Tutorial : Evolutionary Computation. Prabhas Chongstitvatana, 1998.

Tutorial Topic: Evolutionary Computation
NCSEC'98 Tutorial Session
October 19, 1998
Kasetsart University

Prabhas Chongstitvatana,
Department of Computer Engineering,
Chulalongkorn University.

URL www.cp.eng.chula.ac.th/faculty/pjw
Email prabhas@chula.ac.th

Abstract:

Evolutionary Computation is an approach to computation that emphasize on a general-
purpose search algorithm that use principles inspired by population genetics to evolve
solutions to problems. Two most well-known methods are Genetic Algorithm (GA) and
Genetic Programming (GP). Genetic programming is a machine learning technique derives
from genetic algorithms. GA and GP has become increasingly popular in recent years as a
method for solving complex search problems in a large number of disciplines. This tutorial
will illustrate the basic concept of GA/GP and their current applications. Examples of the
actual running system will be given from the research done by the speaker.

Biography of presenter

Prabhas Chongstitvatana earned his first degree in Electrical Engineering from Kasetsart
University in 1979. He got PhD from Edinburgh University, UK, in 1992 from the
department of Artificial Intelligence. His current research involved in Evolutionary
computation where he applied Genetic search method to robot learning problems and logic
synthesis. He is interested in hardware evolvable systems.

Most of the text are excerpt from FAQ of comp.ai.genetic

HIERARCHY OF THE FIELD

Natural Computation
Artificial Life
Fractal Geometry
other Complex Systems Sciences

Computational Intelligence
Fuzzy Systems
Artificial Neural Networks

Evolutionary Computation

GLOBAL OPTIMIZATION algorithms

OPTIMIZATION methods: Simulated Annealing (SA), Artificial Neural Networks (ANN5)
and the field of Evolutionary Computation (EC).

EC may currently be characterized by the following pathways: Genetic
Algorithms (GA), Evolutionary Programming (EP), Evolution Strategies
(ES), Classifier Systems (CFS), Genetic Programming (GP), and several
other problem solving strategies, that are based upon biological



Tutorial : Evolutionary Computation. Prabhas Chongstitvatana, 1998.

observations, that date back to Charles Darwin's discoveries in the
19th century: the means of natural selection and the survival of the
fittest, and theories of evolution. The inspired algorithms are thus
termed Evolutionary Algorithms (EA).

What are Evolutionary Algorithms (EAs)?

Evolutionary algorithm is an umbrella term used to describe computer-
based problem solving systems which use computational models of some
of the known mechanisms of EVOLUTION as key elements in their design
and implementation. A variety of evolutionary algorithms have been
proposed. The major ones are: GENETIC ALGORITHMs,
EVOLUTIONARY PROGRAMMING , EVOLUTION STRATEGIEs ,
CLASSIFIER SYSTEMs , and GENETIC PROGRAMMING.

They all share a common conceptual base of simulating the evolution

of INDIVIDUAL structures via processes of SELECTION, MUTATION, and
REPRODUCTION. The processes depend on the perceived PERFORMANCE of
the individual structures as defined by an ENVIRONMENT.

More precisely, EAs maintain a POPULATION of structures, that evolve
according to rules of selection and other operators, that are

referred to as "search operators", (or GENETIC OPERATORS), such as
RECOMBINATION and mutation. Each individual in the population
receives a measure of it's FITNESS in the environment. Reproduction
focuses attention on high fitness individuals, thus exploiting (cf.
EXPLOITATION) the available fitness information. Recombination and
mutation perturb those individuals, providing general heuristics for
EXPLORATION. Although simplistic from a biologist's viewpoint, these
algorithms are sufficiently complex to provide robust and powerful
adaptive search mechanisms.

--- "An Overview of Evolutionary Computation" [ECML93], 442-459.

It cannot be stressed too strongly that an evolutionary algorithm (as

a SIMULATION of a genetic process) is not a random search for a
solution to a problem (highly fit individual). EAs use stochastic
processes, but the result is distinctly non-random (better than
random).

PSEUDO CODE
Algorithm EA is
// start with an initial time
t = 0;
// initialize a usually random population of individuals
initpopulation P (t);
// evaluate fitness of all initial individuals in population
evaluate P (t);
// test for termination criterion (time, fitness, etc.)
while not done do
// increase the time counter

t =t + 1;

// select sub-population for offspring production
P' := selectparents P (t);

// recombine the "genes" of selected parents
recombine P' (t);

// perturb the mated population stochastically
mutate P' (t);

// evaluate it's new fitness

evaluate P' (t);

// select the survivors from actual fitness



Tutorial : Evolutionary Computation. Prabhas Chongstitvatana, 1998.

P := survive P,P' (t);
od
end EA.

What's a Genetic Algorithm (GA)?

The GENETIC ALGORITHM is a model of machine learning which derives

its behavior from a metaphor of some of the mechanisms of EVOLUTION

in nature. This is done by the creation within a machine of a

POPULATION of INDIVIDUALS represented by CHROMOSOMEs, in essence a
set of character strings that are analogous to the base-4 chromosomes

that we see in our own DNA. The individuals in the population then

go through a process of simulated "evolution".

Genetic algorithms are used for a number of different application

areas. An example of this would be multidimensional OPTIMIZATION
problems in which the character string of the chromosome can be used

to encode the values for the different parameters being optimized.

In practice, therefore, we can implement this genetic model of
computation by having arrays of bits or characters to represent the
chromosomes. Simple bit manipulation operations allow the
implementation of CROSSOVER, MUTATION and other operations. Although
a substantial amount of research has been performed on variable-

length strings and other structures, the majority of work with

genetic algorithms is focussed on fixed-length character strings. We

should focus on both this aspect of fixed-lengthness and the need to
encode the representation of the solution being sought as a character

string, since these are crucial aspects that distinguish GENETIC
PROGRAMMING, which does not have a fixed length representation and
there is typically no encoding of the problem.

PSEUDO CODE
Algorithm GA is
// start with an initial time
t := 0;
// initialize a usually random population of individuals
initpopulation P (t);
// evaluate fitness of all initial individuals of population
evaluate P (t);
// test for termination criterion (time, fitness, etc.)
while not done do
// increase the time counter

t =t + 1;
// select a sub-population for offspring production
P' := selectparents P (t);

// recombine the "genes" of selected parents
recombine P' (t);
// perturb the mated population stochastically
mutate P' (t);
// evaluate it's new fitness
evaluate P' (t);
// select the survivors from actual fitness
P := survive P,P' (t);
od
end GA.

What's Evolutionary Programming (EP)?

Introduction
EVOLUTIONARY PROGRAMMING, originally conceived by Lawrence J. Fogel



Tutorial : Evolutionary Computation. Prabhas Chongstitvatana, 1998.

in 1960, is a stochastic OPTIMIZATION strategy similar to GENETIC
ALGORITHMs, but instead places emphasis on the behavioral linkage
between PARENTS and their OFFSPRING, rather than seeking to emulate
specific GENETIC OPERATORS as observed in nature. Evolutionary

programming is similar to EVOLUTION STRATEGIES, although the two

approaches developed independently.

The basic EP method involves 3 steps (Repeat until a threshold for
iteration is exceeded or an adequate solution is obtained):

(1) Choose an initial POPULATION of trial solutions at random. The
number of solutions in a population is highly relevant to the
speed of optimization, but no definite answers are available as
to how many solutions are appropriate (other than >1) and how
many solutions are just wasteful.

(2) Each solution is replicated into a new population. Each of
these offspring solutions are mutated according to a
distribution of MUTATION types, ranging from minor to extreme
with a continuum of mutation types between. The severity of
MUTATION is judged on the basis of the functional change imposed
on the parents.

(3) Each offspring solution is assessed by computing it's fitness.
Typically, a stochastic tournament is held to determine N
solutions to be retained for the population of solutions,
although this is occasionally performed deterministically.
There is no requirement that the population size be held
constant, however, nor that only a single offspring be generated
from each parent.

It should be pointed out that EP typically does not use any CROSSOVER
as a GENETIC OPERATOR.

PSEUDO CODE
Algorithm EP is
// start with an initial time
t = 0;

// initialize a usually random population of individuals

initpopulation P (t);

// evaluate fitness of all initial individuals of population

evaluate P (t);
// test for termination criterion (time, fitness, etc.)
while not done do

// perturb the whole population stochastically

P'(t) := mutate P (t):;

// evaluate it's new fitness

evaluate P' (t);

// stochastically select the survivors from actual fitness

P(t+1l) := survive P(t),P'(t):;
// increase the time counter
t =t + 1;
od
end EP.

What's an Evolution Strategy (ES)?

EVOLUTION STRATEGIEs were invented to solve technical



Tutorial : Evolutionary Computation. Prabhas Chongstitvatana, 1998.

OPTIMIZATION problems (TOPs) like e.g. constructing an optimal
flashing nozzle, and until recently ES were only known to civil
engineering folks, as an alternative to standard solutions. Usually

no closed form analytical objective function is available for TOPs
and hence, no applicable optimization method exists, but the
engineer's intuition.

A single INDIVIDUAL of the ES' population consists of the following
GENOTYPE representing a point in the SEARCH SPACE:

OBJECT VARIABLES
Real-valued x i have to be tuned by recombination and mutation
such that an objective function reaches its global optimum.

STRATEGY VARIABLEs
Real-valued s _i (usually denoted by a lowercase sigma) or mean
stepsizes determine the mutability of the x_i. They represent
the STANDARD DEVIATION of a (0, s i) GAUSSIAN DISTRIBUTION (GD)
being added to each x i as an undirected mutation. With an
"expectancy value" of 0 the parents will produce offspring
similar to themselves on average. In order to make a doubling
and a halving of a stepsize equally probable, the s i mutate
log-normally, distributed, i.e. exp(GD), from generation to
generation. These stepsizes hide the internal model the
population has made of its ENVIRONMENT, i.e. a SELF-ADAPTATION
of the stepsizes has replaced the exogenous control of the (1+1)
ES.

This concept works because selection sooner or later prefers
those individuals having built a good model of the objective
function, thus producing better offspring. Hence, learning takes
place on two levels: (1) at the genotypic, i.e. the object and
strategy variable level and (2) at the phenotypic level, i.e.

the FITNESS level.

Depending on an individual's x i, the resulting objective
function value f(x), where x denotes the vector of objective
variables, serves as the PHENOTYPE (fitness) in the selection
step. In a plus strategy, the m best of all (m+1) individuals
survive to become the parents of the next generation. Using the
comma variant, selection takes place only among the 1 offspring.
The second scheme is more realistic and therefore more
successful, because no individual may survive forever, which
could at least theoretically occur using the plus variant.
Untypical for conventional optimization algorithms and lavish at
first sight, a comma strategy allowing intermediate
deterioration performs better! Only by forgetting highly fit
individuals can a permanent adaptation of the stepsizes take
place and avoid long stagnation phases due to misadapted s _i's.
This means that these individuals have built an internal model
that is no longer appropriate for further progress, and thus
should better be discarded.

By choosing a certain ratio m/l, one can determine the
convergence property of the evolution strategy: If one wants a



Tutorial : Evolutionary Computation. Prabhas Chongstitvatana, 1998.

fast, but local convergence, one should choose a small HARD
SELECTION, ratio, e.g. (5,100), but looking for the global
optimum, one should favour a softer selection (15,100).

What's a Classifier System (CFS)?

Holland envisioned a cognitive system capable of classifying the
goings on in its environment, and then reacting to these goings on
appropriately. So what is needed to build such a system? Obviously,
we need (1) an environment; (2) receptors that tell our system about
the goings on; (3) effectors, that let our system manipulate its
environment; and (4) the system itself, conveniently a "black box" in
this first approach, that has (2) and (3) attached to it, and "lives"

in (1).

PSEUDO CODE (Learning CFS)
Algorithm LCS is
// start with an initial time
t := 0;
// an initially empty message list
initMessagelList ML (t);
// and a randomly generated population of classifiers
initClassifierPopulation P (t);
// test for cycle termination criterion (time, fitness, etc.)
while not done do
// increase the time counter

t =t + 1;

// 1. detectors check whether input messages are present
ML := readDetectors (t);

// 2. compare ML to the classifiers and save matches

ML' := matchClassifiers ML,P (t);

// 3. highest bidding classifier(s) collected in ML' wins the
// "race" and post the(ir) message (s)

ML' := selectMatchingClassifiers ML',P (t);

// 4. tax bidding classifiers, reduce their strength
ML' := taxPostingClassifiers ML',P (t);

// 5. effectors check new message list for output msgs
ML := sendEffectors ML' (t);

// 6. receive payoff from environment (REINFORCEMENT)

C := receivePayoff (t);

// 7. distribute payoff/credit to classifiers (e.g. BBA)
P' := distributeCredit C,P (t);

// 8. Eventually (depending on t), an EA (usually a GA) is
// applied to the classifier population
if criterion then
P := generateNewRules P' (t);
else
P := P'
od
end LCS.

What's Genetic Programming (GP)?

GENETIC PROGRAMMING is the extension of the genetic model of learning
into the space of programs. That is, the objects that constitute the
POPULATION are not fixed-length character strings that encode

possible solutions to the problem at hand, they are programs that,

when executed, "are" the candidate solutions to the problem. These
programs are expressed in genetic programming as parse trees, rather

than as lines of code. Thus, for example, the simple program "a + b

* ¢" would be represented as:



Tutorial : Evolutionary Computation. Prabhas Chongstitvatana, 1998.

or, to be precise, as suitable data structures linked together to

achieve this effect. Because this is a very simple thing to do in the
programming language Lisp, many GPers tend to use Lisp. However, this
is simply an implementation detail. There are straightforward methods

to implement GP using a non-Lisp programming environment.

The programs in the population are composed of elements from the
FUNCTION SET and the TERMINAL SET, which are typically fixed sets of
symbols selected to be appropriate to the solution of problems in the

domain of interest.

In GP the CROSSOVER operation is implemented by taking randomly
selected subtrees in the INDIVIDUALS (selected according to FITNESS)
and exchanging them.

It should be pointed out that GP usually does not use any MUTATION as
a GENETIC OPERATOR.

What applications of EAs are there?

But EAs are especially badly suited for problems where efficient ways
of solving them are already known, (unless these problems are
intended to serve as benchmarks). Special purpose algorithms, i.e.
algorithms that have a certain amount of problem domain knowledge
hard coded into them, will usually outperform EAs, so there is no
black magic in EC. EAs should be used when there is no other known
problem solving strategy, and the problem domain is NP-complete.
That's where EAs come into play: heuristically finding solutions
where all else fails.

BIOCOMPUTING
Biocomputing, or Bioinformatics, is the field of biology dedicated to
the automatic analysis of experimental data (mostly sequencing data).
Several approaches to specific biocomputing problems have been
described that involve the use of GA, GP and simulated annealing.

There are three main domains to which GA have been applied in
Bioinformatics: protein folding, RNA folding, sequence alignment.

GAME PLAYING
GAs can be used to evolve behaviors for playing games. Work in
evolutionary GAME THEORY typically surrounds the EVOLUTION of a
POPULATION of players who meet randomly to play a game in which they
each must adopt one of a limited number of moves.

JOB-SHOP SCHEDULING
The Job-Shop Scheduling Problem (JSSP) is a very difficult NP-
complete problem which, so far, seems best addressed by sophisticated



Tutorial : Evolutionary Computation. Prabhas Chongstitvatana, 1998.

branch and bound search techniques. GA researchers, however, are

continuing to make progress on it.

Similar to the JSSP is the Open Shop Scheduling Problem (OSSP).

A simpler form of job

shop problem is the Flow-Shop Sequencing problem, recently has been successful
on applying GAs to this.

MANAGEMENT SCIENCES
Applications of EA in management science and closely related fields
like organizational ecology is a domain that has been covered by some
EA researchers - with considerable bias towards scheduling problems.

Nissen, V. (1993) "Evolutionary Algorithms in Management Science: An
Overview and List of References", Papers on Economics and Evolution,
edited by the European Study Group for Evolutionary Economics. This
report is also avail. via anon. FTP from
ftp.gwdg.de:/pub/msdos/reports/wi/earef.eps

TIMETABLING
This has been addressed quite successfully with GAs. A very common
manifestation of this kind of problem is the timetabling of exams or
classes in Universities, etc.

CELLULAR PROGRAMMING: Evolution of Parallel Cellular Machines
Sipper, M. (1997) "Evolution of Parallel Cellular Machines: The
Cellular Programming Approach", Springer-Verlag, Heidelberg.

EVOLVABLE HARDWARE
the term evolware has been used to describe such evolving
ware, with current implementations centering on hardware, while
raising the possibility of using other forms in the future, such as bioware.

How many EAs exist? Which?

There are currently 3 main paradigms in EA research:

GENETIC ALGORITHMs,

EVOLUTIONARY PROGRAMMING,

and EVOLUTION STRATEGIEs.
CLASSIFIER SYSTEMs and GENETIC PROGRAMMING are OFFSPRING
of the GA community.

Besides this leading crop, there are numerous other

different approaches, alongside hybrid experiments, i.e. there exist
pieces of software residing in some researchers computers, that have
been described in papers in conference proceedings, and may someday
prove useful on certain tasks.

WWW resources

Newsgroup : comp.ai.genetic

The Santa Fe Institute (USA)
http://alife.santafe.edu/~joke/encore/www/

Purdue University, West Lafayette, IN (USA)
http://www.cs.purdue.edu/coast/archive/clife/F AQ/www/

Heitkoetter, Joerg and Beasley, David, eds. (1997) "The Hitch-



Tutorial : Evolutionary Computation. Prabhas Chongstitvatana, 1998. 9

Hiker's Guide to Evolutionary Computation: A list of Frequently Asked
Questions (FAQ)", USENET: comp.ai.genetic. Available via anonymous
FTP from rtfm.mit.edu:/pub/usenet/news.answers/ai-faq/genetic/ About
110 pages.

Beasley, D., Bull, D.R., & Martin, R.R. (1993) "An Overview of
Genetic Algortihms: Part 1, Fundamentals", University Computing,
15(2) 58-69. Available by ftp from ENCORE in file:
GA/papers/over93.ps.gz or from
ralph.cs.cf.ac.uk:/pub/papers/GAs/ga_overviewl.ps

Beasley, D., Bull, D.R., & Martin, R.R. (1993) "An Overview of
Genetic Algortihms: Part 2, Research Topics", University Computing,
15(4) 170-181. Available by ftp from ENCORE in file:
GA/papers/over93-2.ps.gz or from
ralph.cs.cf.ac.uk:/pub/papers/GAs/ga_overview2.ps

Whitley, D. (1993) "A Genetic Algorithm Tutorial", Colorado State
University, Dept. of CS, TR CS-93-103. Available by ftp from
ftp.cs.colostate.edu:/pub/public_html/TechReports/1993/tr-103.ps.Z or
from http://www.cs.colostate.edu

Jarmo Alander has compiled probably the biggest EC bibliography
around. It has 2500 entries, and is available in postscript form by
ftp from: garbo.uwasa.fi:/pc/research/2500GArefs.ps.gz

GP mailing list FAQ and from http://www-cs-faculty.stanford.edu/~koza/

Local publications can be found at Intelligent Systems Laboratory, Department of Computer
Engineering, Chulalongkorn university : http://orange.cp.eng.chula.ac.th

TEXT

Holland, J, “Adaptation in natural and artificial systems”, MIT Press, 1992, first edition
University of Michigan, 1975.

Goldberg, D., “Genetic Algorithms in search, optimization, and machine learning”, Addison-
Wesley, 1989.

Mitchell, M., “An introduction to genetic algorithms”, MIT Press, 1996.

Koza, J. “Genetic Programming : On the programming of computers by means of natural
selection”, MIT Press, 1992.

Davis, L. (ed), "Handbook of Genetic Algorithms", Van Nostrand Reinhold, New York, NY,
1991.

Michalewicz, Z, Genetic algorithms + Data Structures = Evolution Programs",
Springer-Verlag, New York, NY, 1992. Also second, extended edition (1994) with
index.

Fogel, D., "Evolutionary Computation: Toward a New Philosophy of Machine Intelligence",
Piscataway, NJ: IEEE Press. ISBN 0-7803-1048-0, 1995.

JOURNAL ARTICLES

Holland, J.H. (1992) "Genetic Algorithms", Scientific American,
267(1), 66-72.

Goldberg, D. (1994), "Genetic and Evolutionary Algorithms Come of Age",
Communications of the ACM, 37(3), 113--119.



	Evolutionary Computation

