “semaphore” [DIJ65] to achieve this 
“mutex” behaviour.   A semaphore is a variable (can be binary, 0/1, or an integer) 
associated with a resource. It indicates availability of the resource to the process 
that requested it.  Two operations are defined on a semaphore: wait, signal  
(originally Dijkstra called it P, V).  Associated with each semaphore is a waiting 
list of the process that waits on this semaphore.  They are defined as follows: 
 

Wait sem 
   if value of sem <= 0 
      block this process, set it to WAIT 
      put this process to waiting list of  
      this sem 
  else 
      sem - 1 
 
Signal sem 
   if there is process waiting for this sem    
      move that process out of waiting list       
      wakeup that process 
   else 
      sem + 1 

 
These two operations must be atomic, that is, they must run to completion 
without interruption (can not task switch in between). 
 
For resource sharing, we let only one process to acquire the resource, all other 
processes that request that resource will be waiting in the waiting list.  The code 
where this mutual exclusion is required is said to be critical section.  A 
semaphore is used to protect this section.  Start with sem = 1. 



186 

.... 
; critical section 
wait sem 
... code to access shared resource 
signal sem 

 
 
The first process that reaches this section will “close the door”.  After it finishes 
with this section, it “open the door” to let other process in.  A semaphore is the 
basis that other mechanism can be built on such as process synchronisation or 
interprocess communication.   
 
Two processes need to be synchronised at some point in the program.  Two 
semaphores are used to achieve it.  Let two processes be A and B.  Assume A 
arrives to the synchronise point before B.  Then A must wait for B and vice versa 
if B arrives before A. 
 

    A                    B 
 
signal sem1         wait sem1 
wait sem2           signal sem2 

 
The sequence can be rearranged and the behaviour is still correct. 
 

   A                    B 
 
signal sem1         signal sem2 
wait sem2           wait sem1 

 
The interprocess communication is achieved using  synchronous message-
passing.  It combines communication and synchronisation in a single high-level 
primitive.  Other alternative models for message-based process synchronisation 
are: asynchronous and remote invocation. 
 
There are relationships between asynchronous, synchronous and remote 
invocation semantics.  Two asynchronous events can constitute a synchronous 
relationship if an acknowledgement message is always sent (and waited for).  
Two synchronous communications can be used to construct a remote invocation.  
It could be argued that the asynchronous model gives the greatest flexibility but 
there are a number of drawbacks: 
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1. Potentially infinite buffers are needed to store messages that have not 
been read yet. 

2. In asynchronous model, more communication are needed, hence 
programs are more complex. 

 
Also, a synchronous model can emulate an asynchronous communication  simply 
by using a buffer process. 
 
A system is said to be hard real-time if it has deadlines that cannot be missed for 
if they are, the system fails [LEI80].  A system is soft real-time if the application 
tolerant of missed deadlines.  A system is interactive if it does not have specified 
deadlines but strives for adequate response times. 
 
Two types of process are present in the real-time domain: periodic and aperiodic.  
Periodic processes sample data or execute a control loop and have explicit 
deadlines that must be met.  Aperiodic processes (or sporadic) arise from external 
asynchronous events.  These processes have specified response time associated 
with them.  The process must be analysed to give its worst-case execution time, 
also may obtained average execution time [BUR01]. 
 
To schedule real-time tasks, “schedulability” is an important concept. Given a 
collection of processes and all associated deadlines, determine if this set of 
processes is schedulable.  This means that it is possible for all deadlines to be met 
indefinitely into the future.  In general, necessary and sufficient conditions for 
schedulability are not known.  However, there are many different algorithms 
presented in the literature which test for schedulability under certain 
preconditions and restrictions [SHA88] [LEH89]. 
 

8.2 Nut operating system 
 
Nut operating system (Nos) is written in Nut. It runs as a user program. Nos 
models concurrency using process.  The share-resource accesses are controlled 
with semaphores.  The processes in Nos communicate with each other through 
message passing. The crucial real-time functions are supported. Therefore Nos 
can support real-time tasks. Nos supports the following functions: 

• create a process 
• terminate a process 
• manage the process queue 
• task switching 
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• wait/signal a semaphore 
• send/receive a message 
• get a real-time clock 
• set a timer 

8.3 Process 
A process is an independent computation which can run concurrently with other 
process.  A process is declared as a normal defined function. Initial values can be 
passed as parameters at the starting time of a process.  A process will end its 
execution by self-termination when it executes the last instruction at the end of 
program.  This is different from the execution of a function which ends its 
execution by returning to the caller.  A program that calls a process will start that 
process execution, that program then will continue to work without waiting.  A 
process never returns to its caller.  
 
Each process has its own stack segment.  In Nos, there is a single address space, 
the stack segment of all processes are in the same address space.  The advantage 
is that there is no translation between virtual address and physical address 
therefore it is fast and simple.  The disadvantage is that there is no protection 
between processes.  Each process has its process descriptor (PD) to store the 
necessary information.  A process descriptor in Nos consists of 12 fields. 
 

1. link previous 
2. link next 
3. process id 
4. process status 
5. PC 
6. SP 
7. FP 
8. TS 
9. in-box 
10. await-box 
11. message 
12. timer 

The links previous and next are used to form the list of processes, for example the 
process queue.  The process identifier is a unique number used to label a process.  
The process status holds the state of process (to be explained later).  The fields 
{PC, SP, FP, TS} hold the computation state of the process.  The mail-box (in-
box and await-box) is used to communicate between processes.  The in-box is the 
list of processes that sent messages to this process.  The await-box is the list of 
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processes that are waiting for messages from this process. The timer holds the 
timer value of this process. 
 

8.4 Scheduler 
 
When a process is created it is ready to start the execution. Its PD will be linked 
to the ready list (the process queue) which is a doubly linked circular list used by 
the scheduler.  A scheduler has the duty of selecting a process to run from the 
ready list.  The scheduling policy of Nos is a Round-Robin policy where an equal 
time-slice is allocated for every process and the process is scheduled on first-
come first-serve basis. A scheduler will enable a process in the ready list to run 
until its time-slice is over and then switches to the next process in the list.  If a 
process enters a wait state, it is said to be blocked.  A process is usually blocked 
because it performs some operation that requires waiting for another process, 
such as waiting for the receiver to retrieve a message.  When a process is 
blocked, its PD will be removed from the ready list.  The process in wait state can 
be awaken by other process.  Its PD will be inserted into the end of the ready list.  
To perform the switch from one process to another process (task switching), the 
current state of computation {PC, SP, FP, TS} of the active process is saved in its 
PD and the state of computation of the process to be run is restored.  The first 
process to be active is the process to run the main program.  A process is run until 
it is time-out, or it is blocked or it is terminated.  “switchp” is the task switcher 
function in Nos. Here is how “switchp” work. 
 

switchp 
  if status is time-out or blocked 
    runnable next task 
  else status is terminated 
    delete this task 
    runnable next task 

 
Where status is the state of the process, runnable marks the process as running. 
Here is the actual code in Nut. 

 
(def switchp () ()  [nos 127] 
    (do 
    (di) 
    (if (or (= status TIMEOUT) (= status LOCKED)) 
        (do 
        (setValue activep READY) 



190 

        (set activep (getNext activep))  ; switch next 
        (runnable activep)) 
        ; else         ; status STOPPED 
        (do 
        (setValue activep DEAD) 
        (set activep (deleteDL activep)) 
        (if (!= activep 0) 
            (runnable activep)))))) 

 
Before we go into more details of the operating system functions, we must 
understand the basic of running a task first.  
 

8.5 Nos supervisor (Noss) 
 
Nos is executed under Nos supervisor (Noss).  Nos supervisor runs on top of the 
processor simulator. Noss is a privileged program. A privileged program is a 
program that is “out-of-bound” of user programs.  A privileged program provides 
mechanism for executing a user program, for example, the Sx processor 
simulator is a privileged program that executes S-code.  In our implementation, 
privileged programs are written in C.  User programs are written in Nut.  The 
relationship between Nos supervisor and the processor simulator can be 
understood by regarding Noss as issuing an interrupt to the processor.  
 
The processor executes a program continuously (running a process) until an 
interrupt occurs then the supervisor takes action.  The interrupt can occur only at 
the end of executing an instruction. There are three interrupt events: time-out, 
stop, and block. 
 

time-out − the current process has used up its own time-slice. 
stop − the current process runs to completion. 
block − the current process is blocked (to be resumed later). 

 
The supervisor (Noss) takes action in response to the interrupt events as follows. 
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Figure 8.1  Noss state diagram 
 
 
At start, the main program creates processes and the process queue. Noss 
schedules only two kinds of processes: user process and switchp.  “switchp” is 
created and has its own PD but it is privileged and never enters the process 
queue.  Once the process queue is ready, at the state user, a user process is run. 
The user process is run until it is time-out/stopped/blocked.  Then Noss calls the 
“switchp”, at the state switch.  “switchp” runs to completion. It must not be 
interrupted as it is manipulating the process queue.  Then the state is going back 
to run a user process. 
 
At the end of task-switch, Noss always runs the next task.  This is accomplished 
by restoring the computation state (C-state) of that process.  This means the PC, 
SP, FP, TS of that process are restored to the processor simulator and then the 
processor simulator continues to execute until the interrupt occurs.  
 
The process descriptor contains C-state. Saving and restoring C-state are the act 
of transferring C-state between the processor simulator and the process 
descriptor. Noss does the restoring of C-state. This restoring will affect the flow 
of execution, as the instruction pointer is changed; it does a jump in the program.  
As Noss is responsible to run the task-switcher, it must save C-state.  Saving C-
state can not be done in user-space as the precise state has been changed when 
trying to run the “saving state” function.  So, save-C-state is done in the main 
loop of Noss (in C).  This gives the save-C-state a special privilege (so called 
kernel in OS vocabulary). The following pseudo code described Noss. 
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Noss  [noss 43] 
  if there is no process in the queue 
     stop the whole simulation 
  else  
     update status to nos 
     if state = switch 
        save current user process 
        restore “switchp” 
        state = user 
     else state = user 
        restore active process 
        state = switch 

 

8.6 Simulation of interrupt 
 
The processor simulator always runs a program in a tight loop. The processor 
fetches an instruction and executes it. To simulate an interrupt, the processor calls 
Noss from time to time (this is called yield).  The interrupt interval is controlled 
by counting the cycle used since the last call to Noss. 
 
The processor returns the control back to Noss after three conditions: 

1. Its time-slice has been used up. This is called “time-out”. 
2. The process has been blocked by executing some operation. This is 

called “blocked”. 
3. The task is completed. The program reached “end”. This is called 

“stopped”. 
 
When the processor hands the control back to Noss, Noss calls task-switch.  The 
task-switch code is in the user-space. The task-switch is the function “switchp”.  
“switchp” requires the knowledge of the status of the completion of the previous 
task: time-out, blocked, or ended. This information is provided by Noss via the 
variable “status”, as Noss controls the processor simulator it knows how the task 
has returned the control.   
 
Noss is minimal in the sense that it does not do a lot of things by itself.  The only 
thing it does is to call “switchp”. Noss monitors the state of computation of a 
process through two global variables: status and activep. activep points to the 
current process descriptor. 
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8.7 Processor simulator 
 
In the processor simulator, the main simulation loop is “eval”. It executes a fixed 
number of cycles.  This is the main fetch-execute cycle of the processor (in fact 
most processor simulators are like this): 
 

eval 
  count = 0 
  loop 
    if count > limit break 
    fetch an instruction 
    execute the instruction 
    count = count + 1 

 
To implement interrupts, a flag (intflag) is used to disable the break.  This flag 
can be turned on/off by the system calls. 
 

eval2 
  count = 0 
  loop 
    if intflag == 1 
      if count > limit break 
    fetch an instruction 
    execute the instruction 
    count = count + 1 

 
The system calls that support Nos are: 
 

20 disable interrupt 
21 enable interrupt 
22 block a process 

 
The following code describes the main loop of the processor simulator. 
 

eval  [noss 71] 
  set PC 
  while runflag = 1 
    run one instruction 
    yield 
 
yield 
  if intflag = 1 
    if no of cycle used > TIMEOUT 
       noss(time_out) 
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Where runflag controls the termination of Noss itself, intflag is the interrupt flag 
used to disable/enable interrupt. 
 

8.8 How a process is created 
 
A function “run” is used to create a process and put it to the process queue.  
Although “run” looks like a normal function, it can not be compiled into a normal 
function call.  The argument to “run” is a function which will be turned into a 
process so it should not be evaluated. A call to “run” is compiled into the code 
that passes an address of the function.  The argument to “call.run” in N-code is 
just a user-function call with its arguments as usual.  However, this argument will 
not be evaluated.  Instead, the address of the code of this call will be generated as 
an argument of “run”. This code will be activated by the scheduler as a process.  
See the following example: 
 

(def add (a b) () (+ a b)) 
(def run (f) () 0) 
(def main () () 
    (do 
    (run (add 4 5)))) 

 
add 
(fun.2.2 (+ get.1 get.2 )) 
run 
(fun.1.1 (lit.0 )) 
main 
(fun.0.0 (do (call.17 (call.14 lit.4 lit.5 )))) 

 
The generate S-code is as follows. See line 12-18. 
 
      1 Call main 
      2 End 
      3 Fun add 
      4 Get 2 
      5 Get 1 
      6 Add 
      7 Ret 3 
      8 Fun run 
      9 Lit 0 
     10 Ret 2 
     11 Fun main 
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     12 Lit 15 
     13 Call run 
     14 Jmp 19 
     15 Lit 4 
     16 Lit 5 
     17 Call add 
     18 End 
     19 Ret 1 
 
The line “(run (add 4 5 ))” becomes 
 
     12 Lit 15     address of code (add 4 5) 
     13 Call run 
     14 Jmp 19      do not execute now 
     15 Lit 4       the code (call.add lit.4 lit.5) 
     16 Lit 5 
     17 Call add 
     18 End 
     19 . . . 
 

8.9 How to generate code for run 
 
The S-object must contain the symbol table with the correct references.  The S-
object is generated by “gen.txt”.  However, “gen.txt” just passes the symbol table 
through.  The symbol table is read from N-object.  The N-object is generated by 
“nut.txt”, the compiler.  The current version dumps everything in the symbol 
table. 

The symbols that must be exported are of type FUN and GVAR only.  The 
following tasks must be done. 

1. Change “nut.txt” to output only the necessary symbols. 
2. Change “gen.txt” to output the S-code reference.  However the number of 

symbol does not change. 

at nut.txt 

The dumpsym [nut 104] is responsible to output the symbol table.  relocate the 
reference to function such that the code segment starts at 2.  It is necessary as 
nut-compiler is used under “nvm” where both the compiler and the user program 
to be compiled occupy the same code segment.  Therefore the user program in 
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the code segment will not start at 2.  We would like the object to be relocatable, 
therefore the user code should start at 2. 

When starting the compiler, (sys 9) is used to find out where to user code 
segment is.  The global variable “Start” stores this location, and it is used to 
relocate the reference to all function calls when output the object. The following 
code is added in “nut.txt” at dumpsym, to output the correct reference.  The data 
segment is not relocated as it is already started at 0. 

(if (= ty tyFUN) 
    (set n (shift (getVal i) Start)) 
    ; else 
    (set n (getVal i))) 
(print n) (space) 

at gen.txt 

Here is the added code to outsym, [gen ?] to output the symbol table. 
 
    (set ty (atoi tok)) 
         (tokenise)                    ; ref, reloc 
         (if (= ty tyFUN) 
             (do 
             (set ref (shift (atoi tok) CS)) 
             (print (assoc ref))) 
             ; else 
             (prstr tok)) 
            (space) 

When reading the symbol table from N-object, the generator recognises the type 
“fun” and outputs the S-address corresponding to the N-address.   
 
To generate the code for the expression (run (fn ...)), the code to call “run” is 
generated and the address pointed to (fn ...) is generated as its argument. 
 

  lit x 
  call run 
  jmp y 
x: ... 
  call fn 
  end 
y: ... 
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The address of x is at the next 3 words.  jmp y skips the code (fn...).  The call to 
(fn ...) is deferred and “run” will use x as the starting address of the process 
which calls (fn...). When the process returned, it will be terminated by “end”. 
This is in the function gencall. 

; convert arg to index to symtab 
; e is arglist 
(def gencall (arg e) (idx a) 
    (do 
    (set idx (searchRef arg)) 
    (if (= idx Runidx)         ; is “run” 
        (do 
        (outa icLit (+ XP 3))    ; point to code of process 
        (outa icCall idx)        ; call run 
        (set a XP) 
        (outa icJmp 0) 
        (eval (head e)) 
        (outs icEnd) 
        (patch a (- XP a)))      ; jump over 
        ; else 
        (do                       ; normal call 
        (while e 
            (do 
            (eval (head e)) 
            (set e (tail e)))) 
      (outa icCall idx))))) 

 

Example session 

The following example shows how a process is created and run.  A user program 
is written as “(count n)”and integrated with Nos in “main”: 
 

; ---- application -------- 
 
(def count (n) (i) 
    (do 
    (set i 0) 
    (while (< i n) 
        (do 
        (set i (+ i 1)) 
        (print i) (space))))) 
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(def main () (p) 
    (do 
    (sys 5) 
    (set activep 0)  ; clear task-list 
    (set sseg 1000)  ; allocate SS 
    (set p (run (count 500))) ; create “(count 500)” 
    (bootnos))) 

 
The line (run (count 500)) creates a process to run (count 500).  (bootnos) starts 
the process running. 
 
To run NOSS, first compile user functions with NOS in nos.txt: 
 

e:\test>nut < nos.txt  
 
Then run NOSS with the executable, let it be “a.obj”. 

e:\test>noss a.obj 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 
38 39 40 41 42 43 44 45 46 47 48 49 
* 
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 
67 68 69 70 71 72 73 74 75 76 
. . . 
* 
487 488 489 490 491 492 493 494 495 496 497 498 
499 500 
* 
9345 clocks 
 
e:\test> 
 

 

The “*” indicates the task-switching (every 1000 cycles).  
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8.10 Interprocess communication 
 
Nos provides two ways to communicate (passing some values) between 
processes: 
 

1 by share variables 
2 by message passing 

 

Share variables 

A semaphore is used to provide mutual exclusion of access to share variables.  
The share variable will be accessed by only one process at a time. (Remember 
that processes can be concurrent therefore at any time there can be more than one 
process trying to access the same variable).  A semaphore is implemented as a 
special global variable with two fields: value, wait-list.  The access to a 
semaphore is done via two functions: signal, wait.  They are atomic operations.  
The operation runs to completion without interrupt.  This is achieved by disable 
interrupt at the beginning of the function and enables interrupt before return. 
 

; semaphore field: sval(value) slist(wait-list) 
 

(def signal (s) (p)  [nos 166] 
    (do 
    (di) 
    (set p (getslist s)) 
    (if (!= p 0) 
        (do 
        (setslist s (deleteDL p)) 
        (wakeup p)) 
        ; else 
        (setsval s (+ (getsval s) 1))) 
    (ei))) 
 
(def wait (s) (v p)  [nos 178] 
    (do 
    (di) 
    (set v (getsval s)) 
    (if (<= v 0) 
        (do              ; block activep to WAIT 
        (set p activep) 
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        (set activep (deleteDL activep)) 
        (setValue p WAIT)    ; to wait-list 
        (setslist s (appendDL (getslist s) p)) 
        (blockp))    ; block 
        ; else 
        (setsval s (- v 1))) 
    (ei))) 

 
Where “blockp” blocks the current process (and calls the supervisor), “wakeup” 
puts the process p in the process queue, ready to be scheduled to run. 
 

(def initsem (v) (s1)  [nos154] 
    (do 
    (set s1 (new 2)) 
    (setsval s1 v) 
    (setslist s1 0)    ; wait-list nil 
    s1)) 
 
(def wakeup (p) ()  [nos 161] 
    (do 
    (setValue p READY) 
    (set activep (appendDL activep p)))) 

 
A “monitor” can be constructed to provide an abstract data type to protect shared 
variables.  The access is done via the parameter “cmd”. The monitor uses the 
associated semaphore to perform mutual exclusion access.  Only one process can 
be inside the monitor at one time. 
 

(def monitor (cmd) () 
    (do 
    (wait sem1) 
    (if (= cmd 1) 
      ... access shared variables 
      ; else 
      ... access shared variables 
    (signal sem1))) 

 

8.11 Message passing 
The message passing in Nos is implemented as a blocking protocol where the 
sender and receiver wait until the exchange is completed before continuing.  This 
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is done using two mail-boxes: in-box and await-box.  Here is the pseudo code for 
the “send” and “receive” operations. 
 

send p mess 
  if there is a process p wait for it 
    put mess to p's buffer 
    wakeup p 
  else 
    block itself 
    append itself to p's in-box 
 
receive p 
  if there is a process p mail in in-box 
    take the message from p's buffer 
    wakeup p 
  else 
    block itself 
    append itself to p's await-box 

 
The Nut program implementing “send” and “receive” is as follows. 
 

; p is pointer to process 
(def send (p mess) (m box)  [nos 221] 
    (do 
    (di) 
    (set box (getAwait activep)) 
    (set m (findmail p box)) 
    (if (= m 0) 
        (do 
        (set m activep)  ; self 
        (setMsg m mess) 
        (set activep (deleteDL activep)) 
        (setMbox p (appendDL (getMbox p) m)) 
        (setValue m SEND) 
        (blockp)) 
        ; else 
        (do   ; p is waiting 
        (setMsg p mess) 
        (set m (deleteDL p)) 
        (if (= box p) 
            (setAwait activep m)) 
    (wakeup p))) 
    (ei))) 
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(def receive (p) (m box)  [nos 243] 
    (do 
    (di) 
    (set box (getMbox activep)) 
    (set m (findmail p box)) 
    (if (= m 0) 
        (do   ; put to await p 
        (set m activep)  ; self 
        (set activep (deleteDL activep)) 
        (setAwait p (appendDL (getAwait p) m)) 
        (setValue m RECEIVE) 
        (blockp) 
        (getMsg m))  ; retrieve from self 
        ; else 
        (do   ; already in mbox 
        (set m (deleteDL p)) 
        (if (= box p) 
            (setMbox activep m)) 
        (getMsg p)   ; retrieve mbox 
        (wakeup p))) 
    (ei))) 

 
There are two buffers, one in the sender and other in the receiver. The process 
descriptor is attached to the in-box/await-box so that waking up a process 
associated with the mail is simple. “findmail” searches for a message from a 
process p in the mail-box. “blockp” blocks the current process (and calls the 
supervisor). The state “SEND/RECEIVE” indicate that the process is blocked by 
the send/receive operation. “wakeup” puts the process p in the process queue, 
ready to be scheduled to run. 

Example of send/receive message 

We write two functions, one is the producer that sends the message 2..n, the other 
is the consumer.  The consumer receives the message until the end of message is 
reached (-1).   
 

(def produce (n) (i)  [nos 270] 
    (do 
    (set i 2) 
    (while (< i n) 
        (do 
        (send p2 i) 
        (set i (+ i 1)))) 
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    (send p2 (- 0 1)))) 
 
; receive 2..n from p1 ended with -1 
(def consume () (m flag)  [nos 281] 
    (do 
    (set flag 1) 
    (while flag 
        (do 
        (set m (receive p1)) 
        (if (< m 0) 
            (set flag 0)))) 
    (nl))) 

 
Create and run producer and consumer. 
 

(def main () ()  [nos 292] 
    (do 
    (di)                 ; disable interrupt 
    (set activep 0)      ; init task-list 
    (set sseg 1000)      ; init stack segment 
    (set pid 1)          ; init process id 
    (set psw (run (switchp))) ; create switchp 
    (set activep 0)  ; clear task-list 
    (set p1 (run (produce 1000))) 
    (set p2 (run (consume))) 
    (bootnos))) 

 
When running the above program the producer streams the messages (integers) 
2..n to a consumer.  The producer’s output is marked “!n” and the receiver’s 
output is marked “ “n”. The task-switched is marked “*”.  The trace is: 
 

!2  * “2  * !3 !4  * “3 “4  * !5 !6  * “5 “6  * !7 !8  
* “7 “8  * !9  *  “9 . . . 

 
Let two processes be s, r.  This behaviour can be explained by inspecting the 
trace of execution of two processes. 
 

notation 
 
sM send in-box 
sA send await 
rM receive in-box 
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rA receive await 
sB sender block 
rB receiver block 

 
The trace is: 
 

1 producer: sM sB *  
2 consumer: rM rA rB * 
3 producer: sA sM sB * 
4 consumer: rM rA rB *  
... 

 
The first line says that the sender just sent a message to the receiver’s in-box then 
itself is blocked.   The second line is quite interesting.  It says the receiver 
retrieves the message from the sender’s buffer and then continues to execute its 
program which does “receive p”.  This call forces the receiver to send itself to the 
sender’s await-box, and then itself is blocked.  This mean “r” is waiting for a 
message from “s”.  Once “s” wakeups “r”, the process “r” will have a message in 
its buffer.  Line 3, 4 can be similarly explained. 
 
This benchmark has been compiled with all optimisation turned on (macro, 
primitives, extended instructions). Sending and receiving 1000 messages take 
total 171037 instructions. Therefore the number of instruction for passing (send 
and receive) one message is 171037/1000 = 171 instructions/message. 
 

8.12 Timer 
 
To facilitate a real-time system, some operating system functions needed to be 
supported.  In our system, the real-time clock is the clock of running the 
processor. The function 
 

(gettime)  
 
returns the real-time clock. The function 

 
(timer t) 

 
sets a timer to be time-out at t cycles in the future, not earlier than (gettime)+t.  A 
timer is used to schedule a task according to some real-time deadline. 
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How a timer is implemented? 

A timer stores its time value as a field in PD. A timer list keeps track of the 
processes that have been scheduled to time-out in the future by “timer”. The time 
value in PD is an absolute time. When a timer is set to t, the time value in PD is 
set to (gettime)+t.  The process that executes “timer” is blocked.  It is removed 
from the process queue and it is added to the timer list.  The timer list is sorted 
according to the time values from earliest time to the latest.  This list will be 
processed by a timer process which is scheduled by the supervisor, Noss. 
 

Timer process 

The time value in the list is compared to the master time (the global variable 
“clock” in the processor simulator).  If it is less than the master time the owner 
process of this timer is awaken. As the timer list is sorted in ascending order of 
time value, only the first one is consulted if it is time-out then the next one is 
consulted and so on.  
 

Granularity of timer 

How precise the timer is depends on how often the timer process is scheduled to 
run.  The overhead depends on this rate.  It is reasonable to have the granularity 
at most the same as “quanta”, the time interval of the interrupt.  Then, the timer 
process can be scheduled to run after the task switcher. 
 

What Noss needs to do? 

Noss needs to run “timer” after “switchp”. The time-out timer process will be 
queued either at the front of the process queue or the back depends on the 
scheduling policy. To simulate the real-time, if the timer list is not empty and the 
process queue is empty, then the first process in the timer list should be 
scheduled to be run.  The master time should be updated to advance to the time 
value of that process.  This is similar to an ordinary event-driven simulation 
based on time. 
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8.13 Lab session 
 
We run two processes sharing two variables through a monitor.  The monitor has 
two functions: 1) increment the value, and 2) getting the value.  The first process 
increments the value and waits for the second process to get the value.  This 
procedure is repeated 20 times.  To synchronise both processes so that 
incrementing/getting value will be “in sync”, another variable, “empty” is used to 
signal whether the value has been used.  The monitor protects these global 
variables. The program for the experiment is shown below. 
 
 

(let ff empty)   ; shared variables 
(let sem1)   ; semaphore 
 
(def mon1 (cmd) () 
    (do 
    (wait sem1) 
    (if (= cmd 1)   ; cmd = 1, inc ff 
        (if (= empty 0) 
            (do 
            (set ff (+ ff 1)) 
            (set empty 1))) 
        ; else   ; cmd = 2, clear empty 
        (if (= empty 1) 
            (set empty 0))) 
        ff    ; return ff 
    (signal sem1))) 
 
(def inc () (i n) 
    (do 
    (set i 0) 
    (while (< i 20)   ; repeat 20 times 
        (do 
        (set n (mon1 1))  ; inc share variable 
        (set i (+ i 1)))))) 
 
(def pff () (n) 
    (do 
    (set n (mon1 2))  ; get share variable 
    (print n) 
    (while (< n 20)  ; repeat 20 times 
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        (do 
        (set n (mon1 2))  ; get share variable 
        (print n)))))   ; and print it 

 
(def main () (p1 p2) 
    (do 
    (di) 
    (set activep 0)  ; clear task-list 
    (set sseg 4000)  ; allocate SS 
    (set pid 1) 
    (set psw (run (switchp))) ; create switchp 
    (set activep 0)  ; clear task-list 
    (set ff 0) 
    (set empty 0) 
    (set sem1 (initsem 1)) 
    (set p1 (run (inc))) 
    (set p2 (run (pff))) 
    (bootnos))) 

 
Append the above program to Nos, name it “nos1.txt”. Compile it and generate 
an executable code, let is be “ns1.obj”.  Then run it under Noss. 

c:\test> nvm nut.obj < nos1.txt > nos1.obj 
c:\test> nvm gen2.obj < nos1.obj > ns1.obj 
c:\test>noss ns1.obj 
load program, last address 503 
DP 1008 
 *  *  *  * 1 *  * 2 *  * 3 *  * 4 *  * 5 *  * 6 * 
* 7 *  * 8 *  * 9 *  * 10 * * 11 *  * 12 *  * 13 * 
* 14 *  * 15 *  * 16 *  * 17 *  * 18 *  * 19 *  * 
20 
 
6592 inst. 33289 cycles (system 12009 user 21280) 
switchp 42 
 
c:\test> 

 
The “*” shows the task switch to run user processes. The output shows that two 
processes synchronised properly.  There are 42 task switching, 40 comes from 
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switching between two processes, each 20 times.1 The system cycle reports the 
number of cycle used in the Nos itself.  The user cycle reports the number of 
cycle used to actually running the user process, (inc) and (pff).  You can observe 
that the system consumes about one-third of the cycles. 
 

8.14 Summary 
 
In this chapter we have developed an operating system, Nos. The operating 
system is preemptive. It supports multi-thread. Two simple interprocess-
communication methods have been implemented: semaphore and message 
passing. Some facilities for real-time processes are outlined.   
 
It is not a surprise about the fact that Nut language can be extended minimally to 
write the whole operating system. The design of the extension is critical.  Using 
the model of interrupt is a good framework to implement a simulator to run the 
operating system.  The supervisor program, Nos supervisor (Noss), mediates 
between Nos and the processor simulator, Sx. The processor runs its user 
program continuously until an interrupt event occurs, then it hands back the 
control to the supervisor. The supervisor, Noss, performs the task of 
saving/restoring the computation state of the process to/from the process 
descriptor.  Noss does a minimal job of intervention.  Majority of the task 
switching and other operating system service functions are done in the user-space 
by Nos. 
 
Semaphore, monitor and messaging are progressive development toward a higher 
abstraction which is easier to use.  The behaviour of these services can be 
observed.  The implementation is short and simple enough to be experimented 
with.  The processor simulator gives us the detail at the level of cycle-by-cycle 
execution such that the effect of the system as a whole can be studied. 
 

8.15 Further reading 
 
Operating systems have been developed over the past 50 years.  The major 
breakthroughs in operating system technology from the 1950s to 1990s have been 

                                                      
1 What does two other task switching come from?  This question is left to be 
investigated by the interested reader 
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collected in the book by Hansen [HAN01]. The earliest time-sharing systems 
were the Compatible Time-Sharing System (CTSS) developed at MIT [COR62] 
and The Multiplexed Information and Computing Services (MULTICS) 
[COR65].  Many textbooks cover operating systems, including Stallings 
[STA00], Tanenbaum [TAN01], and Silberschartz et al [SIL03]. 
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Exercises 
 
8.1 Vary the quanta and observe the behaviour of Nos running some 

applications. 
 
8.2 Write timer and its associated function, gettime. 
 
8.3 Implement producer/consumer processes with a buffer of size n. 
 
8.4 How to create and destroy a process dynamically? 
 
8.5 How to improve the performance of Nos? 
 
8.6 Nos has no input, to allow concurrency, the input can be simulated 

through the console application.  A console accepts input and feed it as a 
stream to the receiving process.  Write a console application. 

 
8.7 Discuss the co-operative process.  How can it be implemented?  Co-

operative process can be implemented at a lower cost than the pre-
emptive OS.  Write co-operative process in Nut and discuss its cost. 

 
8.8 Nos has a single address space.  To protect resources used by a process, a 

virtual memory is necessary. Discuss how to implement a virtual 
memory under our framework. 

 
8.9 To implement interrupt properly, we rely on Noss as a privilege process.  

Noss is written in C and works in cooperation with the Sx processor 
simulator.  Is it possible to write Noss in Nut as a user program?   
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