

Application of Genetic Programming to the "Snake Game"

Problem: The fundamental problem of the snake game is to eat the maximum number of food

pieces before "dying" by running into either a wall or a segment of the snake’s body. The

problem being addressed is to provide a function and terminal set that will allow for the evolution

of a GP that will maximize the number of food pieces eaten by the snake. The maximum goal

for the particular configuration of the snake game used in the paper is 211 pieces of food (220 –

9 = 211, where 220 is total board position and 9 is initial snake size).

Figure 1: Snake game board

Objective: Find a computer program that eats the maximum possible
pieces of food.

Terminal set: (forward), (left), (right)

Function set: ifFoodAhead, ifDangerAhead, ifDangerRight, ifDangerLeft,
progn2

Fitness cases: One fitness case.

Raw Fitness: Pieces of food eaten.

Standardized
fitness:

Maximum possible pieces of food eaten (211) minus the raw
fitness.

Hits: Total pieces of food eaten during a run of the program, same
as raw fitness.

Parameters: Population = 10000. Max generations = 500.

Success
predicate:

A program scores 211 hits.

Additional Functions: ifDangerTwoAhead, ifFoodUp, ifFoodRight, ifMovingRight, ifMovingLeft,

ifMovingUp and ifMovingDown.

Sura Rodpongpun 5371816121

Fitness Cases: For initial runs of the problem, only a single fitness case was used to determine

the fitness for each individual. Because the food placement is random both during a single run,

and from one run to another, occasionally individuals would score a number of hits because of

fortuitous placement of the food, and not as much on the merit of their function tree.

To better ensure that the most successful individuals achieved high fitness measures primarily

on the basis of their function tree, new GP runs were often made featuring a "primed"

population in which the fitness was measured as the average of four runs of an individual. The

procedure for this is as follows: once a run had completed without obtaining a solution, or if a

run had stalled on a single individual for a large number (100 or more) of generations, a new run

was begun with this final individual as one of the initial individuals. For this new run, however,

the fitness was taken as the average fitness of an individual over four runs instead of merely a

single run. The averaging of the fitness over four runs helped eliminate the possibility of an

individual having a high fitness due simply to lucky placement of the food. Using this averaging

method to determine fitness was only used in primed populations because it increased the time

of a GP run fourfold. Furthermore, it was common for the generations that timed out to feature

an individual who had scored a high fitness as a result of a lucky run. By beginning a new run

with this individual in the initial population, it not only assured a more realistic fitness measure,

but it introduced an entirely new mix of randomly generated schemata that could potentially

benefit the stalled individual. Details of results produced by primed runs are given in the results

section.

Results: There were three types of GP runs made in an attempt to evolve a solution to the

snake game: runs using the initial function set, the final function set, and primed runs, also using

the final function set. The highest number of hits generated by a run using the initial function set

was 123. Three separate solutions were generated using the final function set, although none of

them were found to consistently generate a solution. The number of hits achieved by each

solution depended on the placement of the food. It was not until the method of "priming" a run,

was used that a consistent solution was generated. Of ten primed runs, using various initial

seeds, exactly five of them evolved a solution, all of which were consistent solutions over

multiple runs. Comparatively, over twenty runs using the full function set were made, and only

three of them produced solutions, none consistent.

Figure 2: Average result of ten runs

By Tobin Ehlis

http://www.gamedev.net/reference/articles/article1175.asp

