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Overview

From bits to qubits: Dirac notation, density matrices, measurement, Bloch sphere

Quantum circuits: basic single-qubit & two-qubit gates, multipartite quantum states

Entanglement: Bell states, Teleportation, Superdense coding

Quantum algorithms: Deutsch-Jozsa algorithm, Grover's algorithm
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From bits 
to qubits

• Superpositions allow to perform calculations on many 
states at the same time.
➢ Quantum algorithms with exponential speed-up.

• But: Once we measure the superposition state, it collapse 
to one of its states.

• We can use interference effects to keep the right answer.

Photo courtesy of : https://medium.com/qntm/qntm-entering-the-era-of-quantum-computing 
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Dirac notation & density matrices

• It used to describe quantum states: Let a, b are 2-dimensional vector with complex entries.

➢ ket: ۧȁ𝑎 = 𝑎0
𝑎1

➢ bra: ۦ ȁ𝑏 = ۧȁ𝑏 + = 𝑏0
𝑏1

+
= (𝑏0

∗ 𝑏1
∗)

➢ bra-ket: 𝑏 𝑎 = 𝑎0𝑏0
∗ + 𝑎1𝑏1

∗ = 𝑎 𝑏 ∗ ∈ ∁ (inner product)

➢ ket-bra: ȁ ۧ𝑎 ۦ ȁ𝑏 =
𝑎0𝑏0

∗ 𝑎0𝑏1
∗

𝑎1𝑏0
∗ 𝑎1𝑏1

∗   (2x2 matrix)
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Dirac notation & density matrices
• The pure states are ۧȁ0 = 1

0
, ۧȁ1 = 0

1
, which are orthogonal: 0 1 = 1.0 + 0.1 = 0

• ȁ ۧ0 ۦ ȁ0 = 1
0

(1 )0 =
1 0
0 0

, ȁ ۧ1 ۦ ȁ1 = 0
1

(0 )1 =
0 0
0 1

•  =
00 01

10 11
= 00ȁ ۧ0 ۦ ȁ0 + 01ȁ ۧ0 ۦ ȁ1 + 10ȁ ۧ1 ۦ ȁ0 + 11ȁ ۧ1 ۦ ȁ1

• All quantum states can be described by density matrices.

• All quantum states are normalized, i.e.,   = 1, e.g., ȁ ۧ =
1

2
ȁ ۧ0 + ȁ ۧ1 =

1

2
1

2

• A density matrix is pure, if  = ȁ ۧ ۦ ȁ , otherwise it is mixed.

➢  =
1 0
0 0

= ȁ ۧ0 ۦ ȁ0 → Pure,  =
0 0
0 1

= ȁ ۧ1 ۦ ȁ1 → Pure

➢  =
1

2

1 0
0 1

=
1

2
(ȁ ۧ0 ۦ ȁ0 + ȁ ۧ1 ۦ ȁ1 ) → Mixed

➢  =
1

2

1 −1
−1 1

=
1

2
ȁ ۧ0 ۦ ȁ0 − ȁ ۧ0 ۦ ȁ1 − ȁ ۧ1 ۦ ȁ0 + ȁ ۧ1 ۦ ȁ1 =

1

2
( ۧȁ0 − ۧȁ1 )( ۧȁ0 − ۧȁ1 ) → Pure 5



Measurement

• We choose orthogonal base to describe and measure quantum states 

(projective measurement).

• During a measurement onto the basis ۧȁ0 , ۧȁ1 , the states will collapse into either 

state ۧȁ0  or ۧȁ1 , as those are the eigenstates of 𝜎𝑍, we call this a Z-measurement.

• Other different bases are:

➢ ۧȁ+ =
1

2
( ۧȁ0 + ۧȁ1 ), ۧȁ− =

1

2
( ۧȁ0 − ۧȁ1 ), corresponding to the eigenstates of 𝜎𝑥, 

➢ ۧȁ+𝑖 =
1

2
( ۧȁ0 + ۧ𝑖ȁ1 ), ۧȁ−𝑖 =

1

2
( ۧȁ0 − ۧ𝑖ȁ1 ), corresponding to the eigenstates of 𝜎𝑦.
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Measurement

• Born rule: the probability that a state ۧȁ  collapses during a project measurement onto the basis 

ۧȁX ,  ቚ ඀X⊥  to the state ۧȁX  is given by P X = X  2, σ𝑖 P X𝑖 = 1

• Examples:

➢ ۧȁ =
1

3
ۧȁ0 + 2 ۧȁ1  is measured in the basis ۧȁ0 , ۧȁ1 :

 P 0 = 0
1

3
ۧ(ȁ0 + 2 1 )2 =

1

3
0 0 +

2

3
0 1

2

=
1

3
 →  P 1 =

2

3

➢ ۧȁ =
1

2
ۧȁ0 − ۧȁ1  is measured in the basis ۧȁ+ , ۧȁ− :

  P + = +  2 =
1

2
ۧ(ȁ0 + ۧȁ1 )

1

2
ۧ(ȁ0 − ۧȁ1 )

2
=

1

4
0 0 − 0 1 + 1 0 − 1 1 2 = 0 → expected as + − = 0,

  P − = − − 2 = 1
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Bloch sphere

• We can write any normalized pure state as ۧȁ = cos
𝜃

2
ۧȁ0 + 𝑒𝑖𝜑 sin

𝜃

2
ۧȁ1 , where 𝜑 ∈ 0, 2𝜋  

describes the relative phase and θ ∈ 0, 𝜋  determines the probability to measure ۧȁ0 , ۧȁ1 : 

P ۧȁ0 = cos2 𝜃

2
, P ۧȁ1 = sin2 𝜃

2
.

• All normalized pure states can be illustrated on the surface of a sphere with radius റr = 1, 
which we call the Bloch sphere.

• The coordinates of such a state are given by the Bloch vector: റr =
sin 𝜃 cos 𝜑
sin 𝜃 sin 𝜑

cos 𝜃
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Bloch sphere

• Be careful: On the Bloch 

sphere, angles are twice as big 

as in Hilbert space:

➢ e.g., ۧȁ0  & ۧȁ1  are orthogonal, but 

on the Bloch sphere their angle 

is 180o.

➢ For a general state, ۧȁ =

cos
𝜃

2
ۧȁ0 + ⋯ → 𝜃 is the angle on 

the Bloch sphere, while 
𝜃

2
 is the 

actual angle in Hilbert space!

Photo courtesy of : IBM quantum summer school 2019 
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Quantum circuits: single qubit gates
• Circuit model: sequence of building block that carry out computations, called gates.

• Quantum gates are represented by unitary matrices, A unitary matrix is a square 

matrix of complex numbers, whose inverse is equal to its conjugate transpose.

• Single qubit gates:

algorithminput output

bit flip

phase flip

bit & phase flip

rotation around X-axis by 𝜋

rotation around Z-axis by 𝜋

rotation around Y-axis by 𝜋

creates superposition

used to change from Z to Y-basis
10



Quantum circuits: single qubit gates

Photo courtesy of : IBM quantum summer school 2019 
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Quantum circuits: multiple-qubit gates
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Quantum circuits: two-qubit gates
• Classical example: XOR

• But as quantum theory is unitary, we only consider unitary and therefore reversible gates
• Quantum example: CNOT gate

XOR
X

Y
XY irreversible: given the output, we cannot recover the input. 

Quantum circuits can perform all function 
that can be calculated classically.
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Quantum circuits: 
multipartite quantum states
• We use tensor product to describe multiple states: 

➢ ۧȁa  ۧȁb = 𝑎1
𝑎2


𝑏1
𝑏2

=
𝑎1𝑏1
𝑎1𝑏2
𝑎2𝑏1
𝑎2𝑏2

➢ Example: system A is in state ۧȁ1 A and system B is in state ۧȁ0 B = 0
1


1
0

=
0
0
1
0

, states of this form 

are called uncorrelated. 

➢ But there are also bipartite states that cannot be written as ۧȁ 𝑎 ۧȁ 𝑏. These states are correlated 

and sometimes even entangled (very strong correlation), e.g. ۧȁ AB
(00)

=
1

2
( ۧȁ00 AB + ۧȁ11 AB) =

1

2

1
0
0
1

, 

it so called Bell state, used for teleportation, cryptography, Bell tests, etc.
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Entanglement
• If a pure state ۧȁ ABon system A,B cannot be written as ۧȁ 𝑎 ۧȁ 𝑏, it is entangled.

• These are four so called Bell states that are maximally entangled and build on 
orthonormal basis:

➢ ห ൿ𝟎𝟎 ≔
𝟏

𝟐
ۧȁ00 + ۧȁ11 ,

➢ ห ൿ𝟎𝟏 ≔
𝟏

𝟐
ۧȁ01 + ۧȁ10 ,

➢ ห ൿ𝟏𝟎 ≔
𝟏

𝟐
ۧȁ00 − ۧȁ11 ,

➢ ห ൿ𝟏𝟏 ≔
𝟏

𝟐
ۧȁ01 − ۧȁ10 .
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Entanglement
• Creation of Bell states:

ൿหq0q1 00
 𝐻0 →

𝟏

𝟐
ۧȁ00 + ۧȁ10  𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ00 + ۧȁ11 = ห ൿ𝟎𝟎 ,

ൿหq0q1 01
 𝐻0 →

𝟏

𝟐
ۧȁ01 + ۧȁ11  𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ01 + ۧȁ10 = ห ൿ𝟎𝟏 ,

ൿหq0q1 10
 𝐻0 →

𝟏

𝟐
ۧȁ00 − ۧȁ10  𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ00 − ۧȁ11 = ห ൿ𝟏𝟎 ,

ൿหq0q1 11
 𝐻0 →

𝟏

𝟐
ۧȁ01 − ۧȁ11  𝐶𝑁𝑂𝑇𝟎𝟏 →

𝟏

𝟐
ۧȁ01 − ۧȁ10 = ห ൿ𝟏𝟏 . 16



Teleportation
• Goal:

➢ Alice want to send her (unknown) state ۧȁ s ≔ α ۧȁ0 s + β ۧȁ1 s to Bob.

➢ She can only send him two classical bits though. 

➢ They both share the maximally entangled state ۧȁ AB
(00)

=
1

2
( ۧȁ00 AB + ۧȁ11 AB).

• Initial states of the total system:

Photo courtesy of : IBM quantum summer school 2019 
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Teleportation
• Protocol:

• Alice’s state collapsed during the measurement, so she doesn’t have the initial state ۧȁ s anymore. 

This is expected due to the no-cloning theorem, as she cannot copy her state, but just send her state to Bob 

when destroying her own. Photo courtesy of : IBM quantum summer school 2019 
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Teleportation

• Quantum circuit:

Alice’s qubit

Bob’s qubit

The qubit she is trying 
to send Bob.

two classical bits

00 → Do nothing
01 → Apply X gate
10 → Apply Z gate
11 → Apply ZX gate
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Superdense coding 
• Superdense coding is a procedure that allows someone to send two classical bits to 

another party using just a single qubit of communication.

• Take advantage of quantum mechanics to more efficiently transmit classical information.

• Word “coding” means there are 2 essential processes, encoding and decoding:

➢ encoding: classical state → quantum state,

➢ decoding: quantum state → classical state.

Teleportation Superdense Coding

Transmit one qubit 
using two classical bits.

Transmit two classical bits
using one qubit.

20



Superdense coding 

• Superdense coding 

includes 4 steps: 

➢ preparation, 

➢ encoding message, 

➢ transmission,

➢ decoding message.

21



Superdense coding 

• Step 1: preparation 

➢ Start with 2 qubits in the 

basis state |0ۧ.

➢ Applying Hadamard gate 

to the first qubit and CNOT 

gate (the first qubit as 

control, another qubit as 

target) accordingly.
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Superdense coding 

• Step 1: preparation 

➢ Give the first qubit to A and 

the second qubit to B.

➢ A and B travel far away.
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Superdense coding 

• Step 2: encoding message 

➢ A encodes the classical 

state in the qubit by 

applying gate(s).
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Superdense coding 

• Step 3: transmission 

➢ A sends the first qubit to B.
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Superdense coding 

• Step 4: decoding message 

➢ Applying CNOT gate (the 

first qubit as control, 

another qubit as target) 

and Hadamard gate to the 

first qubit accordingly.

26



Superdense coding 

• Step 4: decoding message 

➢ Finally, measure both 

qubits.

Test the circuit which encodes message “11” and run on “ibm_oslo”.

27



How the noise properties affect the result

• There are often optimizations that the 
transpiler can perform that reduce the 
overall gate count, and thus total length 
of the input circuits.

• Qiskit library has a command “backend” 
to show the chosen backend 
information graphically such as “Error 
Map”. 

• We can select a good initial layout 
considering connectivity and error 
information that you can find from the 
map to initial layout onto the physical 
qubits with at least noise.
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Assignment I: Basic Quantum Computing

• Required:

➢ Go to https://quantum-computing.ibm.com/

➢ Register IBMid account or sign in with Google, Github, LinkedIn, or Twitter.

➢ Download source codes at Assignment and upload files “Lab-1.ipynb”, “Lab-2.ipynb” 
and “Lab-3.ipynb” into IBM Quantum Lab.

• Assignments:

➢ Lab-1: Operations on single qubit and multiple qubits gates by IBM Quantum.

➢ Lab-2: Quantum circuits by IBM Quantum.

➢ Lab-3: Superdense coding.

29

https://quantum-computing.ibm.com/
https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn


Quantum algorithms
• Deutsch-Jozsa algorithm

➢ We are given a hidden Boolean function  𝑓 , which takes as input a string of bits, and returns 

either  0  or  1 , that is:

➢ The property of the given Boolean function is that it is guaranteed to either be balanced (returns 

1 for half of the input domain and 0 for the other half) or constant (0 on all inputs or 1 on all 

inputs).

➢ Our task is to determine whether the given function is balanced or constant.
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Quantum algorithms
• Deutsch-Jozsa algorithm

➢ For classical solution, we need to ask the oracle at least twice, but if we get twice the same 

output, we need to ask again. At most to query is (N/2)+1, where N is number of state.

➢ For quantum solution, need only one query. If the output is the zero bit string, we know that 

the oracle is constant. If it is any other bit string, we know that it is balanced.

➢ We have the function 𝑓 implemented as a quantum oracle, which maps the state  |𝑥ۧ|𝑦ۧ to 

|𝑥ۧ|𝑦⊕𝑓(𝑥)ۧ , where ⊕ is addition modulo 2.
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Quantum algorithms
• Deutsch-Jozsa algorithm

➢ The initial state of which can be expressed:

➢ which is then put into superposition, which can conveniently be expressed:
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Quantum algorithms
• Deutsch-Jozsa algorithm

➢ Apply the quantum oracle |𝑥ۧ|𝑦ۧ to |𝑥ۧ|𝑦⊕𝑓(𝑥)ۧ:

➢ We now address the interference 𝐻 on the first n wires, for which we use the expression:

➢ which allows us to express:

➢ where 𝑥. 𝑧 = 𝑥0𝑧0𝑥1𝑧1…𝑥𝑛−1𝑧𝑛−1 is the sum of the bitwise product. 33



Quantum algorithms
• Deutsch-Jozsa algorithm

➢ We can now determine whether the function is constant or balanced by measuring the first n qubits of 
the final state.

➢ Specifically, we consider the probability of measuring zero on every qubit, which corresponds to the 
term in the superposition where |𝑥ۧ is

➢ So it follows that measuring the first n qubits allows us to determine with certainty whether the 
function is constant (measure all zeros) or balanced (measure at least one 1). 34



Quantum algorithms
• Deutsch-Jozsa algorithm

➢ We can encode any mathematical function as a unitary matrix.

➢ Deutsch’s algorithm was the first algorithm that demonstrated a quantum advantage: 

specifically, a reduction in query complexity compared to the classical case.

➢ The Deutsch-Jozsa algorithm generalises Deutsch’s algorithm and reveals the possibility of 

exponential speed-ups using quantum computers.
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Quantum algorithms
• Quantum Fourier Transform (QFT)

➢ The QFT is the quantum implementation of the discrete Fourier transform over the amplitudes 

of a wavefunction.

➢ The QFT simply transforms a qubit from its computational basis of ȁ ۧ0  and ȁ ۧ1  to the state in 

Fourier basis ȁ ۧ+  and ȁ ۧ− .

35



Quantum algorithms
• Quantum Fourier Transform (QFT)

➢ Computational basis:

➢ Fourier basis:

35

Try it out at AssignmentII and upload files 
“quantum_fourier_transform.ipynb” 
into IBM Quantum Lab.

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn


Quantum algorithms
• Quantum Phase Estimation (QPE)

➢ QPE aims to estimate the phase θ associated with an eigenvalue 𝑒2𝜋𝑖𝜃 of a unitary operator U.

➢ The quantum phase estimation algorithm uses phase kickback to write the phase of U, in the 

Fourier basis, to the t qubits in the counting register. 
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Quantum algorithms
• Quantum Phase Estimation (QPE): Single qubit

35

a
n

a
lyze

d



Quantum algorithms
• Quantum Phase Estimation (QPE)
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Quantum algorithms
• Quantum Phase Estimation (QPE): Two qubits

35

Try it out at AssignmentII and upload 
files “phase_estimation.ipynb” 
into IBM Quantum Lab.

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn


Quantum algorithms
• Shor’s algorithm

➢ Let N be the integer we want to factor. Let's assume the example is number 35.

➢ Pick a random integer from 2 to N-1. Let's call this number a. Let's assume a is 4.

➢ Find the greatest common divisor (GCD) between a and N. If you get a value that is not 1, it means 

that the GCD obtained is the answer. It's finished. You don't have to do anything further. But if it is 

equal to 1, see the next step.

➢ Find the value of the function 𝑓 𝑥 = 𝑎𝑥 𝑚𝑜𝑑 𝑛.

➢ From the example N=35, a=4, the table between the values of x and f(x) will be obtained as follows.

➢ We have to check that 𝑎𝑟/2  = −1 𝑚𝑜𝑑 𝑛 . If so, we have to random new “a”.

➢ Then we find the GCD between (𝑎𝑟/2 + 1, 𝑁) and (𝑎𝑟/2 − 1, 𝑁). If we get 1 and N, 

go back to random new “a” again.

35

X 0 1 2 3 4 5 6 7 8 9

f(x) 1 4 16 29 11 9 1 4 16 29



Quantum algorithms
• Shor’s algorithm

➢ A reduction of the factoring problem to the problem of order-finding, which can be done on a 

classical computer.

➢ A quantum algorithm to solve the order-finding problem.
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Quantum algorithms
• Shor’s algorithm

➢ Classical part

1. Pick a pseudo-random number a < N

2. Compute gcd(a, N). This may be done using the Euclidean algorithm.

3. If gcd(a, N) ≠ 1, then there is a nontrivial factor of N, so we are done.

4. Otherwise, use the period-finding subroutine (below) to find r, the period of the following function:

 𝑓 𝑥 =  𝑎𝑥 𝑚𝑜𝑑 𝑁, i.e. the smallest integer r for which  𝑓 𝑥 + 𝑟 = 𝑓(𝑥).

5. If r is odd, go back to step 1.

6. If 𝑎𝑟/2  = −1 (𝑚𝑜𝑑 𝑛) go back to step 1.

7. The factors of N are gcd(𝑎𝑟/2 ± 1, 𝑁). We are done.
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Quantum algorithms
• Shor’s algorithm

➢ Quantum part: Period-finding subroutine

1. Start with a pair of input and output qubit registers with 𝑙𝑜𝑔2𝑛 qubits each, and initialize them to

 𝑁−1/2 σ𝑥ȁ ۧ𝑥 ȁ ۧ0 , where x runs from 0 to N-1

2. Construct f(x) as a quantum function and apply it to the above state, to obtain

  𝑁−1/2 σ𝑥ȁ ۧ𝑥 ȁ ۧ𝑓(𝑥)

3. Apply the quantum Fourier transform on the input register. The quantum Fourier transform on N points is defined by:

  𝑈𝑄𝐹𝑇ȁ ۧ𝑥 = 𝑁−1/2 σ𝑦 𝑒2𝜋𝑖𝑥𝑦/𝑁ȁ ۧ𝑦  

 This leave us in the following state:

  𝑁−1 σ𝑥 σ𝑦 𝑒2𝜋𝑖𝑥𝑦/𝑁ȁ ۧ𝑦 ȁ ۧ𝑓(𝑥)

4. Perform a measurement. We obtain some outcome y in the input register and 𝑓(𝑥0) in the output register. Since 𝑓 is 

periodic, the probability to measure some y is given by:

  𝑁−1 σ𝑥: 𝑓 𝑥 = 𝑓 𝑥0 𝑒2𝜋𝑖𝑥𝑦/𝑁 2
= 𝑁−1 σ𝑏 𝑒2𝜋𝑖(𝑥0+𝑟𝑏)𝑦/𝑁 2

 

        Analysis now shows that this probability is higher, the closer y/N is to an integer.
35



Quantum algorithms
• Shor’s algorithm

➢ Quantum part: Period-finding subroutine

5. Turn y/N into an irreducible fraction, and extract the denominator r′, which is a candidate for r.

6. Check if 𝑓 𝑥 = 𝑓 𝑥 + 𝑟′ . If so, we are done.

7. Otherwise, obtain more candidates for r by using values near y, or multiples of r′. If any candidate works, we are done.

8. Otherwise, go back to step 1 of the subroutine.

35

Try it out at AssignmentII and upload files “Shor’s algorithm.ipynb” 
into IBM Quantum Lab.

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn


Quantum algorithms
• Grover’s algorithm

➢ It can be used to solve unstructured search problems in roughly 𝑁 steps, where N is the 

amount of data. 

➢ This algorithm can speed up an unstructured search problem quadratically using the amplitude 

amplification trick.

36
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Quantum algorithms 
• Operation of searching data by Grover’s algorithm for 2 qubits:

Oracle

Invert iteration 𝑚 =

1
2

+
1
2

−
1
2

+
1
2

4
=

1

4
 

𝑙𝑖ȁ00, ȁ01, ȁ11 =
1

4
 −

1

2
 −

1

4
= 0

𝑙𝑖ȁ10 =
1

4
 − −

1

2
 −

1

4
= 1
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Quantum algorithms 
• Operation of searching data by Grover’s algorithm for 4 qubits:

Grover iterations = 

4

 𝑥
𝑁

𝑡
 times,

N is the number of data (states) and
t is the number of target solutions. 

Try it out at AssignmentII and upload 
files “Grover's algorithm.ipynb” into 
IBM Quantum Lab.

41

https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn


Quantum algorithms 
• Grover’s algorithm

➢ The example of Grover's algorithm for 3 qubits with two marked states  |101ۧ and |110ۧ.

Grover iterations ~ 
𝜋

4

𝑁

𝑡

Photo courtesy of https://qiskit.org/textbook/ch-algorithms/grover.html
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Quantum algorithms
• The implemented stages of the Grover’s search algorithm:

➢ Initialization: In the first stage of the algorithm all qubits are set to be in superposition by 

applying the Hadamard gate to each qubit. After this operation the amplitude of each state is 

1/sqrt(n).

➢ Oracle: The oracle function performs a phase flip on the marked state. If the marked state is 

|0110〉, the phase flip inverts the amplitude ⍺0110 of the state.

➢ Amplification: The amplification stage performs an inversion of the average of the amplitudes.

➢ Measurement: The qubits are measured in finally. Grover iterations ~ 
𝜋

4

𝑁

𝑡

Photo courtesy of https://qiskit.org/textbook/ch-algorithms/grover.html
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Quantum algorithms 
• Grover’s algorithm

Grover iteration
maximum at 

Initialize the system to 
the superposition 

state
Apply oracle

Invert amplitude of 
the optimum and 
re-compute the 

average of 
amplitude 

Perform the 
measurement

No

Yes

Optimum 
success 

prob max?

New amplitude:  
𝑙𝑖_𝑛𝑒𝑤 = 𝑚 − 𝑙𝑖 − 𝑚
            = 2𝑚 − 𝑙𝑖

𝑚 is new average of amplitude.


𝟒

𝑵

𝒕

0 1 2 3 4 … N-1

The optimum is at index “a”,
Define Tagging Function :   
f(x) = 0,  x  a
f(x) = 1,  x = a 
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Assignment II: quantum algorithms

• Required:

➢ Go to https://quantum-computing.ibm.com/

➢ Download source codes at Assignment and upload files “Lab-4.ipynb” into IBM 

Quantum Lab.

• Assignment:

➢ Lab-4: Oracles and the Deutsch-Jozsa algorithm by IBM Quantum.
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https://quantum-computing.ibm.com/
https://drive.google.com/drive/u/0/folders/1e1jL8Xpg-4RuU6rJxrChVmys1se6Hpjn
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