
Introduction to
Quantum Computing

by

Kamonluk Suksen Ph.D.

Overview

From bits to qubits: Dirac notation, density matrices, measurement, Bloch sphere

Quantum circuits: basic single-qubit & two-qubit gates, multipartite quantum states

Entanglement: Bell states, Teleportation, Superdense coding

Quantum algorithms: Deutsch-Jozsa algorithm, Grover's algorithm

2

From bits
to qubits

• Superpositions allow to perform calculations on many
states at the same time.
➢ Quantum algorithms with exponential speed-up.

• But: Once we measure the superposition state, it collapse
to one of its states.

• We can use interference effects to keep the right answer.

Photo courtesy of : https://medium.com/qntm/qntm-entering-the-era-of-quantum-computing

3

Dirac notation & density matrices

• It used to describe quantum states: Let a, b are 2-dimensional vector with complex entries.

➢ ket: ۧȁ𝑎 = 𝑎0
𝑎1

➢ bra: ۦ ȁ𝑏 = ۧȁ𝑏 + = 𝑏0
𝑏1

+
= (𝑏0

∗ 𝑏1
∗)

➢ bra-ket: 𝑏 𝑎 = 𝑎0𝑏0
∗ + 𝑎1𝑏1

∗ = 𝑎 𝑏 ∗ ∈ ∁ (inner product)

➢ ket-bra: ȁ ۧ𝑎 ۦ ȁ𝑏 =
𝑎0𝑏0

∗ 𝑎0𝑏1
∗

𝑎1𝑏0
∗ 𝑎1𝑏1

∗ (2x2 matrix)

4

Dirac notation & density matrices
• The pure states are ۧȁ0 = 1

0
, ۧȁ1 = 0

1
, which are orthogonal: 0 1 = 1.0 + 0.1 = 0

• ȁ ۧ0 ۦ ȁ0 = 1
0

(1)0 =
1 0
0 0

, ȁ ۧ1 ۦ ȁ1 = 0
1

(0)1 =
0 0
0 1

•  =
00 01

10 11
= 00ȁ ۧ0 ۦ ȁ0 + 01ȁ ۧ0 ۦ ȁ1 + 10ȁ ۧ1 ۦ ȁ0 + 11ȁ ۧ1 ۦ ȁ1

• All quantum states can be described by density matrices.

• All quantum states are normalized, i.e.,   = 1, e.g., ȁ ۧ =
1

2
ȁ ۧ0 + ȁ ۧ1 =

1

2
1

2

• A density matrix is pure, if  = ȁ ۧ ۦ ȁ , otherwise it is mixed.

➢  =
1 0
0 0

= ȁ ۧ0 ۦ ȁ0 → Pure,  =
0 0
0 1

= ȁ ۧ1 ۦ ȁ1 → Pure

➢  =
1

2

1 0
0 1

=
1

2
(ȁ ۧ0 ۦ ȁ0 + ȁ ۧ1 ۦ ȁ1) → Mixed

➢  =
1

2

1 −1
−1 1

=
1

2
ȁ ۧ0 ۦ ȁ0 − ȁ ۧ0 ۦ ȁ1 − ȁ ۧ1 ۦ ȁ0 + ȁ ۧ1 ۦ ȁ1 =

1

2
(ۧȁ0 − ۧȁ1)(ۧȁ0 − ۧȁ1) → Pure 5

Measurement

• We choose orthogonal base to describe and measure quantum states

(projective measurement).

• During a measurement onto the basis ۧȁ0 , ۧȁ1 , the states will collapse into either

state ۧȁ0 or ۧȁ1 , as those are the eigenstates of 𝜎𝑍, we call this a Z-measurement.

• Other different bases are:

➢ ۧȁ+ =
1

2
(ۧȁ0 + ۧȁ1), ۧȁ− =

1

2
(ۧȁ0 − ۧȁ1), corresponding to the eigenstates of 𝜎𝑥,

➢ ۧȁ+𝑖 =
1

2
(ۧȁ0 + ۧ𝑖ȁ1), ۧȁ−𝑖 =

1

2
(ۧȁ0 − ۧ𝑖ȁ1), corresponding to the eigenstates of 𝜎𝑦.

6

Measurement

• Born rule: the probability that a state ۧȁ collapses during a project measurement onto the basis

ۧȁX , ቚ ඀X⊥ to the state ۧȁX is given by P X = X  2, σ𝑖 P X𝑖 = 1

• Examples:

➢ ۧȁ =
1

3
ۧȁ0 + 2 ۧȁ1 is measured in the basis ۧȁ0 , ۧȁ1 :

 P 0 = 0
1

3
ۧ(ȁ0 + 2 1)2 =

1

3
0 0 +

2

3
0 1

2

=
1

3
 → P 1 =

2

3

➢ ۧȁ =
1

2
ۧȁ0 − ۧȁ1 is measured in the basis ۧȁ+ , ۧȁ− :

 P + = +  2 =
1

2
ۧ(ȁ0 + ۧȁ1)

1

2
ۧ(ȁ0 − ۧȁ1)

2
=

1

4
0 0 − 0 1 + 1 0 − 1 1 2 = 0 → expected as + − = 0,

 P − = − − 2 = 1

7

Bloch sphere

• We can write any normalized pure state as ۧȁ = cos
𝜃

2
ۧȁ0 + 𝑒𝑖𝜑 sin

𝜃

2
ۧȁ1 , where 𝜑 ∈ 0, 2𝜋

describes the relative phase and θ ∈ 0, 𝜋 determines the probability to measure ۧȁ0 , ۧȁ1 :

P ۧȁ0 = cos2 𝜃

2
, P ۧȁ1 = sin2 𝜃

2
.

• All normalized pure states can be illustrated on the surface of a sphere with radius റr = 1,
which we call the Bloch sphere.

• The coordinates of such a state are given by the Bloch vector: റr =
sin 𝜃 cos 𝜑
sin 𝜃 sin 𝜑

cos 𝜃

8

Bloch sphere

• Be careful: On the Bloch

sphere, angles are twice as big

as in Hilbert space:

➢ e.g., ۧȁ0 & ۧȁ1 are orthogonal, but

on the Bloch sphere their angle

is 180o.

➢ For a general state, ۧȁ =

cos
𝜃

2
ۧȁ0 + ⋯ → 𝜃 is the angle on

the Bloch sphere, while
𝜃

2
 is the

actual angle in Hilbert space!

Photo courtesy of : IBM quantum summer school 2019

9

Quantum circuits: single qubit gates
• Circuit model: sequence of building block that carry out computations, called gates.

• Quantum gates are represented by unitary matrices, A unitary matrix is a square

matrix of complex numbers, whose inverse is equal to its conjugate transpose.

• Single qubit gates:

algorithminput output

bit flip

phase flip

bit & phase flip

rotation around X-axis by 𝜋

rotation around Z-axis by 𝜋

rotation around Y-axis by 𝜋

creates superposition

used to change from Z to Y-basis
10

Quantum circuits: single qubit gates

Photo courtesy of : IBM quantum summer school 2019

11

Quantum circuits: multiple-qubit gates

13

Quantum circuits: two-qubit gates
• Classical example: XOR

• But as quantum theory is unitary, we only consider unitary and therefore reversible gates
• Quantum example: CNOT gate

XOR
X

Y
XY irreversible: given the output, we cannot recover the input.

Quantum circuits can perform all function
that can be calculated classically.

14

Quantum circuits:
multipartite quantum states
• We use tensor product to describe multiple states:

➢ ۧȁa  ۧȁb = 𝑎1
𝑎2


𝑏1
𝑏2

=
𝑎1𝑏1
𝑎1𝑏2
𝑎2𝑏1
𝑎2𝑏2

➢ Example: system A is in state ۧȁ1 A and system B is in state ۧȁ0 B = 0
1


1
0

=
0
0
1
0

, states of this form

are called uncorrelated.

➢ But there are also bipartite states that cannot be written as ۧȁ 𝑎 ۧȁ 𝑏. These states are correlated

and sometimes even entangled (very strong correlation), e.g. ۧȁ AB
(00)

=
1

2
(ۧȁ00 AB + ۧȁ11 AB) =

1

2

1
0
0
1

,

it so called Bell state, used for teleportation, cryptography, Bell tests, etc.

12

Entanglement
• If a pure state ۧȁ ABon system A,B cannot be written as ۧȁ 𝑎 ۧȁ 𝑏, it is entangled.

• These are four so called Bell states that are maximally entangled and build on
orthonormal basis:

➢ ห ൿ𝟎𝟎 ≔
𝟏

𝟐
ۧȁ00 + ۧȁ11 ,

➢ ห ൿ𝟎𝟏 ≔
𝟏

𝟐
ۧȁ01 + ۧȁ10 ,

➢ ห ൿ𝟏𝟎 ≔
𝟏

𝟐
ۧȁ00 − ۧȁ11 ,

➢ ห ൿ𝟏𝟏 ≔
𝟏

𝟐
ۧȁ01 − ۧȁ10 .

15

Entanglement
• Creation of Bell states:

ൿหq0q1 00
 𝐻0 →

𝟏

𝟐
ۧȁ00 + ۧȁ10 𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ00 + ۧȁ11 = ห ൿ𝟎𝟎 ,

ൿหq0q1 01
 𝐻0 →

𝟏

𝟐
ۧȁ01 + ۧȁ11 𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ01 + ۧȁ10 = ห ൿ𝟎𝟏 ,

ൿหq0q1 10
 𝐻0 →

𝟏

𝟐
ۧȁ00 − ۧȁ10 𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ00 − ۧȁ11 = ห ൿ𝟏𝟎 ,

ൿหq0q1 11
 𝐻0 →

𝟏

𝟐
ۧȁ01 − ۧȁ11 𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ01 − ۧȁ10 = ห ൿ𝟏𝟏 . 16

Teleportation
• Goal:

➢ Alice want to send her (unknown) state ۧȁ s ≔ α ۧȁ0 s + β ۧȁ1 s to Bob.

➢ She can only send him two classical bits though.

➢ They both share the maximally entangled state ۧȁ AB
(00)

=
1

2
(ۧȁ00 AB + ۧȁ11 AB).

• Initial states of the total system:

Photo courtesy of : IBM quantum summer school 2019

17

Teleportation
• Protocol:

• Alice’s state collapsed during the measurement, so she doesn’t have the initial state ۧȁ s anymore.

This is expected due to the no-cloning theorem, as she cannot copy her state, but just send her state to Bob

when destroying her own. Photo courtesy of : IBM quantum summer school 2019

18

Teleportation

• Quantum circuit:

Alice’s qubit

Bob’s qubit

The qubit she is trying
to send Bob.

two classical bits

00 → Do nothing
01 → Apply X gate
10 → Apply Z gate
11 → Apply ZX gate

19

Superdense coding
• Superdense coding is a procedure that allows someone to send two classical bits to

another party using just a single qubit of communication.

• Take advantage of quantum mechanics to more efficiently transmit classical information.

• Word “coding” means there are 2 essential processes, encoding and decoding:

➢ encoding: classical state → quantum state,

➢ decoding: quantum state → classical state.

Teleportation Superdense Coding

Transmit one qubit
using two classical bits.

Transmit two classical bits
using one qubit.

20

Superdense coding

• Superdense coding

includes 4 steps:

➢ preparation,

➢ encoding message,

➢ transmission,

➢ decoding message.

21

Superdense coding

• Step 1: preparation

➢ Start with 2 qubits in the

basis state |0ۧ.

➢ Applying Hadamard gate

to the first qubit and CNOT

gate (the first qubit as

control, another qubit as

target) accordingly.

22

Superdense coding

• Step 1: preparation

➢ Give the first qubit to A and

the second qubit to B.

➢ A and B travel far away.

23

Superdense coding

• Step 2: encoding message

➢ A encodes the classical

state in the qubit by

applying gate(s).

24

Superdense coding

• Step 3: transmission

➢ A sends the first qubit to B.

25

Superdense coding

• Step 4: decoding message

➢ Applying CNOT gate (the

first qubit as control,

another qubit as target)

and Hadamard gate to the

first qubit accordingly.

26

Superdense coding

• Step 4: decoding message

➢ Finally, measure both

qubits.

Test the circuit which encodes message “11” and run on “ibm_oslo”.

27

How the noise properties affect the result

• There are often optimizations that the
transpiler can perform that reduce the
overall gate count, and thus total length
of the input circuits.

• Qiskit library has a command “backend”
to show the chosen backend
information graphically such as “Error
Map”.

• We can select a good initial layout
considering connectivity and error
information that you can find from the
map to initial layout onto the physical
qubits with at least noise.

28

Assignment I: Basic Quantum Computing

• Required:

➢ Go to https://quantum-computing.ibm.com/

➢ Register IBMid account or sign in with Google, Github, LinkedIn, or Twitter.

➢ Download source codes at Assignment and upload files “Lab-1.ipynb”, “Lab-2.ipynb”
and “Lab-3.ipynb” into IBM Quantum Lab.

• Assignments:

➢ Lab-1: Operations on single qubit and multiple qubits gates by IBM Quantum.

➢ Lab-2: Quantum circuits by IBM Quantum.

➢ Lab-3: Superdense coding.

29

https://quantum-computing.ibm.com/
https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

Quantum algorithms
• Deutsch-Jozsa algorithm

➢ We are given a hidden Boolean function 𝑓 , which takes as input a string of bits, and returns

either 0 or 1 , that is:

➢ The property of the given Boolean function is that it is guaranteed to either be balanced (returns

1 for half of the input domain and 0 for the other half) or constant (0 on all inputs or 1 on all

inputs).

➢ Our task is to determine whether the given function is balanced or constant.

30

Quantum algorithms
• Deutsch-Jozsa algorithm

➢ For classical solution, we need to ask the oracle at least twice, but if we get twice the same

output, we need to ask again. At most to query is (N/2)+1, where N is number of state.

➢ For quantum solution, need only one query. If the output is the zero bit string, we know that

the oracle is constant. If it is any other bit string, we know that it is balanced.

➢ We have the function 𝑓 implemented as a quantum oracle, which maps the state |𝑥ۧ|𝑦ۧ to

|𝑥ۧ|𝑦⊕𝑓(𝑥)ۧ , where ⊕ is addition modulo 2.

31

Quantum algorithms
• Deutsch-Jozsa algorithm

➢ The initial state of which can be expressed:

➢ which is then put into superposition, which can conveniently be expressed:

32

Quantum algorithms
• Deutsch-Jozsa algorithm

➢ Apply the quantum oracle |𝑥ۧ|𝑦ۧ to |𝑥ۧ|𝑦⊕𝑓(𝑥)ۧ:

➢ We now address the interference 𝐻 on the first n wires, for which we use the expression:

➢ which allows us to express:

➢ where 𝑥. 𝑧 = 𝑥0𝑧0𝑥1𝑧1…𝑥𝑛−1𝑧𝑛−1 is the sum of the bitwise product. 33

Quantum algorithms
• Deutsch-Jozsa algorithm

➢ We can now determine whether the function is constant or balanced by measuring the first n qubits of
the final state.

➢ Specifically, we consider the probability of measuring zero on every qubit, which corresponds to the
term in the superposition where |𝑥ۧ is

➢ So it follows that measuring the first n qubits allows us to determine with certainty whether the
function is constant (measure all zeros) or balanced (measure at least one 1). 34

Quantum algorithms
• Deutsch-Jozsa algorithm

➢ We can encode any mathematical function as a unitary matrix.

➢ Deutsch’s algorithm was the first algorithm that demonstrated a quantum advantage:

specifically, a reduction in query complexity compared to the classical case.

➢ The Deutsch-Jozsa algorithm generalises Deutsch’s algorithm and reveals the possibility of

exponential speed-ups using quantum computers.

35

Quantum algorithms
• Quantum Fourier Transform (QFT)

➢ The QFT is the quantum implementation of the discrete Fourier transform over the amplitudes

of a wavefunction.

➢ The QFT simply transforms a qubit from its computational basis of ȁ ۧ0 and ȁ ۧ1 to the state in

Fourier basis ȁ ۧ+ and ȁ ۧ− .

35

Quantum algorithms
• Quantum Fourier Transform (QFT)

➢ Computational basis:

➢ Fourier basis:

35

Try it out at AssignmentII and upload files
“quantum_fourier_transform.ipynb”
into IBM Quantum Lab.

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

Quantum algorithms
• Quantum Phase Estimation (QPE)

➢ QPE aims to estimate the phase θ associated with an eigenvalue 𝑒2𝜋𝑖𝜃 of a unitary operator U.

➢ The quantum phase estimation algorithm uses phase kickback to write the phase of U, in the

Fourier basis, to the t qubits in the counting register.

35

Quantum algorithms
• Quantum Phase Estimation (QPE): Single qubit

35

a
n

a
lyze

d

Quantum algorithms
• Quantum Phase Estimation (QPE)

35

Quantum algorithms
• Quantum Phase Estimation (QPE): Two qubits

35

Try it out at AssignmentII and upload
files “phase_estimation.ipynb”
into IBM Quantum Lab.

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

Quantum algorithms
• Shor’s algorithm

➢ Let N be the integer we want to factor. Let's assume the example is number 35.

➢ Pick a random integer from 2 to N-1. Let's call this number a. Let's assume a is 4.

➢ Find the greatest common divisor (GCD) between a and N. If you get a value that is not 1, it means

that the GCD obtained is the answer. It's finished. You don't have to do anything further. But if it is

equal to 1, see the next step.

➢ Find the value of the function 𝑓 𝑥 = 𝑎𝑥 𝑚𝑜𝑑 𝑛.

➢ From the example N=35, a=4, the table between the values of x and f(x) will be obtained as follows.

➢ We have to check that 𝑎𝑟/2 = −1 𝑚𝑜𝑑 𝑛 . If so, we have to random new “a”.

➢ Then we find the GCD between (𝑎𝑟/2 + 1, 𝑁) and (𝑎𝑟/2 − 1, 𝑁). If we get 1 and N,

go back to random new “a” again.

35

X 0 1 2 3 4 5 6 7 8 9

f(x) 1 4 16 29 11 9 1 4 16 29

Quantum algorithms
• Shor’s algorithm

➢ A reduction of the factoring problem to the problem of order-finding, which can be done on a

classical computer.

➢ A quantum algorithm to solve the order-finding problem.

35

Quantum algorithms
• Shor’s algorithm

➢ Classical part

1. Pick a pseudo-random number a < N

2. Compute gcd(a, N). This may be done using the Euclidean algorithm.

3. If gcd(a, N) ≠ 1, then there is a nontrivial factor of N, so we are done.

4. Otherwise, use the period-finding subroutine (below) to find r, the period of the following function:

 𝑓 𝑥 = 𝑎𝑥 𝑚𝑜𝑑 𝑁, i.e. the smallest integer r for which 𝑓 𝑥 + 𝑟 = 𝑓(𝑥).

5. If r is odd, go back to step 1.

6. If 𝑎𝑟/2 = −1 (𝑚𝑜𝑑 𝑛) go back to step 1.

7. The factors of N are gcd(𝑎𝑟/2 ± 1, 𝑁). We are done.

35

Quantum algorithms
• Shor’s algorithm

➢ Quantum part: Period-finding subroutine

1. Start with a pair of input and output qubit registers with 𝑙𝑜𝑔2𝑛 qubits each, and initialize them to

 𝑁−1/2 σ𝑥ȁ ۧ𝑥 ȁ ۧ0 , where x runs from 0 to N-1

2. Construct f(x) as a quantum function and apply it to the above state, to obtain

 𝑁−1/2 σ𝑥ȁ ۧ𝑥 ȁ ۧ𝑓(𝑥)

3. Apply the quantum Fourier transform on the input register. The quantum Fourier transform on N points is defined by:

 𝑈𝑄𝐹𝑇ȁ ۧ𝑥 = 𝑁−1/2 σ𝑦 𝑒2𝜋𝑖𝑥𝑦/𝑁ȁ ۧ𝑦

 This leave us in the following state:

 𝑁−1 σ𝑥 σ𝑦 𝑒2𝜋𝑖𝑥𝑦/𝑁ȁ ۧ𝑦 ȁ ۧ𝑓(𝑥)

4. Perform a measurement. We obtain some outcome y in the input register and 𝑓(𝑥0) in the output register. Since 𝑓 is

periodic, the probability to measure some y is given by:

 𝑁−1 σ𝑥: 𝑓 𝑥 = 𝑓 𝑥0 𝑒2𝜋𝑖𝑥𝑦/𝑁 2
= 𝑁−1 σ𝑏 𝑒2𝜋𝑖(𝑥0+𝑟𝑏)𝑦/𝑁 2

 Analysis now shows that this probability is higher, the closer y/N is to an integer.
35

Quantum algorithms
• Shor’s algorithm

➢ Quantum part: Period-finding subroutine

5. Turn y/N into an irreducible fraction, and extract the denominator r′, which is a candidate for r.

6. Check if 𝑓 𝑥 = 𝑓 𝑥 + 𝑟′ . If so, we are done.

7. Otherwise, obtain more candidates for r by using values near y, or multiples of r′. If any candidate works, we are done.

8. Otherwise, go back to step 1 of the subroutine.

35

Try it out at AssignmentII and upload files “Shor’s algorithm.ipynb”
into IBM Quantum Lab.

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

Quantum algorithms
• Grover’s algorithm

➢ It can be used to solve unstructured search problems in roughly 𝑁 steps, where N is the

amount of data.

➢ This algorithm can speed up an unstructured search problem quadratically using the amplitude

amplification trick.

36

4 6 8 W N=𝟐𝒏

Quantum algorithms
• Operation of searching data by Grover’s algorithm for 2 qubits:

Oracle

Invert iteration 𝑚 =

1
2

+
1
2

−
1
2

+
1
2

4
=

1

4

𝑙𝑖ȁ00, ȁ01, ȁ11 =
1

4
 −

1

2
 −

1

4
= 0

𝑙𝑖ȁ10 =
1

4
 − −

1

2
 −

1

4
= 1

40

Quantum algorithms
• Operation of searching data by Grover’s algorithm for 4 qubits:

Grover iterations =

4

 𝑥
𝑁

𝑡
 times,

N is the number of data (states) and
t is the number of target solutions.

Try it out at AssignmentII and upload
files “Grover's algorithm.ipynb” into
IBM Quantum Lab.

41

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

Quantum algorithms
• Grover’s algorithm

➢ The example of Grover's algorithm for 3 qubits with two marked states |101ۧ and |110ۧ.

Grover iterations ~
𝜋

4

𝑁

𝑡

Photo courtesy of https://qiskit.org/textbook/ch-algorithms/grover.html
37

Quantum algorithms
• The implemented stages of the Grover’s search algorithm:

➢ Initialization: In the first stage of the algorithm all qubits are set to be in superposition by

applying the Hadamard gate to each qubit. After this operation the amplitude of each state is

1/sqrt(n).

➢ Oracle: The oracle function performs a phase flip on the marked state. If the marked state is

|0110〉, the phase flip inverts the amplitude ⍺0110 of the state.

➢ Amplification: The amplification stage performs an inversion of the average of the amplitudes.

➢ Measurement: The qubits are measured in finally. Grover iterations ~
𝜋

4

𝑁

𝑡

Photo courtesy of https://qiskit.org/textbook/ch-algorithms/grover.html

38

Quantum algorithms
• Grover’s algorithm

Grover iteration
maximum at

Initialize the system to
the superposition

state
Apply oracle

Invert amplitude of
the optimum and
re-compute the

average of
amplitude

Perform the
measurement

No

Yes

Optimum
success

prob max?

New amplitude:
𝑙𝑖_𝑛𝑒𝑤 = 𝑚 − 𝑙𝑖 − 𝑚
 = 2𝑚 − 𝑙𝑖

𝑚 is new average of amplitude.


𝟒

𝑵

𝒕

0 1 2 3 4 … N-1

The optimum is at index “a”,
Define Tagging Function :
f(x) = 0, x  a
f(x) = 1, x = a

39

Assignment II: quantum algorithms

• Required:

➢ Go to https://quantum-computing.ibm.com/

➢ Download source codes at Assignment and upload files “Lab-4.ipynb” into IBM

Quantum Lab.

• Assignment:

➢ Lab-4: Oracles and the Deutsch-Jozsa algorithm by IBM Quantum.

42

https://quantum-computing.ibm.com/
https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn

	Slide 1: Introduction to Quantum Computing
	Slide 2: Overview
	Slide 3: From bits to qubits
	Slide 4: Dirac notation & density matrices
	Slide 5: Dirac notation & density matrices
	Slide 6: Measurement
	Slide 7: Measurement
	Slide 8: Bloch sphere
	Slide 9: Bloch sphere
	Slide 10: Quantum circuits: single qubit gates
	Slide 11: Quantum circuits: single qubit gates
	Slide 12: Quantum circuits: multiple-qubit gates
	Slide 13: Quantum circuits: two-qubit gates
	Slide 14: Quantum circuits: multipartite quantum states
	Slide 15: Entanglement
	Slide 16: Entanglement
	Slide 17: Teleportation
	Slide 18: Teleportation
	Slide 19: Teleportation
	Slide 20: Superdense coding
	Slide 21: Superdense coding
	Slide 22: Superdense coding
	Slide 23: Superdense coding
	Slide 24: Superdense coding
	Slide 25: Superdense coding
	Slide 26: Superdense coding
	Slide 27: Superdense coding
	Slide 31: How the noise properties affect the result
	Slide 32: Assignment I: Basic Quantum Computing
	Slide 33: Quantum algorithms
	Slide 34: Quantum algorithms
	Slide 35: Quantum algorithms
	Slide 36: Quantum algorithms
	Slide 37: Quantum algorithms
	Slide 38: Quantum algorithms
	Slide 39: Quantum algorithms
	Slide 40: Quantum algorithms
	Slide 41: Quantum algorithms
	Slide 42: Quantum algorithms
	Slide 43: Quantum algorithms
	Slide 44: Quantum algorithms
	Slide 45: Quantum algorithms
	Slide 46: Quantum algorithms
	Slide 47: Quantum algorithms
	Slide 48: Quantum algorithms
	Slide 49: Quantum algorithms
	Slide 50: Quantum algorithms
	Slide 51: Quantum algorithms
	Slide 52: Quantum algorithms
	Slide 53: Quantum algorithms
	Slide 54: Quantum algorithms
	Slide 55: Quantum algorithms
	Slide 56: Assignment II: quantum algorithms

