
Energy-Efficient Design of 13attery-Powered Embedded Systems

Tajana Simunict Luca Benini* Giovanni De Michelit

t Stanford University * DEIS
Computer Systems Laboratory Universit& di Bologna

Stanford, CA 94305 Bologna, ITALY 40136

Abstract

Energy-efficient design of battery-powered embedded sys-
tems demands optimizations in both hardware and software.
In this work we leverage cycle-accurate energy consumption
models to explore compiler and source code optimizations
aimed at reducing energy consumption. In addition, we
extend cycle-accurate architectural power simulation with
battery models that provide battery lifetime estmates.

The enhanced simulator and software optimizations are
used to study and optimize the power dissipation of Smart-
Badge, a wearable system based on the ARM microproces-
sor developed by HP Laboratories. We found that standart
compiler optimizations give less than 1% energy savings.
Source code optimizations are capable of up to 90% energy
savings. In addition, our analysis of battery lifetime for the
MPEG decoder implemented on the SmartBadge shows that
battery efficiency varies greatly with discharge currents on
cycle-by-cycle basis and can cause up to 16% reduction in
battery lifetime.

1 Introduction

Quality portable design demands high performance with low
thermal dissipation and long battery life. Average energy
consumption is directly related to battery life, hence it may
be the critical factor that sets system weight and cost.

In our previous work we presented a cycle-accurate en-
ergy consumption simulator that is within 5% of measured
energy consumption in hardware [3]. We used the simula-
tor to study the power consumption implications of adding
MPEG video decode feature to a SmartBadge [2], a wearable
computer and communication systems developed at HP Lab-
oratories. The best combination of hardware components for
low energy consumption was selected using simulation re-
sults - StrongARM- processor with FLASH instruction
memory and burst SDRAM for data memory. The simula-
tor also helped in selecting the most energy efficient MPEG
stream configuration.

The major contributions of this paper are in three dif-
ferent areas. First we show that the compiler optimizations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ISLPED99, San Diego, CA, USA
01999 ACM 1.58113.133.X/99/ooO8,,$5.00

available with the ARM compiler are not sufficient for power
reduction. Next, we analyze and compare different source
code optimizations aimed at reducing power consumption
and show that significant power savings can be obtained by
implementing them. Finally, we extend the cycle-accurate
simulator with a battery model that accounts for battery
efficiency losses and thus can better aid in the design explo-
ration.

Several techniques for compiler-based energy optimiza-
tions have been presented in the past. Tiwari et al. [9,
lo] uses instruction-level energy model to develop compiler-
driven instruction-level energy optimizations such as instruc-
tion reordering, reduction of memory operands, operand
swapping in the Booth multiplier, efficient usage of memory
banks, and series of processor specific optimizations. Energy
efficient register labeling during the compile phase has been
suggested as an approach to optimization [5]. Procedure in-
lining and loop unrolling [12] as well as instruction schedul-
ing [ll] have also been investigated. Our cycle-accurate en-
ergy consumption simulator presents an integrated frame-
work that is fast enough and accurate enough to estimate
the impact of software optimizations on any combination of
processor, cache, and memory. In our work we show that
the improvements that can be gained using ARM compiler
optimizations are marginal compared to writing more en-
ergy efficient source code. The largest energy savings are
observed at the inter-procedural level that compilers have
not been able to exploit. We present a series of suggestions
in source code writing style that can save from 1% to over
90% of energy.

Even though energy reduction is an important objective,
the ultimate goal of energy optimization for portable sys-
tems is battery life optimization. Analytical estimates of
the tradeoff between battery capacity and delay in digital
CMOS systems are presented in [4]. Battery capacity is
strongly dependent on the discharge current as can be seen
from any battery data sheet [S]. Hence, it becomes impor-
tant to accurately model discharge current as a function
of time in an embedded system such as SmartBadge. We
have extended cycle-accurate energy consumption simula-
tion with a battery model that can predict cycle-by-cycle
changes in battery efficiency for any embedded system, in-
cluding systems that use discrete components where accu-
rate capacitance estimates are not available. In this way
accurate estimates of battery lifetime can be obtained.

The rest of this manuscript is organized as follows. An
overview of cycle-accurate energy consumption simulator is
presented in Section 2. Section 3 discusses the effect ARM
compiler optimizations have on the energy consumption.

212

Source code optimizations aimed at reducing energy con-
sumption are presented in Section 4. Finally, in section 5
we present a new battery model that gives cycle-accurate
estimates of battery lifetime.

2 Cycle-accurate system-level energy consumption esti-
mation

The class of embedded systems considered in this paper can
be modeled as shown in Figure 1. The system consists of
a microprocessor with two levels of cache, off-chip memory,
DC-DC converter and battery connected with the intercon-
nect. Selection of the best hardware architecture and soft-
ware organization given energy and performance constraints
is done with help of an instruction-level simulator that has
been extended with the energy models for all the system
components. Cycle-by-cycle plots of energy consumption
can be obtained for each system component. Models for
energy consumption and performance estimation of each
system component are described in detail in our previous
work [3]. -

Figure : System Model

The total energy consumed during the execution of soft-
ware on a given hardware architecture is the sum of the
energies consumed during the each cycle. The total energy
consumed by the system per cycle is the sum of energies con-
sumed by the processor and Ll cache (EcPu), interconnect
and pins (ELine), memory (EM~~.), L2 cache (ELM) and the
DC-DC converter (Eoc):

&,A =ECPU +E~ine +EM,,.+EDc +ELZ (1)

We validated the cycle-accurate power simulator by com-
paring the computed energy consumption with measure-
ments on the SmartBadge prototype implementation. The
SmartBadge prototype consists of the StrongARM- pro-
cessor, DC-DC Converter, FLASH and SRAM on a PCB
board. Industry standard Dhrystone benchmark was used
as a vehicle for methodology verification. Simulation results
were within 5% of the hardware measurements for the same
frequency of operation.

3 Compiler Optimizations

Compilers are typically written to optimize executable size
and perfomance. Often it is unclear how such optimiza-
tion will affect the energy consumption. In this section,
we employ cycle-accurate energy consumption simulation to

evaluate energy efficiency of various ARM Inc. compiler op-
tions on the MPEG decoder. There are two possible ways to
optimize code with the ARM compiler - general and specific
compiler optimizations. General command line switches can
be used to optimize for code size, execution time or balance
of the two. Table 1 shows that for the particular hardware
architecture of the SmartBadge while running MPEG al-
gorithm, the optimization for execution time gives lowest
energy. Unfortunately, percentage improvements are very
small.

Table 1: General Compiler Optimization Options

TYPE SIZE TIME ENERGY
% change Xchange Xchange

BalFJlCe 0.00 0.00 0.00

Code Size -0.66 0.20 0.11
Time 0.78 -0.09 -0.10

Three different specific optimizations are possible as well:
cross-jump, multiple loads and common subexpression elim-
ination. Cross-jump optimization identifies same sections
of code at the end of each case in a switch statement and
groups them together. In this way the code size is reduced,
but execution time can suffer due to introduction of mul-
tiple branches. This type of optimization could be energy
efficient for code that contains many switch statements and
that is limited by the access time and energy consumption of
instruction memory. Multiple loads optimization is specific
to the ARM instruction set. A set of sequential load in-
structions can be replaced by one load multiple instruction.
Common subexpression elimination looks for patterns in the
source code and stores the precomputed value in a register
so that recalculation is not needed. This optimization tends
to decrease both the execution time and the source code size,
but it extends the register lifetime possibly causing more ac-
cesses to data memory. Table 2 shows the simulation results
for the SmartBadge running MPEG decode algorithm that
has been optimized with balance of code size and execution
time option, with all special optimizations disabled and with
each in turn enabled. Again the differences are very small -
less than one percent. Common subexpression elimination
did not help at all since it gives same energy consumption
as when all three optimizations are disabled. Cross jump
optimization causes energy consumption to be larger than
when all special optimizations are disabled. Multiple load
optimization conserved energy.

Table 2: Specific Compiler Optimization Options

TYPE SIZE TIME ENERGY
% change Xchange khan@

~

4 Source Code Optimizations for Lower Energy Consump-
tion

The previous section shows that the compiler optimizations
are not sufficient to reduce energy consumption of embedded

213

software. Various approaches have been presented in [8]
for either decreasing the code size or execution speed by
changing the source code writing style. This section gives
an overview of energy efficient optimizations on the source
code level.

4.1 Integer division and modulo operation

The ARM compiler uses shift operation for modulo 2 divi-
sion since it is much more efficient than the standard division
operation. In modulo 2 division unsigned number should be
used whenever possible as the unsigned implementation -
divl6u is 14.7% more efficient than the signed version. This
is because signed version requires sign extension correction
on the shift operation.

uint divl6u (uint a) int div16s (int a)
i return a / 16;) i return a / 16;)

Whenever possible a condition should be used to replace
modulo operation, as it is 51.39% more energy efficient. In
example shown below counter1 implements modulo arith-
metic, where counter2 uses an if operator.

uint counter1 (uint count) uint counter2 (uint count)
{ I if (++count >= 60)

return (++count % 60); count = 0;
3 return (count) ; 3

4.2 Conditional Execution

All ARM instructions can be conditionalized. Conditional-
izing is done in two steps. First a few compare instructions
set the compare codes. Those instructions are then followed
by the standard ARM instructions with their flag fields set
so that their execution proceeds only if the preset condi-
tion is true. Grouped conditions should be used instead of
separate if statements since they help the compiler condi-
tionalize instructions. In this way 1.25% of energy can be
saved. An example of a grouped condition is show below.

if (a > 0 &t b > 0 &R c < 0 &St d < 0)
return a + b + c + d;

4.3 Boolean Expressions

A more energy efficient way to check if a variable is wit.hin
some range is to use the ability of the ARM compiler to
conditionalize the arithmetic function. An example shown
below is 10.6% more efficient than if comparison was done
on each coordinate separately.

Conditionalized example Original Code
return ((p.x - r->xmin) return (p.x >= r->xmin PR

< r->xmax RR p.x < r->xmax kk
(p.y - r->ymin) p.y >= r->ymin kR

< r->ymax) ; p.y c r->ymax);

4.4 Switch Statement vs. Table Lookup

Table lookup is 52.29% more energy efficient than the switch
statement when the switch statement codes are more than
half of the range of the possible labels. When dense switch
statement is used, the table lookup is used to jump to the
appropriate case statement. If the case statement contains
the call to another function or if it sets a variable, then
the table lookup of the address to jump to can be replaced
by the code to be executed under the case statement. A
good example is shown below where all opcodes are assigned
values 0 through 3 thus making the table lookup possible.

return "EQ\ONE\OCS\OCC\O" + 3 * cad;

4.5 Register Allocation

Usually a compiler cannot assign local variables to a register
if their addresses are passed to other functions. If the copy
of the variable is made and the address of the copy is used
instead, then variable can be placed in the register thus sav-
ing memory access. As much as 9.54% energy savings are
possible.

If global variables are used, it is beneficial to make a local
copy so that they can be assigned to registers. In this way
6.42% of energy can be saved as compared to using a global
copy. An example used is shown below.

int errs;
void globTest(void)
i int localerrs = errs;

localerrs += f20;
localerrs += g20;
errs = localerrs; 3

When pointer chains are used, it is energy efficient to
store a first reference into a variable so multiple memory
lookups are not needed. InitPos2 shown below saves 33.9%
of energy over InitPosl.

void InitPosl(Object *p) void InitPosP(Object *p)
I { Point3 *pa = p->pos;

p->pos->x = 0; pos->x = 0;
p->pos->y = 0; pos->y = 0;
p->pos->z = 0; 3 pos->z = 0; 3

4.6 Variable Types

The most energy efficient variable type for the ARM pro-
cessor is integer, it saves 0.39% more energy than short and
18.32% more energy than char. Compiler by default uses
32 bits in each assignment, so when either short of char are
used sign or zero extending is needed thus costing at most
two extra instructions as compared to ints.

4.7 Function Design

By far the largest savings are possible with good function
design. Function call overhead on ARM is four cycles. Usu-
ally function arguments are passed on the stack, but when
there are four or less arguments, they can be passed in reg-
isters. A simple example showed over 90% energy savings.
Upon return from a function, structures up to four words
can be passed through registers to the caller. In this way
72.3% energy can be saved.

When the return from one function calls another, the
compiler can convert that call to branch to another function.
Energy savings of 49.79% have been observed. An example
of such function is shown below.

int funcl (int a, int b)
c if (a > b)

return (funcZ(a - b));
else

return (funcZ(b - a)); 1

Functions that return result that depends only on the
value of their arguments and do not have any side-effects
can be declared pure. Such functions can then be optimized
as common subexpressions by the compiler. Savings of 70%
have been shown on a simple example using a square func-
tion. Similarly, a functions can be inlined and then no func-
tion call overhead is incurred and more optimizations are
possible. When square function was inlined we observed

214

16.89% energy savings. The savings depend highly on the
size of the function inlined.

Interprocedural optimization can be done by placing a
function definition before its use. An example of that is
shown below. Square function is defined before sumsquares,
so sumsquares knows what registers square will not use and
thus can use those registers for its needs resulting in 24%
energy reduction.

int square(int xl
i returnx*x; ?

int sumsquares(int x, int y)
i return square(r) + square(y); 1

4.8 Complete Example

As a final test of the combined impact of source source code
optimization, we have manually optimized example code
provided by the ARM Inc. [8]. The original source code con-
tained no energy efficient optimizations. Table 3 shows that
both the general and specific compiler optimizations have a
very small effect on the original source code in all categories
- the maximum savings are only 0.6%. Once energy efficient
source code optimizations are implemented, the savings are
much larger - as much as 35% in execution time and 32.3%
in energy. Clearly the compiler optimizations make almost
no difference in this case as well.

Table 3: Complete Example

Energy General Spec. SIZE TIME ENERGY
opt. opt. opt. ‘/change ‘/change ‘Lchange

4.9 Recursion

Recursion has long been thought as very energy inefficient
methodology due to high overhead of procedure calls. On
the ARM processor the overhead is small - only four in-
structions, so depending on the type of the problem, recur-
sion can prove to be more energy efficient than the iterative
solution. Two examples are presented below - Towers of
Hanoi in Figure 2 and Fibonacci series in Figure 3. For a
low number of disks in Towers of Hanoi, the iterative solu-
tion is more energy efficient due to procedure call overhead.
For a large number of disks, the recursive solution consis-
tently outperforms the iterative solution. On the contrary,
for the Fibonacci example, the iterative solution consistently
outperforms the recursive algorithm. These examples show
that recursion can be energy efficient depending on the type
of hardware and software used. Cycle-accurate energy con-
sumption simulation is needed to evaluate which approach
is best for the given problem.

5 Battery Model

In the previous section, we have presented several techniques
that improve the energy efficiency of software running on the
CPU. This section presents a battery model that has been

i.E-01
8

P 1 .E-02
0

s
D

i

1.E-03 i

i.E-04 j

1.E.05 +- - -__ ----1

0 5 10 15 20 25
Number of Disks

Figure 2: Energy Consumption of Recursive and Iterative Hanoi

1 .E-02 .;

5 15 25 35
Number in series

Figure 3: Energy Consumption of Recursive and Iterative Fibonacci

integrated with our simulation environment to provide cycle-
accurate estimates of battery lifetime. The main battery
characteristic is its rated capacity measured in mWhr. Since
total available battery capacity varies with the discharge
rate, manufacturers specify plots with discharge rate versus
battery efficiency similar to the one shown below.

120
1

100 ”

20 -

0-l

0 1 2 3 4
Discharge Current Ratio

Figure 4: Battery Efficiency

The discharge rate (or discharge current ratio) is given
by:

RI = +d.% (2)
rated

where IV&&, the rated discharge current, is derived from the
battery specification and I,,, is the average current drawn

215

by the DC-DC converter. As battery cannot respond to
instantaneous changes in current, a first order time constant
r is defined to determine the short-term average current
drawn from the battery [7]. Given 7, and processor cycle
time Tcycle, we can compute j&t, the number of cycles over
which average DC-DC current is calculated:

7
&at = ~

T cycle
(3)

then, Ia,, is computed as:

I ave = & E Isystem(cycZe) (41
CyCk!=l

where Isystem is the instantaneous current drawn from the
battery. Battery efficiency is the ratio of actual capacity of
the battery to the rated capacity on per-cycle basis:

Ecyc~e Efficiency = -
E (5)

Battery

When battery voltage is nearly constant, the battery effi-
ciency can be defined as a ratio of total current drawn from
it by the DC-DC converter to the rated discharge current.

Given the battery capacity model described above, bat-
tery estimation is performed as follows. First, the designer
characterizes the battery with its rated capacity, the time
constant and the table of points describing the discharge
plot similar to the one shown in Figure 4. During each sim-
ulation cycle discharge current ratio is computed from the
rated battery current and average DC-DC current calculated
from the last Nbot cycles. Efficiency is calculated using lin-
ear interpolation between the points from the discharge plot.
Total energy drawn from the battery during the cycle is ob-
tained from Equation 5. Lower efficiency means that less
battery energy remains and thus the battery lifetime is pro-
portionally lower. For example, if battery efficiency is 60%
and its rated capacity is 1OOmAhr at lV, then at computed
average DC-DC current of 300mA battery would be drained
in 12 minutes. With efficiency of 100% the battery would
last 1 hour.

5.1 Battery Lifetime Analysis for an Embedded MPEG
Decoder

The most energy efficient SmartBadge system consisting of
the SA-1100 processor with Ll cache, burst SDRAM mem-
ory, FLASH and a DC-DC converter has been designed using
our cycle-accurate energy consumption simulator. The ra-
tio of SDRAM to processor speed is 1:3. Our simulations
show that the group of picture decoded at 30 fr/s with eight
I-frames and four P-frames is the most time and energy ef-
ficient for MPEG decode implemented on the redesigned
SmartBadge. For best battery utilization, it is important
to match the current consumption of the embedded system
to the discharge characteristic of the battery. On the other
hand, the more capacity battery has, the heavier and more
expensive it will be. Figure 5 shows that the instantaneous
battery efficiency varies greatly over time with MPEG de-
code running on the hardware described above.

Lower capacity batteries have larger efficiency losses. Fig-
ure 6 shows that the total decrease in battery lifetime when
continually running MPEG algorithm on a battery with
lower rated discharge current can be as high as 16%. The
battery’s time constant was set to r = lms.

60% - -m*
-w*

Pm&b
--1s&

50% 5

0 2005J 4OLWl cycles 6OWO 6OOW

Figure 5: Battery Efficiency for MPEG Decoder

20%

18%

2 16%

14%

12%

10%

0 %

6 %

4 %

2 %

0 %

40 90 140 190

Rated Battery Capacity (mWhr)
240

Figure 6: Percent Decrease in Battery Lifetime for MPEG Decode

6 Conclusions

Cycle-accurate battery model and energy efficient source
code optimizations have been presented in this paper. ARM
compiler optimizations were shown to be largely ineffective
in reducing energy consumption of a larger MPEG design.
On the other hand, a series of source code optimizations
aimed at reducing energy consumption were shown to be
very promising, in some cases offering up to 90% of reduc-
tion in energy consumption. Traditional methods that first
estimate average current consumption in the system and
then employ average current to estimate battery capacity
do not model accurately battery efficiency and can thus give
erroneous estimates of the battery capacity needed. A cycle-
accurate battery model better predicts battery lifetime, as
battery energy efficiency depends strongly on cycle-by-cycle
system current consumption.

7 Acknowledgments

The authors would like to thank Mark Smith for his help.
This work was sponsored by the Hewlett-Packard Labora-
tory and ARPA/MARCO GSRC.

References

[l] Advanced RISC Machines Ltd (ARM), ARM Software
Development Toolkit Version 2.11, 1996.

[2] ge Q. Maguire, M. Smith, H. W. Peter Bea-
, “SmartBadges: a wearable computer and

216

communication system,” Invited talk slides url:
www.it.kth.se/maguire/Talks/CODES-980313.pdf, 6th
International Workshop on Hardware/Software Code-
sign, 1998.

[3] T. Simunic, L. Benini, G. De Micheli, “Cycle-Accurate
Simulation of Energy Consumption in Embedded Sys-
tems,” to appear in Proceedings of DAC, 1999.

[4] M. Pedram, Q. Wu, “Battery-Powered Digital CMOS
Design,” Proceedings of DATE, 1999.

[5] H. Mehta, R.M. Owens, M.J. Irvin, R. Chen, D. Ghosh,
“Techniques for Low Energy Software,” Proceedings of
ISLPED, pp. 72-75, 1997.

[6] “Commercial NiMH Technology Evaluation,” Proceed-
ings of the 12th Battery Conference, p.9-15,1997.

[7] “A PSPICE Macromodel for Lithium-Ion Battery Sys-
tems,” Proceedings of the 12th Battery Conference,
p.215-222,1997.

[8] “Writing Efficient C for ARM,” Application Note 34,
ARM Inc., January 1998.

[9] V. Tiwari, S. Malik, A. Wolfe, M. Lee, “Instruction
Level Power Analysis and Optimization of Software,”
Journal of VLSI Signal Processing Systems, vol 13,
no.2-3, pp.223-2383, 1996.

[lo] V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of Em-
bedded Software: A First Step Towards Software Power
Minimization,” IEEE Transactions on VLSI Systems,
vol. 2, no.4, pp.437-445, December 1994.

[ll] H. Tomyiama, H., T. Ishihara, A. Inoue, H. Ya-
suura, “Instruction scheduling for power reduction in
processor-based system design,” Proceedings of Design,
Automation and Test in Europe, pp. 23-26, February
1998.

[12] Y. Li and J. Henkel, “A Framework for Estimating and
Minimizing Energy Dissipation of Embedded HW/SW
Systems,” Proceedings of DAC 1998, pp.188-193, 1998.

217

