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Abstract 

Energy-efficient design of battery-powered embedded sys- 
tems demands optimizations in both hardware and software. 
In this work we leverage cycle-accurate energy consumption 
models to explore compiler and source code optimizations 
aimed at reducing energy consumption. In addition, we 
extend cycle-accurate architectural power simulation with 
battery models that provide battery lifetime estmates. 

The enhanced simulator and software optimizations are 
used to study and optimize the power dissipation of Smart- 
Badge, a wearable system based on the ARM microproces- 
sor developed by HP Laboratories. We found that standart 
compiler optimizations give less than 1% energy savings. 
Source code optimizations are capable of up to 90% energy 
savings. In addition, our analysis of battery lifetime for the 
MPEG decoder implemented on the SmartBadge shows that 
battery efficiency varies greatly with discharge currents on 
cycle-by-cycle basis and can cause up to 16% reduction in 
battery lifetime. 

1 Introduction 

Quality portable design demands high performance with low 
thermal dissipation and long battery life. Average energy 
consumption is directly related to battery life, hence it may 
be the critical factor that sets system weight and cost. 

In our previous work we presented a cycle-accurate en- 
ergy consumption simulator that is within 5% of measured 
energy consumption in hardware [3]. We used the simula- 
tor to study the power consumption implications of adding 
MPEG video decode feature to a SmartBadge [2], a wearable 
computer and communication systems developed at HP Lab- 
oratories. The best combination of hardware components for 
low energy consumption was selected using simulation re- 
sults - StrongARM- processor with FLASH instruction 
memory and burst SDRAM for data memory. The simula- 
tor also helped in selecting the most energy efficient MPEG 
stream configuration. 

The major contributions of this paper are in three dif- 
ferent areas. First we show that the compiler optimizations 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distrib- 
uted for profit or commercial advantage and that copies bear this notice and the full 
citation on the first page. To copy otherwise, to republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
ISLPED99, San Diego, CA, USA 
01999 ACM 1.58113.133.X/99/ooO8,,$5.00 

available with the ARM compiler are not sufficient for power 
reduction. Next, we analyze and compare different source 
code optimizations aimed at reducing power consumption 
and show that significant power savings can be obtained by 
implementing them. Finally, we extend the cycle-accurate 
simulator with a battery model that accounts for battery 
efficiency losses and thus can better aid in the design explo- 
ration. 

Several techniques for compiler-based energy optimiza- 
tions have been presented in the past. Tiwari et al. [9, 
lo] uses instruction-level energy model to develop compiler- 
driven instruction-level energy optimizations such as instruc- 
tion reordering, reduction of memory operands, operand 
swapping in the Booth multiplier, efficient usage of memory 
banks, and series of processor specific optimizations. Energy 
efficient register labeling during the compile phase has been 
suggested as an approach to optimization [5]. Procedure in- 
lining and loop unrolling [12] as well as instruction schedul- 
ing [ll] have also been investigated. Our cycle-accurate en- 
ergy consumption simulator presents an integrated frame- 
work that is fast enough and accurate enough to estimate 
the impact of software optimizations on any combination of 
processor, cache, and memory. In our work we show that 
the improvements that can be gained using ARM compiler 
optimizations are marginal compared to writing more en- 
ergy efficient source code. The largest energy savings are 
observed at the inter-procedural level that compilers have 
not been able to exploit. We present a series of suggestions 
in source code writing style that can save from 1% to over 
90% of energy. 

Even though energy reduction is an important objective, 
the ultimate goal of energy optimization for portable sys- 
tems is battery life optimization. Analytical estimates of 
the tradeoff between battery capacity and delay in digital 
CMOS systems are presented in [4]. Battery capacity is 
strongly dependent on the discharge current as can be seen 
from any battery data sheet [S]. Hence, it becomes impor- 
tant to accurately model discharge current as a function 
of time in an embedded system such as SmartBadge. We 
have extended cycle-accurate energy consumption simula- 
tion with a battery model that can predict cycle-by-cycle 
changes in battery efficiency for any embedded system, in- 
cluding systems that use discrete components where accu- 
rate capacitance estimates are not available. In this way 
accurate estimates of battery lifetime can be obtained. 

The rest of this manuscript is organized as follows. An 
overview of cycle-accurate energy consumption simulator is 
presented in Section 2. Section 3 discusses the effect ARM 
compiler optimizations have on the energy consumption. 
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Source code optimizations aimed at reducing energy con- 
sumption are presented in Section 4. Finally, in section 5 
we present a new battery model that gives cycle-accurate 
estimates of battery lifetime. 

2 Cycle-accurate system-level energy consumption esti- 
mation 

The class of embedded systems considered in this paper can 
be modeled as shown in Figure 1. The system consists of 
a microprocessor with two levels of cache, off-chip memory, 
DC-DC converter and battery connected with the intercon- 
nect. Selection of the best hardware architecture and soft- 
ware organization given energy and performance constraints 
is done with help of an instruction-level simulator that has 
been extended with the energy models for all the system 
components. Cycle-by-cycle plots of energy consumption 
can be obtained for each system component. Models for 
energy consumption and performance estimation of each 
system component are described in detail in our previous 
work [3]. - 

Figure : System Model 

The total energy consumed during the execution of soft- 
ware on a given hardware architecture is the sum of the 
energies consumed during the each cycle. The total energy 
consumed by the system per cycle is the sum of energies con- 
sumed by the processor and Ll cache (EcPu), interconnect 
and pins (ELine), memory (EM~~.), L2 cache (ELM) and the 
DC-DC converter (Eoc): 

&,A =ECPU +E~ine +EM,,.+EDc +ELZ (1) 

We validated the cycle-accurate power simulator by com- 
paring the computed energy consumption with measure- 
ments on the SmartBadge prototype implementation. The 
SmartBadge prototype consists of the StrongARM- pro- 
cessor, DC-DC Converter, FLASH and SRAM on a PCB 
board. Industry standard Dhrystone benchmark was used 
as a vehicle for methodology verification. Simulation results 
were within 5% of the hardware measurements for the same 
frequency of operation. 

3 Compiler Optimizations 

Compilers are typically written to optimize executable size 
and perfomance. Often it is unclear how such optimiza- 
tion will affect the energy consumption. In this section, 
we employ cycle-accurate energy consumption simulation to 

evaluate energy efficiency of various ARM Inc. compiler op- 
tions on the MPEG decoder. There are two possible ways to 
optimize code with the ARM compiler - general and specific 
compiler optimizations. General command line switches can 
be used to optimize for code size, execution time or balance 
of the two. Table 1 shows that for the particular hardware 
architecture of the SmartBadge while running MPEG al- 
gorithm, the optimization for execution time gives lowest 
energy. Unfortunately, percentage improvements are very 
small. 

Table 1: General Compiler Optimization Options 

TYPE SIZE TIME ENERGY 
% change Xchange Xchange 

BalFJlCe 0.00 0.00 0.00 

Code Size -0.66 0.20 0.11 
Time 0.78 -0.09 -0.10 

Three different specific optimizations are possible as well: 
cross-jump, multiple loads and common subexpression elim- 
ination. Cross-jump optimization identifies same sections 
of code at the end of each case in a switch statement and 
groups them together. In this way the code size is reduced, 
but execution time can suffer due to introduction of mul- 
tiple branches. This type of optimization could be energy 
efficient for code that contains many switch statements and 
that is limited by the access time and energy consumption of 
instruction memory. Multiple loads optimization is specific 
to the ARM instruction set. A set of sequential load in- 
structions can be replaced by one load multiple instruction. 
Common subexpression elimination looks for patterns in the 
source code and stores the precomputed value in a register 
so that recalculation is not needed. This optimization tends 
to decrease both the execution time and the source code size, 
but it extends the register lifetime possibly causing more ac- 
cesses to data memory. Table 2 shows the simulation results 
for the SmartBadge running MPEG decode algorithm that 
has been optimized with balance of code size and execution 
time option, with all special optimizations disabled and with 
each in turn enabled. Again the differences are very small - 
less than one percent. Common subexpression elimination 
did not help at all since it gives same energy consumption 
as when all three optimizations are disabled. Cross jump 
optimization causes energy consumption to be larger than 
when all special optimizations are disabled. Multiple load 
optimization conserved energy. 

Table 2: Specific Compiler Optimization Options 

TYPE SIZE TIME ENERGY 
% change Xchange khan@ 

~ 

4 Source Code Optimizations for Lower Energy Consump- 
tion 

The previous section shows that the compiler optimizations 
are not sufficient to reduce energy consumption of embedded 
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software. Various approaches have been presented in [8] 
for either decreasing the code size or execution speed by 
changing the source code writing style. This section gives 
an overview of energy efficient optimizations on the source 
code level. 

4.1 Integer division and modulo operation 

The ARM compiler uses shift operation for modulo 2 divi- 
sion since it is much more efficient than the standard division 
operation. In modulo 2 division unsigned number should be 
used whenever possible as the unsigned implementation - 
divl6u is 14.7% more efficient than the signed version. This 
is because signed version requires sign extension correction 
on the shift operation. 

uint divl6u (uint a) int div16s (int a) 
i return a / 16; ) i return a / 16;) 

Whenever possible a condition should be used to replace 
modulo operation, as it is 51.39% more energy efficient. In 
example shown below counter1 implements modulo arith- 
metic, where counter2 uses an if operator. 

uint counter1 (uint count) uint counter2 (uint count) 
{ I if (++count >= 60) 

return (++count % 60); count = 0; 
3 return (count) ; 3 

4.2 Conditional Execution 

All ARM instructions can be conditionalized. Conditional- 
izing is done in two steps. First a few compare instructions 
set the compare codes. Those instructions are then followed 
by the standard ARM instructions with their flag fields set 
so that their execution proceeds only if the preset condi- 
tion is true. Grouped conditions should be used instead of 
separate if statements since they help the compiler condi- 
tionalize instructions. In this way 1.25% of energy can be 
saved. An example of a grouped condition is show below. 

if (a > 0 &t b > 0 &R c < 0 &St d < 0) 
return a + b + c + d; 

4.3 Boolean Expressions 

A more energy efficient way to check if a variable is wit.hin 
some range is to use the ability of the ARM compiler to 
conditionalize the arithmetic function. An example shown 
below is 10.6% more efficient than if comparison was done 
on each coordinate separately. 

Conditionalized example Original Code 
return ((p.x - r->xmin) return (p.x >= r->xmin PR 

< r->xmax RR p.x < r->xmax kk 
(p.y - r->ymin) p.y >= r->ymin kR 

< r->ymax) ; p.y c r->ymax); 

4.4 Switch Statement vs. Table Lookup 

Table lookup is 52.29% more energy efficient than the switch 
statement when the switch statement codes are more than 
half of the range of the possible labels. When dense switch 
statement is used, the table lookup is used to jump to the 
appropriate case statement. If the case statement contains 
the call to another function or if it sets a variable, then 
the table lookup of the address to jump to can be replaced 
by the code to be executed under the case statement. A 
good example is shown below where all opcodes are assigned 
values 0 through 3 thus making the table lookup possible. 

return "EQ\ONE\OCS\OCC\O" + 3 * cad; 

4.5 Register Allocation 

Usually a compiler cannot assign local variables to a register 
if their addresses are passed to other functions. If the copy 
of the variable is made and the address of the copy is used 
instead, then variable can be placed in the register thus sav- 
ing memory access. As much as 9.54% energy savings are 
possible. 

If global variables are used, it is beneficial to make a local 
copy so that they can be assigned to registers. In this way 
6.42% of energy can be saved as compared to using a global 
copy. An example used is shown below. 

int errs; 
void globTest(void) 
i int localerrs = errs; 

localerrs += f20; 
localerrs += g20; 
errs = localerrs; 3 

When pointer chains are used, it is energy efficient to 
store a first reference into a variable so multiple memory 
lookups are not needed. InitPos2 shown below saves 33.9% 
of energy over InitPosl. 

void InitPosl(Object *p) void InitPosP(Object *p) 
I { Point3 *pa = p->pos; 

p->pos->x = 0; pos->x = 0; 
p->pos->y = 0; pos->y = 0; 
p->pos->z = 0; 3 pos->z = 0; 3 

4.6 Variable Types 

The most energy efficient variable type for the ARM pro- 
cessor is integer, it saves 0.39% more energy than short and 
18.32% more energy than char. Compiler by default uses 
32 bits in each assignment, so when either short of char are 
used sign or zero extending is needed thus costing at most 
two extra instructions as compared to ints. 

4.7 Function Design 

By far the largest savings are possible with good function 
design. Function call overhead on ARM is four cycles. Usu- 
ally function arguments are passed on the stack, but when 
there are four or less arguments, they can be passed in reg- 
isters. A simple example showed over 90% energy savings. 
Upon return from a function, structures up to four words 
can be passed through registers to the caller. In this way 
72.3% energy can be saved. 

When the return from one function calls another, the 
compiler can convert that call to branch to another function. 
Energy savings of 49.79% have been observed. An example 
of such function is shown below. 

int funcl (int a, int b) 
c if (a > b) 

return (funcZ(a - b)); 
else 

return (funcZ(b - a)); 1 

Functions that return result that depends only on the 
value of their arguments and do not have any side-effects 
can be declared pure. Such functions can then be optimized 
as common subexpressions by the compiler. Savings of 70% 
have been shown on a simple example using a square func- 
tion. Similarly, a functions can be inlined and then no func- 
tion call overhead is incurred and more optimizations are 
possible. When square function was inlined we observed 
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16.89% energy savings. The savings depend highly on the 
size of the function inlined. 

Interprocedural optimization can be done by placing a 
function definition before its use. An example of that is 
shown below. Square function is defined before sumsquares, 
so sumsquares knows what registers square will not use and 
thus can use those registers for its needs resulting in 24% 
energy reduction. 

int square(int xl 
i returnx*x; ? 

int sumsquares(int x, int y) 
i return square(r) + square(y); 1 

4.8 Complete Example 

As a final test of the combined impact of source source code 
optimization, we have manually optimized example code 
provided by the ARM Inc. [8]. The original source code con- 
tained no energy efficient optimizations. Table 3 shows that 
both the general and specific compiler optimizations have a 
very small effect on the original source code in all categories 
- the maximum savings are only 0.6%. Once energy efficient 
source code optimizations are implemented, the savings are 
much larger - as much as 35% in execution time and 32.3% 
in energy. Clearly the compiler optimizations make almost 
no difference in this case as well. 

Table 3: Complete Example 

Energy General Spec. SIZE TIME ENERGY 
opt. opt. opt. ‘/change ‘/change ‘Lchange 

4.9 Recursion 

Recursion has long been thought as very energy inefficient 
methodology due to high overhead of procedure calls. On 
the ARM processor the overhead is small - only four in- 
structions, so depending on the type of the problem, recur- 
sion can prove to be more energy efficient than the iterative 
solution. Two examples are presented below - Towers of 
Hanoi in Figure 2 and Fibonacci series in Figure 3. For a 
low number of disks in Towers of Hanoi, the iterative solu- 
tion is more energy efficient due to procedure call overhead. 
For a large number of disks, the recursive solution consis- 
tently outperforms the iterative solution. On the contrary, 
for the Fibonacci example, the iterative solution consistently 
outperforms the recursive algorithm. These examples show 
that recursion can be energy efficient depending on the type 
of hardware and software used. Cycle-accurate energy con- 
sumption simulation is needed to evaluate which approach 
is best for the given problem. 

5 Battery Model 

In the previous section, we have presented several techniques 
that improve the energy efficiency of software running on the 
CPU. This section presents a battery model that has been 
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Figure 2: Energy Consumption of Recursive and Iterative Hanoi 
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Figure 3: Energy Consumption of Recursive and Iterative Fibonacci 

integrated with our simulation environment to provide cycle- 
accurate estimates of battery lifetime. The main battery 
characteristic is its rated capacity measured in mWhr. Since 
total available battery capacity varies with the discharge 
rate, manufacturers specify plots with discharge rate versus 
battery efficiency similar to the one shown below. 

120 
1 

100 ” 

20 - 

0-l 

0 1 2 3 4 
Discharge Current Ratio 

Figure 4: Battery Efficiency 

The discharge rate (or discharge current ratio) is given 
by: 

RI = +d.% (2) 
rated 

where IV&&, the rated discharge current, is derived from the 
battery specification and I,,, is the average current drawn 
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by the DC-DC converter. As battery cannot respond to 
instantaneous changes in current, a first order time constant 
r is defined to determine the short-term average current 
drawn from the battery [7]. Given 7, and processor cycle 
time Tcycle, we can compute j&t, the number of cycles over 
which average DC-DC current is calculated: 

7 
&at = ~ 

T cycle 
(3) 

then, Ia,, is computed as: 

I ave = & E Isystem(cycZe) (41 
CyCk!=l 

where Isystem is the instantaneous current drawn from the 
battery. Battery efficiency is the ratio of actual capacity of 
the battery to the rated capacity on per-cycle basis: 

Ecyc~e Efficiency = - 
E (5) 

Battery 

When battery voltage is nearly constant, the battery effi- 
ciency can be defined as a ratio of total current drawn from 
it by the DC-DC converter to the rated discharge current. 

Given the battery capacity model described above, bat- 
tery estimation is performed as follows. First, the designer 
characterizes the battery with its rated capacity, the time 
constant and the table of points describing the discharge 
plot similar to the one shown in Figure 4. During each sim- 
ulation cycle discharge current ratio is computed from the 
rated battery current and average DC-DC current calculated 
from the last Nbot cycles. Efficiency is calculated using lin- 
ear interpolation between the points from the discharge plot. 
Total energy drawn from the battery during the cycle is ob- 
tained from Equation 5. Lower efficiency means that less 
battery energy remains and thus the battery lifetime is pro- 
portionally lower. For example, if battery efficiency is 60% 
and its rated capacity is 1OOmAhr at lV, then at computed 
average DC-DC current of 300mA battery would be drained 
in 12 minutes. With efficiency of 100% the battery would 
last 1 hour. 

5.1 Battery Lifetime Analysis for an Embedded MPEG 
Decoder 

The most energy efficient SmartBadge system consisting of 
the SA-1100 processor with Ll cache, burst SDRAM mem- 
ory, FLASH and a DC-DC converter has been designed using 
our cycle-accurate energy consumption simulator. The ra- 
tio of SDRAM to processor speed is 1:3. Our simulations 
show that the group of picture decoded at 30 fr/s with eight 
I-frames and four P-frames is the most time and energy ef- 
ficient for MPEG decode implemented on the redesigned 
SmartBadge. For best battery utilization, it is important 
to match the current consumption of the embedded system 
to the discharge characteristic of the battery. On the other 
hand, the more capacity battery has, the heavier and more 
expensive it will be. Figure 5 shows that the instantaneous 
battery efficiency varies greatly over time with MPEG de- 
code running on the hardware described above. 

Lower capacity batteries have larger efficiency losses. Fig- 
ure 6 shows that the total decrease in battery lifetime when 
continually running MPEG algorithm on a battery with 
lower rated discharge current can be as high as 16%. The 
battery’s time constant was set to r = lms. 
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Figure 5: Battery Efficiency for MPEG Decoder 
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Figure 6: Percent Decrease in Battery Lifetime for MPEG Decode 

6 Conclusions 

Cycle-accurate battery model and energy efficient source 
code optimizations have been presented in this paper. ARM 
compiler optimizations were shown to be largely ineffective 
in reducing energy consumption of a larger MPEG design. 
On the other hand, a series of source code optimizations 
aimed at reducing energy consumption were shown to be 
very promising, in some cases offering up to 90% of reduc- 
tion in energy consumption. Traditional methods that first 
estimate average current consumption in the system and 
then employ average current to estimate battery capacity 
do not model accurately battery efficiency and can thus give 
erroneous estimates of the battery capacity needed. A cycle- 
accurate battery model better predicts battery lifetime, as 
battery energy efficiency depends strongly on cycle-by-cycle 
system current consumption. 
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