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ABSTRACT

AN ANALYSIS OF COOPERATIVE COEVOLUTIONARY ALGORITHMS

R. Paul Wiegand
George Mason University, 2003
Thesis Director: Dr. Kenneth A. De Jong

Coevolutionary algorithms behave in very complicatedemfjuite counterintuitive ways. Researchers and
practitioners have yet to understand why this might be tlse,daow to change their intuition by understanding
the algorithms better, and what to do about the differendegortunately, there is little existing theory available
to researchers to help address these issues. Furthereiitpirical analysis has been done at a component level
to help understand intrinsic differences and similaribesveen coevolutionary algorithms and more traditional
evolutionary algorithms. Finally, attempts to categodmevolution and coevolutionary behaviors remain vague
and poorly defined at best. The community needs directedtigetions to help practitioners understand what
particular coevolutionary algorithms are good at, whay e not, and why.

This dissertation improves our understanding of coevatuby posing and answering the question: “Are
cooperative coevolutionary algorithms (CCEAS) apprdprfar static optimization tasks?” Two forms of this
guestion are “How long do they take to reach the global optithend “How likely are they to get there?”
The first form of the question is addressed by analyzing theiformance as optimizers, both theoretically
and empirically. This analysis includes investigation® ithe effects of coevolution-specific parameters on
optimization performance in the context of particular @jes of potential problem domains. The second leg
of this dissertation considers the second form of the quedty looking at the dynamical properties of these
algorithms, analyzing their limiting behaviors again fréineoretical and empirical points of view. Two com-
mon cooperative coevolutionary pathologies are exploretilfustrated, in both formal and practical settings.
The result is a better understanding of, and appreciatigritfe fact that CCEAs anmeot generally appropriate
for the task of static, single-objective optimization. hetend a new view of the CCEA is offered that includes
analysis-guided suggestions for how a traditional CCEAhhine modified to be better suited for optimization
tasks, or might be applied to more appropriate tasks, givemature of its dynamics.






Chapter 1

Introduction

1.1 Evolutionary Algorithms

Evolutionary algorithms (EAS) are heuristic methods fdwis computationally difficult problems using bio-
logically inspired notions of Darwinian evolution. Theweabeen applied to a variety of problems, from static
optimization to job-shop scheduling. EAs frequently hameaalvantage over many traditional local search
heuristic methods when search spaces are highly modagrdisaous, or highly constrained. As such they
continue to be of great benefit for a large community of usetis such needs.

Unfortunately, there are problems on which EAs tend to perfpoorly, or for which no simple method for
applying them is known. One such situation occurs when prablhave very large search domains defined by
the Cartesian product of two or more, interacting subspdemsexample, this is often the case when one would
like to evolve some functional element in combination withinput data. In extreme settings, the space can be
infinite, and some method of focussing on relevant areasadeteby the EA. Another situation in which it is
difficult to apply an EA occurs when no intrinsic objective asare exists with which to measure the fitness of
individuals. This can be the case when evolving game-pipgtrategies, for instance. Finally, when searching
spaces of complex structures, EAs often have difficultieswio domain-specific modifications are made to
help direct the search.

For these kinds of problems, researchers have turned taeahaktension of the evolutionary algorithm:
coevolution. Coevolutionary algorithms have a lot of paitdnin terms of addressing the types of problems just
mentioned. As such, they have become an important areaeznasin the field of evolutionary computation.

1.2 Coevolutionary Algorithms

As the reader will discover from the first few chapters of thiwk, the subject of coevolution is a complicated
one. Researchers debate everything from pragmatic qossttmut the effectiveness of particular coevolution-
ary algorithms, to philosophical questions about what ttutes a coevolutionary algorithm in the first place. |
will touch on many of these debates in the coming chaptetgpdmhaps it is best to start with a very high level
answer to the basic question “what is a coevolutionary &lgor(CEA)?”

For now, the simplest answer is that a coevolutionary algaris an evolutionary algorithm (or collection
of evolutionary algorithms) in which the fitness of an indival depends on the relationship between that
individual and other individuals. Such a definition immeeigimbues these algorithms with a variety of views
differing from those of more traditional evolutionary atdbms. For example, one might favor the view that
individuals aren’t evaluated at all, but in fact their irstetions are evaluated. Alternatively, one might look at
individual fitness evaluation from the perspective of a dgitdandscape, given that the result of the evaluation
is contextually dependent on the state of other individual®ither case it is clear that they differ in profound
ways from traditional EAs.

As we will see in the next couple of chapters, coevolutionaligorithms vary widely. The differences
between cooperative and competitive coevolutionary #lyos are among the most fundamental distinctions.
In the case of cooperative algorithms, individuals are rdeg when they work well with other individuals and
punished when they perform poorly together. In the case wipetitive algorithms, however, individuals are



rewarded at the expense of those with which they interactugh there may be many types of algorithms that
fall into neither camp, most studies concern one or the pémet this dissertation is no exception: | focus almost
entirely on cooperative coevolutionary algorithms (CCEA$e reasons for this will become clear shortly.

1.2.1 The Hope of Coevolution

Coevolutionary algorithms offer a lot of hope to researsheand practitioners. At first blush they appear to
have many advantages over traditional evolutionary methiedr example, there is some reason to believe they
may be useful with very large problem spaces—infinite seapates in particular. The hope is that CEAs
will be able to focus the search on relevant areas by makiagtag changes between interacting, evolving
parts. Coevolutionary algorithms also appear to have aarddge when applied to problems for which no
intrinsic objective measure even exists. CEAs use subgatieasures for fithess assessment, and as a result
become natural methods to consider for problems like theckdlar game-playing strategies. Finally, in the
case of cooperative algorithms in particular, there is thteqtial advantage of being natural for search spaces
that contain certain kinds of complex structures, sincecbean the smaller components of the structure can be
emphasized. | will discuss these all of these advantage®ie detail in the next chapter.

Advantages like these lead researchers to view coevoarioproblem solvers as having great potential.
For example, they are considered by many to be potentialkg guowerful optimization tools. In the case of
competitive methods, the attractive notion ofaams raceencourages researchers. The idea is that continued
minor adaptations in some individuals will force compeétadaptations in others, and these reciprocal forces
will drive the algorithms to generate individuals with ewecreased performance. A similar idea exists in the
cooperative world, where parallel adaptive evolutionarngés help keep the algorithm driving along a (possibly
infinite) gradient. Moreover, in the case of cooperativevohgion there is the hope that complex structures
can be dynamically decomposed and solved in parallel.

Indeed, advantages like these have prompted practitidoeapply CEAs to a wide variety of problems.
Optimization applications include the coevolution of fagimplete sorting networks (Hillis 1991) and the co-
evolution of maximal arguments for complex functions (Bot#nd De Jong 1994). Machine learning applica-
tions include using CEAs to search for useful game-playtrategies (Rosin and Belew 1996) and employing
them to train dynamically structured recurrent neural oeks (Potter and De Jong 2000). There are many
more examples.

1.2.2 The Frustration of Coevolution

Despite the optimism that surrounds coevolutionary alljors as potential problem solvers, they more often
than not frustrate practitioners when they are applied. r@lage several practical disadvantages of these al-
gorithms over traditional evolutionary approaches thaiobge more clear in application. As we will see in
the coming chapters, the dynamics of coevolutionary systara often far more complicated than those of
traditional evolutionary algorithms, as well as frequenflite counter intuitive. The algorithms tend to exhibit
distinct and profound pathologies and are often much mansitbee to certain problem properties than their
more traditional analogs. Moreover, the subjective nabfifeness makes measuring progress quite difficult in
many cases.

The result of these disadvantages is that the algorithnes &l to perform well on even fairly “simple”
problems. What is worse, the connection between paranegisitisity and coevolutionary pathologies is not at
all well understood. Further, coevolutionary researcl@moach the field from different directions, applying
terms differently or, more often than not, ambiguously. &bof these reasons, researchers have become in-
creasingly more focussed on establishing some basic tiedrgroundwork for understanding coevolutionary
algorithms, but the gap between theory and practice isggtite wide.

The problem is that these early analyses have approachededif aspects of coevolution from different
perspectives, but no one has asked the most fundamentibofkstions: “What do these algorithmds?”—or,
if optimization is the goal, “Do they optimize?”



1.3 Understanding Cooperative Coevolution

My goal with this dissertation is to back up, study a simpkssl of algorithms in a simple context, and use
a multilateral analytical strategy to attempt to answerrttest basic questions about coevolution first. This
section first motivates why such an understanding is nedled,describes my strategy and methodology for
obtaining answers.

1.3.1 Motivation

The next chapter will make clear the degree to which coelmiutas become increasingly the focus of an-
alytical research. Still, theory for coevolutionary cortgdion is in its infancy. The studies in the literature,
discussed later in the dissertation, while certainly @afgmuch in the way of promise for a greater understand-
ing of coevolution, do not ultimately as yet provide muchlie tvay of constructive advice for practitioners.
What remains is to understand why this might be the case, bahange our intuition by understanding the
algorithms better, and what to do about the differences. sAdften the case, there is still a sizable gap be-
tween theory and practice of coevolution. What is speclfiaadeded is to provide a better understanding to
practitioners of what coevolution is good at, what it is rastd why.

The main point of this dissertation is to focus analysis &f fuestion squarely at a subset of coevolutionary
algorithms: cooperative coevolutionary algorithms. Indsing, the reader will see that cooperative coevolu-
tionary algorithms have been frequently misapplied, anéwa viewof what they do should be considered by
future researchers. In my final chapter, | will offer sevesécific high level suggestions for what such views
might be.

1.3.2 Strategy and Methodology

This dissertation seeks to take a step back, look at coéeplirt the simplest of possible settings from the per-
spective of an engineer that wants to use a tool, an engihaewants to know: “What does this todd?” or
“For what is this tool useful?” | will call this question théthdamental question of coevolution”. My method
consists of taking this abstract question and refining it twarspecific, answerable questions in particular
contexts. The high level strategy is one that combines &tyadf theoretical research tactics (primarily evo-
lutionary game theory, combined with some run time analygith empirical component analyses of real, but
simple CEAs on several levels. The goal is to make the gapdegtwheory and practice smaller by attempting
to address the specific forms of this fundamental questi@ppropriate contexts.

While competitive coevolution may in some sense be a maracdiite prospect for study, given its historical
emphasis and its intrinsic interest as a model in and offjtgelk also significantly more complicated than
cooperative CEAs. Since the evidence that thus far exigigesis that even CCEAS can be quite complicated to
understand, it seems prudent to start there. This work cirates on answering one aspect of the fundamental
guestion for cooperative coevolutionary algorithms: “@operative coevolutionary algorithms optimize?”

In fact, one naive and simple answer to the fundamental igumest cooperativecoevolution is that the
algorithms arestatic optimizers They are, after all, very frequently applied to static oytiation problems.
But is this really the case? What does this even mean, giarvitiually any heuristic could be applied as a
type of optimization algorithm, whether appropriate totsactask or not? These are important and practical
guestions and, as a result, this question of whether or n&A3Care static optimizers is the aspect of the
fundamental question on which I will focus. Importantlyetbentral theme of the dissertation is to answer
this question resoundingly that CCEAs are not, by natuegicsbptimizers. This theme will be expanded by
first treating thenmas optimizers and analyzing them with respect to their perforoe on static optimization
problems, re-posing the fundamental question as “how wellheéy optimize?” This view uncovers salient
points about properties of problem domains, as well as tegdehoices affected by those properties. | then
reverse the picture and offer theoretical and empiricalevie that the algorithms attempt to seek a form of



“balance” in a variety of ways, and this may or may not coroesbwith an external notion of optimality
(depending on the problem). In the end, it is my suggestian phactitioners either change the problems to
which they apply CCEAs, or modify them such that they are ngea&red toward static optimization.

1.3.3 Contributions

This thesis contributes several key items to the field of chaionary computation (CoEC).

e The largest and, to date, most complete hierarchy of degigites available for coevolutionary algo-
rithms is provided. This hierarchy, illustrated on page B3explicated in some detail in Chapter 3,
offering a relatively thorough map with which practitioseand researchers may make more informed
choices when constructing such algorithms.

e A much greater understanding of the relationship betweehl@m decomposition and representational
decomposition is provided. In so doing | dispel common nrigeptions about the effects non-linear
relationships have on search performance, and provide oworgtructive information about these rela-
tionships in terms of coevolutionary search. In additioptdvide analysis and advice for what kinds of
interaction methods to use under these kinds of problernatiditions.

e Most importantly, the dissertation provides much needsiyht into the role and purpose of coopera-
tive coevolutionary algorithms. These algorithms are pydiad when tasked with static optimization.
Indeed, researchers should reconsider such applicatoribese algorithms, or consider modifying the
algorithms. In fact, the analysis in Chapter 5 helps us wtded this conclusion, but also provides infor-
mation for how to modify the algorithm in more directed antia@al ways to accomplish research goals.
Some example modifications are briefly discussed in Chapter 6

In addition, I've attempted to make certain that my resedotlows a clear methodological framework,
establishing a working model for how such analysis can belected in the future. This framework includes
the following ideas.

e A high level question is presented at the start of the thesid,this question is used to frame the entire
work. More specific, researchable questions are genergtémbking at the more basic question from
different perspectives, and hypotheses are produced fregetmore specific questions.

e Instead of investing all of my effort in a single analyticabt, | consider a multilateral approach that
combines several, very different formal methods. Theséaust, which include randomized algorithm
analysis and dynamical systems analysis, are applied fierelit questions in order to elicit answers
appropriate to those questions.

e The bridge between theory and practice is built with empiriesearch. Indeed, in the thesis there
are many empirical studies for exactly this purpose; howeweall cases empirical researébllows
theoretical research. The theory is useduaethe empiricism.

1.4 Organization

The remainder of the dissertation is arranged as follows.

Chapter 2 provides brief but necessary overviews of evaiatly computation, as well as coevolutionary
computation. A relatively detailed survey of analyticasearch in the field of coevolutionary computation
offered. The result is high level background material halpdr providing context and foundations for under-
standing the rest of the dissertation.



Chapter 3 categorizes coevolution in a much more detailgd pravides detail regarding the CCEA archi-
tecture used as the basic algorithm for this research, @sgpts some notational and terminological definitions.
The class of algorithms, as well as the motivation for ushegr will be clarified in this chapter.

Chapter 4 considers the presented CCEA model as a statiip@ti It begins by first describing how it can
be applied to static optimization problems, then descnibeshanisms of the model that allow it to possibly gain
leverage over traditional EAs in some contexts, using bothtime and empirical analyses to help the reader
understand these advantages. The chapter then exploréssvpleshaps the most complicated and interesting
distinguishing aspect of the CCEA from traditional EAs: thechanisms of interaction required to assess
fitness. Finally, the challenges facing those applying CE€EAsuch problems are discussed in some detail.
The result is a better understanding for how properties@ptioblem affect the choices design engineers must
make with respect to the mechanics of how individuals imtef@r fithess. Several common myths about such
properties are dispelled.

Chapter 5 reverses the picture entirely, rejecting the lgingea that CCEAs are intrinsically built for
static optimization. | present a dynamical systems apfroasing the tools of evolutionary game theory, in
order to begin to describe some of the limiting behaviorsheke algorithms. This theory suggests that the
algorithms tend toward various forms of “balance” betweepytations, which may or may not have anything
to do with optimality of the search space as design engirtbark of it when they apply the algorithm to static
optimization problems. It concludes by constructing sii@eind reasonable counter examples for real CCEAS,
and demonstrating that the algorithms behave differehtiyn ione might expect in such circumstances.

The final chapter delivers the decisive message of my workmwstchangethe way we apply and study
CCEAs in the future; amew viewof these algorithms is required if we are to understand hay thork, and
when they will be successful. The chapter opens the doorlkmwfaips of the fundamental question. The
responses offered here are to either change one’s use olgthrtlan, or change the algorithm itself. Both
possibilities are briefly explored at a high level, making tlemonstrable point that CCEAs are not frustratingly
otiose tools, they are merely misapplied ones. | end witmalogion discussing in more detail how my analysis
contributes the coevolutionary computation communityeéneyal.






Chapter 2

Background

This chapter provides basic background material in ordgivi®the reader some context for understanding the
analysis discussed later. By the end of the chapter, therefduld have a broader conception of the field of
coevolutionary computation, and the work that has been tiboaderstand it.

This background chapter is organized as follows. The firstices are brief overviews of evolutionary
coevolutionary computation. Since my work is analyticahature, the third section is a survey of historical
and contemporary analytical research into coevolutiomdgprithms. | leave the specifics of the architecture
on which my analysis centers for the next chapter.

2.1 Overview of Evolutionary Computation

The field ofevolutionary computatio(EC) is one that merges inspiration from biology with thelsceand goals

of computer science and artificial intelligence. The fieleis powerful abstractions of Darwinian evolutionary
models that allow for a wide range of applications from cqrtiaal models of biological processes to technical
applications in problem solving. Such methods have prohemselves to be interesting complex systems
to study and, perhaps more importantly, often very robusblpm solving mechanisms. Nature-inspired, yet
honed and designed by engineers, algorithms based on Esal{sdevolutionary algorithmgEAS)) frequently
demonstrate uncanny adaptive prowess when applied toutliffimoblems where search spaces have properties
that make other, more traditional methods, less tenabtg, (eck of continuity, high degrees of modality,
highly constrained sub-spaces, etc.). The fascinatingr@and often surprising successes of EC have drawn
researchers to the field for the better part of half a century.

EAs are powerful heuristic methods for solving many typesarfiputationally difficult problems. They
typically draws their power from stochasticity and pad@l®a. While there are many different types of EAs,
most EAs have their most basic elements in common: they giydregin with a population of potential
solutions, make small changes to this population, and pof@nges that are objectively more “fit”. As such,
they (hopefully) tend to “evolve” better solutions gradyabver time. Regardless, all EAs share Darwin’s
notion of “survival of the fittest” at some level, and it is pigely this property that engineers exploit in order
to use these systems to solve problems.

An abstract evolutionary algorithm will be presented. Wihet algorithm abstracts are the major details
that make a particular EA, but what it retains are the basexatits connecting all EAs: heredity, survival of the
fittest, and at least some element of stochasticity. Afsrusing this abstraction, | will offer a short discussion
on two very different canonical EAs in order to give the raagteme perspective about the choices available
to algorithm designers. Finally, | conclude the overviewe®f by suggesting some of the ways in which these
algorithms fail to serve practitioners, urging them towaxtensions such as coevolution.

2.1.1 An Abstract Evolutionary Algorithm

Since there is evidence that some notion of EC has been kroowarts of the computer science community
for over 50 years (Fogel 1998), it should be unsurprising thany such algorithms exist. Nevertheless, a
more modern view of EAs is a more unified view, concentratinghe similarity of these algorithms, rather
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than enumerating them as separate algorithms altogetleeddBy 2004; Michalewicz 1996). Indeed, it is the

choices for how individuals in populations are represeraésdvell as how populations are formed, altered, and
selected from that determine the specific type of EA beindgempnted. A generic form of a basic EA is shown

below in Algorithm 1. This form will serve as a template fogatithms | discuss throughout this document. As

should be clear shortly, the many types of existing (antistitliscovered) EAs are possible by specifying the
various components of this general algorithm. First | pnesige pseudo-code for the algorithm (below), then |

will discuss each of its major elements one by one.

Algorithm 1 (Abstract Evolutionary Algorithm).
1. Initialize population of individuals
2. Evaluatepopulation
3. t:=0
4. do
4.1 Select parentfrom population
4.2 Generate offspringrom parents
4.3 Evaluateoffspring
4.4 Select survivorgor new population
45t =t+1
until Terminating criteriais met.

Initialization

The first step in this algorithm, initialization, is oftenryesimple and is tied very strongly to the representation
choices for individuals made by the algorithm designerstialization can be done for a variety of reasons
and in a variety of ways. For example, it can serve the functibrefining samples that have already been
discovered by some other search process; however, muchfraquently initialization is random.

In random initialization, individuals are distributed ciomly about the search space defined by the repre-
sentation of the individuals. Such random initializatiologedures offer the hope of providing the algorithm
with diverse information about the search space.

Representation and Evaluation

To determine how evaluation is performed, design engineerst understand the problem domain and the
representation chosen for this domain. Individuals arenathought of agncodedorms of potential solutions

to some problem. As such, these potential solutions tylgicalist bedecodedsomehow in order to measure
their fitness in order to carry out evolution. This processl@foding and measurement is what is meant by
evaluation steps 2 and 4.3 of Algorithm 1.

While evolutionary algorithms have been applied to manyl&iaf problems, the most obvious and natural
application is one of optimization. In such domains, indiidals are encoded to represent potential arguments
to the optimization problems, and evaluation consists obdang these representations and determining fitness
via some kind of objective assessment. By gradually refipioigntial solutions to such a problem, an EA is
often able to produce increasingly more optimal solutiover dme.

Two examples may serve to make this clearer. First, indalglmay represent arguments for an optimiza-
tion problem as binary strings. In such a case, individuail this string-based representation may have to be
decoded into real-valued arguments and given to the fum@tiarder to obtain the objective function value.
Alternatively, individuals may represent the argumentgatly as a vector of real values. Again, this vector
must be extracted from the individual and given to an objediiinction in order to obtain fitness.



Selection

There are essentially two different kinds of selection thatur in an evolutionary algorithm: parent selection
and survival selection. In either case, selection typjcailolves some kind of biased consideration of the
fitness values assigned to individuals during evaluatigoreéerence toward more highly fit individuals.

Selection methods in EAs can vary widely, using one of mapgsyof parenbr one of many types of
survival selection, but not necessarily (and not typidaiigth'. Selection methods can be very greedy (in the
sense of fitness-bias) or quite mild, stochastic or detastiin In some informal sense they can be seen as
directors of the evolutionary path.

Representation and Genetic Operators

Retaining the notion of heredity from biological evolutisnggests that offspring are like their parents on
a genetic level, but not identical to them. The process byclwliffspring in an EA are constructed is one
that involves the application of operators that, like theldagjical process, preserve this notion of heredity by
transferring altered genetic material from parent to affgp EC researchers refer to the operators responsible
for generating offspring agenetic operatorsand they often take the form of abstract of notiongmiftation
andrecombinationfound in biological genetics. Like evaluation, genetic igpers are tied intimately with an
individual's representation.

In mutation, an offspring is altered from its parent (ostielysdue to an error while copying genetic mate-
rial). In cases of binary representation, this may meaury &tita here and there being toggled from zero to one
or vice-versa. With real-valued representations, this maan randomly generated offsets in argument val-
ues. Whatever the specific mechanism and interpretatiemtibtract idea is the same: an offspring’s genetic
material undergoes some change due to an outside force efldach

Recombination is somewhat different. Here two or more gagenes are combined to produce offspring
with some traits of both (all) parents. For example, ofisgriepresented by binary strings may be produced
by combining substrings from two parents, while in reakies representation offspring may be geometrically
quite similar to both parents in terms of their Euclidiandtions in the argument space.

In both cases, successful EA genetic operators tend taretainotion ofheredity offspring are similar,
but not identical, to their parents on a genetic level. Onéath kinds of operators may be employed at
varying levels in any given EA. Additionally, in both caséette is a vast number of such operators, tied to the
representation chosen.

Termination

How one stops an EA varies as well, though there are somévedyasimple, traditional criteria. For example,
running for a fixed number of time steps (often calggmherationyis common. It is also not unusual to run the
algorithm until the degree of change in the population hésrfdoelow some threshold. The choice of when to
stop (or often, when to re-start) an EA, coupled with choigkgopulation sizes, often corresponds with how
design engineers wish to split up the work-load of the seahnchv parallel the search should be, how many
resources one wishes to invest in a given search, etc.

In analytical settings, one often is interested in runnin@lgorithm until the first time the global optimum
is reached. While this is usually an unhelpful stoppingetidtn in practical settings (since the global optimum
is often unknown), answering theoretical questions about long one expects to wait for such an event can
be informative (Wegener 2002).

1An alternative viewpoint suggests that there are alwayls fetection methods, but typically one is a uniform deterstimselection
method.
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2.1.2 Canonical EAs

The notion of what choices are available to EA designers abatract level should be clear now; however, itis
from the instantiation of these choices that particular Easges arise. These classes vary in how they can best
be applied, as well as how well understood they are for pdaticdlomains. Theory for the different algorithms
takes on quite different forms and is often very particutardpresentational and/or operator specifics. No one
theory yet exists to unite them. Nevertheless, understgridbw these different EC approaches work and how
to apply them has developed a great deal over the past thiarsy

A discussion of some specific examples of particular evohary algorithms will clarify how the choices
| just discussed can lead to different kinds of algorithmerh@ps some traditional EAs offer the best kind of
examples. They have very characteristic design choicelsthay are easy to find in the literature. Therefore, a
brief, high level discussion of two very different canoniciasses of EAs is provided below: genetic algorithms
and evolution strategies. After reading about these twegyd algorithms, it should be clear that, while an ES
and a GA may share some basic inspirational concept, as svileasame abstract algorithmic structure, they
are very different algorithms, both in instantiation angbimlosophy of application.

Genetic Algorithms

Arguably the most well-known class of EAs are genetic athans (GAs), pioneered by Holland (1992) and
later popularized by Mitchell (1997, Goldberg (1989, Ded@¢h975). GAs are chiefly characterized by their
representation and selection method. Most GAs represéntdnals using a binary encoding of some kind and
select individuals using a stochastic method that biadest&m by preferring more fit individuals over less fit
ones by a degree proportional to their respective fitnesss. sthcalledfitness proportionatselection tends to
offer a relatively weak form of selection in which the effeeness depends a great deal on the content of the
population, as well as properties of the problem domain.

The binary nature of the representation in GAs strikes ar ddterence betweemgenotype(the genetic
makeup of an individual) anghenotype(the expression of those genes), as well as the encodirugfichec
transformations needed to navigate between the two. Nmless, the genotypic aspect of this representational
choice calls to mind some rather traditional and obvioustgemperators, as well. Often GAs are characterized
by mutation operators that either flip a randomly chosenrbi binary string (e.g.,-bit mutation$ or, more
commonly, consider each bit independently for flipping ahecestablished probability level (so-callbd-
flip mutation). Crossover is generally performed by randomly deterngirone (-point crossovei(Holland
1992)) or more1f-point crossovefDe Jong 1975)) points in two binary strings and swappingrtervening
pieces. Other forms of crossover operators include oneshinharespective positions on the binary strings
are considered for swapping independentiniform crossove(Syswerda 1989) angdarameterized uniform
crossover(Spears and De Jong 1991)).

From a dynamics point of view, there are two typical GA me#hogenerational and steady-state. In the
former, parents are selected (again, typically by propodie selection) and used to generate an offspring pop-
ulation of the same size as the parent population, totafijacing the older generation with the new (Holland
1992). Preserving one or more of best members of the populatialso not uncommon (generally referred to
aselitism) (De Jong 1975). In a steady-state GA, parents are alscatjypielected using a fitness proportionate
method, but offspring are generated one at a time and retllacgorst member of the population (Rogers and
Prugel-Bennett 1998; De Jong and Sarma 1992; Syswerda Y@¢ifley 1989). Generally this replacement is
handled by removing the worst member after insertion, bcibh slecisions can vary.

Using a genetic algorithm evidences a kind of philosophitedice on the part of an engineer employing
such a method: it is “easier” to map to and from a more genejlesentation than it is to design problem
specific genetic operators. GAs are very portable algosttsave for the genotype to phenotype mapping, and
have often appeared to work moderately well on a large gréppoblems when very little is known about the
search space of the problem in any representation. lIts elefieis center around the fact that the utility of the
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genetic operators is highly dependent on the mappings thst be done, and thus the success or failure of the
algorithm is bound to such decisions.

Evolution Strategies

Another very powerful and very common class of EAs are stedalvolution strategie§ESS) (Schwefel 1995;
Rechenberg 1973). Although ESs commonly employ a realedahepresentation (that is, each individual
can be seen as an array of real numbers) and operators dpf@dpr such a representation, perhaps their
most defining characteristics are their distinctive dyre@miThe simplest view of an ES is one that considers
selection in two phases: an offspring population is prodifoem a parent population (often of different sizes),
then a new parent population is produced from one or bothedfetlpopulations. Parents contributing to the
offspring pool are often selected uniformly at random fréwa potential parents, while survival is accomplished
by truncation. That is, the new parent population consistly the best of the competing individuals.

As the phrase “one or both of these populations” in the previparagraph implies, ESs (like GAs) have
two different types of dynamics (here called “strategieglus strategyandcomma strategyln a U+ A) ES,
the A offspring compete for survival directly with each othard the 1 parents. Here thg most fit surviving
individuals are used to populate the next generation ouh @ggregate population consistingof A individ-
uals. Things are far less aggressive inuA) ES, where parents have no hope of making the next generation
Truncation survival selection is performed only on Meffspring, suggesting (of course) that> .

Mutation is often the only genetic operator employed for &, tiough certainly crossover operators exist
and are not infrequently applied. By far the most common trteoperator is one in which each gene is
modified by some delta selected from a Gaussian distributti@mean of which is 0, and the standard deviation
of which is typically adapted as the run proceeds. The sgsaifihow this adaptation works is beyond the scope
of this minimal description, so the reader is referred taeotources for this information (e.g., Beyer (2001,
Back (1996, Schwefel (1995)). Recombinatory operatarkigie something very similar to uniform crossover,
as well as more representation specific operators suge@setric crossovemwhere the genes are treated as
points inn-dimensional space and offspring are produced in the hypersubspace defined by two such points
(the parents) (Back 1996).

Evolution strategies have often proved to be quite goodadilpms that involve optimization of real-valued
functions. Their use intimates a more focussed approacblting particular kinds of problems, and suggests
that the engineer understands the nature of the representgace to some degree (at least to the extent
that a real-valued representation is more appropriate)weder, its rigid representational assumptions and
corresponding operators diminish its portability to somiet.

2.1.3 A Need for Something More

One aspect of analyses of EC, both theoretical and empitle has emerged is that EAs are by no means a
panacea for complex problems. While a well-tuned and apjatay designed EA can often perform robustly
on many problem domains, finding such an EA is often less tlimoos. It is not uncommon for design
engineers to easily construct an EA that performs decently problem, while finding it frustratingly difficult

to design an EA that truly performs well. Moreover, the mooenplex the representation, the harder it is for
one to gain intuition about the effects of operators andctiele methods used in the algorithm.

Still worse, some problems seem to admit no real objectivasme, and it can be very unclear how to
apply a traditional, single-population EA. Engineers aeefl with an important question: when one is faced
with such problems, does one reject EC entirely, or does@&meto nature to find a way of augmenting these
algorithms to address these issues?
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2.2 Overview of Coevolutionary Computation

Indeed, with varied success, nature-inspired heuristis BE#ve been applied to many types of difficult problem
domains, such as parameter optimization and machine tegarioth the successes and failures of EAs have
lead to many enhancements and extensions to these systams; #atural, and increasingly popular extension
when problems domains are potentially complex, or when difficult or impossible to assess an objective
fithess measure for the problem, is the class of so-catieslolutionary algorithm§CEAS). In such algorithms,
fitness itself becomes a measurement of interacting ingil&d This ostensibly allows the potential for evolving
greater complexity by allowing pieces of a problem to evaivéandem, as well as the potential for evolving
solutions to problems in which such a subjective fitness indgct, be necessary (i.e., game playing strategies).

This section provides a brief overview of CEAs. | will keejntls at a very high level, using the first part of
the section merely to define coevolution since a much mor@afgpdiscussion of the particular framework used
for this dissertation will be introduced in the next chaptafter defining coevolution, | will offer high level
discussions of cooperative versus competitive coevaiytibe advantages coevolution may offer, and finally
some of the challenges facing coevolution itself.

2.2.1 Defining Coevolution

Evolutionary biologist Price (1998) definesevolutionas “reciprocally induced evolutionary change between
two or more species or populations.” While this definitiopé&haps intuitively quite clear from the biological
perspective, the term “coevolution”, as it is used in thel@i@nary computation community, is far from a
luminously or uniformly defined one. Researchers studyiogvolution debate whether or not the term can
be applied when there is only one population, for instaneesus when there are many. Some researchers
suggest that the problem’s nature itself is imbued with @&t characteristics are required to consider an al-
gorithm “coevolutionary”, and that some algorithms typliic@alled CEAs, are not coevolution when applied
to non-coevolutionary problems. Regardless, there is onawn property about which most, if not all, co-
evolutionary computation (CoEC) researchers agree: ichay fitness isubjective(Watson and Pollack 2001)

in the sense that it is a function of its interactions withestimdividuals.

This realization does not clarify the distinction much, lewer. What precisely is the nature of the inter-
action? Do the interacting individuals have to be in différpopulations? Do they have to be current, or can
they be plucked from the history of some extinct populatiém@ algorithms that apply selection methods that
are inherently subjective (as, for instance, fithess propuate selection is) “coevolutionary”? These are all
reasonable questions, and there is very little beyond s@mastic philosophical position that can be used
to differentiate some groups from others in these ways. ¢ snatters, it is best to be pragmatic, however,
and suggest that distinctions can be made only insomuchegshidp elucidate study. Therefore, | will not
eliminate alternative versions of a definition for coevmanf but will instead clarify terminology based on such
pragmatism. | will, however, provide much more detail akthese issues in the next chapter.

The real trouble with understanding the term is exactly thhe&ee of the algorithm’s inspiration: biology.
In biology, all evolution is coevolution by the above property, becauswithgll fithess is a function of other
individuals by the definition of evolution. In EC, howevegrditional EAs use an atrtificial, typically objective,
fitness measure—one that is very alien to the biological dvofthus, the distinction between objective and
subjective fitness becomes necessary to us, merely by wftie way in which EAs are applied to problems.
Since it is problem solving in which | am primarily interedtdt makes sense to define terms accordingly,
by their utility in engineering: by what and how they meassoeething. In order to build computational
models of evolution that are meant to solve problems, one messure individuals in a population, that is
establish a measure of value for a given representation aftengial problem solution, or component of a
problem solution. The following four definitions are prosdlto help the reader understand the different types
of possible measures for individuals.
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Definition 1. Objective measure A measurement of an individual abjectiveif the measure considers that
individual independently from any other individuals, asftbm scaling or normalization effects.

Definition 2. Subjective measure A measurement of an individualdsbjectivaf the measure is not objective.

Definition 3. Internal measure —A measurement of an individualiisternal if the measure influences the
course of evolution in some way.

Definition 4. External measure —A measurement of an individual ésternalif the measure cannot influence
the course of evolution in any way.

Understanding, at a high level, what is meant by the varigudskof measurements available to the individ-
ual helps one gain a better understanding of EAs and CEAsexXample, it is clear from above that the term
“fitness” as it is applied by people in the EC community, isaha aninternal measureExternal measures for
traditional EAs might include tracking statistics such asamfitness of a population, or best-so-far information.
Indeed, a popular statistic reported is the extebwst-evermeasure of a run (the most optimal result found
during the life-time of the search).

Given the above definitions, it is tempting to define coevotugas follows:

Definition 5. Coevolutionary algorithm— An EA that employs a subjective internal measure for fitness
assessment.

Since fitness proportionate selection merely normalizestpulation’s fithess value, | can eliminate such
an operator as an instigator of ambiguity for denotationappses; however, there are still other mechanisms
that create ambiguity, as | will explain in Chapter 3. In an tBA simplest way to differentiate species (groups
of non-interbreeding individuals) is by employing separpbpulations. Thus, a broader question that still
stands is the following: can one call it “coevolution” if tieeis only one population? In the strict biological
sense, one cannot be so general since employing multipldadams is explicitly part of the definition. How-
ever, historically, EC researchers have done so, recaognihiat these algorithms share common properties
with multi-population coevolutionary models (primarilgige-theoretic properties) (Ficici and Pollack 2000c).
Moreover, as has already been mentioned, the biologicalitiefi cannot be directly applied in any event, since
the notion of fitness differs so dramatically between EC aontbgy. Given this fact, the historical precedent,
and the overlap in dynamical characteristics, it makesestmeetain the term for single-population models that
use subjective fitness, though this dissertation will famusnulti-population models almost exclusively, so this
distinction is unimportant to the analysis | present. Astf@ remaining grey area, it is left up to the reader
to consider whether augmentations to traditional EA methmmhstitute sufficient interdependence in fitness
assessment to be considered “coevolutionary”. It sufficesay that the line between a single-population CEA
and an augmented traditional EA is a grey one.

To be clear, in the case of this dissertation, the teoevolutionary algorithnalmost exclusively refers to an
algorithm in which there are two or more populations, and ol individuals are awarded fitness values based
on their interactions with individuals from the other pagtidn(s). In the rare situations when single-population
CEAs are discussed, they will be so qualified.

2.2.2 Cooperative versus Competitive CEAs

If CEAs are distinguished from traditional EAs on the badisheir use of subjective fitness, that individuals
are evaluated based on their interactions with other iddads, what is the nature of these interactions? The
answer is: it depends. Itis not hard to imagine algorithmshith individuals or populations compete with one
another. For example, consider a predator-prey model ictwinidividuals in one population represent some
kind of device (e.g., a sorting network) and individuals mo#ner population represent some kind of input
for the device (e.g., a data set), and the object of the firguladion is to evolve increasingly better devices
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to handle the input, while the object of the second poputaisoto evolve increasingly more difficult inputs
for the devices. Such algorithms are generally referredstocompetitiveCEAs. Alternatively, it is equally
straightforward to consider an algorithm where each pdjmnaepresents a piece of a larger problem, and it
is the task of those populations to evolve increasingly nfibrngieces for the larger, holistic problem. Such
algorithms are generally referred to@mperativeCEAs (CCEAS).

Historically, competitive CEAs lead the way with the senhikidlis (1991) paper on coevolving sorting
networks and data sets in a predator-prey type relationstiliis evolves sorting networks by using an opposing
population of coevolving data sets. In this case, an ind&idn one population, representing a potential sorting
network, is awarded a fitness score based on how well it sprépponent data set from the other population,
and individuals in the second population represent patedéta sets whose fitness is based on how well they
confuse opponent sorting networks.

In fact, most work in coevolutionary algorithms has beerhmarea of competitive coevolution. Most pop-
ularly competitive coevolution has been applied to gamgiptastrategies (Rosin and Belew 1995; Rosin and
Belew 1996; Rosin 1997; Pollack and Blair 1998). Additidp#lngeline and Pollack (1993) demonstrate the
effectiveness of competition for evolving better soluidry developing a concept of competitive fithess to pro-
vide a more robust training environment than independemasg functions. Competition was also successfully
harnessed by Schlierkamp-Voosen and Muihlenbein (199fcilitate strategy adaptation in their so-called
breeder genetic algorithms. Competition has played a pédl in attempts to coevolve complex agent behav-
iors (Sims 1994; Luke, Hohn, Farris, Jackson, and HendI@BXL9inally, competitive approaches have been
applied to a variety of machine learning problems (Pare@iggt1Juillé and Pollak 1996; Mayer 1998).

Potter and De Jong (1994) opened the door to research onratiepeCEAs by developing a relatively
general framework for such models and applying it, firsttébis function optimization and later to neural net-
work learning (Potter and De Jong 2000). In Potter's modmtheopulation contains individuals representing
a component of a larger solution, and evolution of these ladipas occurs almost independently, in tandem
with one another, interacting only to obtain fithess. Suchoagss can be static, in the sense that the divisions
for the separate components are deci@edori and never altered, or dynamically, in the sense that pdpuokat
of components may be added or removed as the run progresses.

Moriarty and Miikkulainen (1997) take a different, somewhzore adaptive approach to cooperative co-
evolution of neural networks. In this case a parent poputatepresents potential netwopkans while an
offspring population is used to acquire node informatiotan® are evaluated based on how well they solve a
problem with their collaborating nodes, and the nodes vecaishare of this fitness. Thus a node is rewarded
for participating more with successful plans, and thusivesefitness only indirectly.

Potter's methods have also been used or extended by otlearchsrs. Eriksson and Olsson (1997) use
a cooperative coevolutionary algorithm for inventory eohbptimization. Wiegand (1998) attempts to make
the algorithm more adaptively allocate resources by atigwnigrations of individuals from one population to
another in a method similar to the Schlierkamp-Voosen antilkbtibein (1994) competitive mechanisms.

The differences between these two algorithms are neitheommor clear. Purely competitive CEASs can
behave quite differently than purely cooperative ones,bétihg different pathologies, as well as different
advantages. However, once a particular algorithm and enotdlomain are dissected for analysis purposes,
it becomes clear that there are often elements of both catiperand competition in many CEAs. Indeed,
when one considers single-population CEAS, it is difficaldtscern the difference between competition as a
result of selection within the population, and competitasa result of the relationships in the subjective fitness
assessment.

2.2.3 Advantages of Coevolution

Intuitively, coevolution offers a great deal of promise asheuristic algorithm in many domains where more
traditional evolutionary methods are bound to fail. Whetthes intuition is justified or not is the subject of
much debate and, in part, is the impetus for the current withis section will briefly consider three categories
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of problem domains that may benefit from coevolution andflyridiscuss the issues involved with each of
them: problems with large (infinite) Cartesian-productcgsa problems with no intrinsic objective measure,
and problems with complex structures.

In all three cases, the hope of coevolution is to produce amyn typically referred to as amrms race
Informally, in an arms race increased performance is géeeiay each population making incremental im-
provements over the others in such a way that steady progrpesduced. The idea is that the systerdrisen
to better parts of the search space by these reciprocal i@prents, each getting better and better over time.
Consider again the predator-prey example: the prey evolvert faster; then the predator population is forced
into evolving behaviors that thwart this advantage; thengiey evolve better hearing to detect their nemeses,
and again the predators must change. The hope is that, imth®&eth populations have exceptional attributes.

Large (Infinite) Cartesian-Product Spaces

In a traditional single-objective optimization problenojugions are argument values that produce the highest
function value of all arguments. Of course such problemshzame large domain spaces; however, for some
problems the search space is particularly and exceptiotatyje, even infinite. When this is the case, it is
reasonable that no optimization procedure can be expezfauitthe result in any reasonable time, and instead
practitioners become interested in finding interestingspdces of the total space.

Often this takes the form of some kind of Cartesian-prodpetcs, as was the case with the example of
sorting network and data sets. The total space is quite.ldngfact, if we had to search the space of possible
networks that correctly sort every possible data set wittaditional EA, the result would obviously be less
than useful. One potential solution is to select a specifaticssubset of data sets that serve as useful teaching
examples (Rosin 1997); however, the result will be an EAighaery well-suited for those particular examples,
but not necessarily other data sets. Another potentiakiealis to use a random set of examples; however,
since the example space is so vast in many cases, the resfiieristhat the EA is unable to learn anything
useful at all.

Coevolution offers something different: a problem solmattadapts both parts of the product space to-
gether. The hope is that the algorithm will focus on partheféxample space that are useful and interesting,
learning sorting networks that serve these exemplary dasavery well.

Problems with No Intrinsic Objective Measure

Still more complicated are problems in which there is namsic objective measure. Such is often the case with
game-playing strategies for instance. In many instancseg havéntransitive relationships that complicate
objective measurement; strategycan beat strategl, b can beaftc, andc can beat. For example, in Ro-
denberry’s Star Trek, James Kirk, a relatively poor cheaggsl was able to beat Spock, a relatively advanced
player, simply because he confounded Spock’s expectatippaying “illogically”. Certainly it is not hard to
imagine players that Spock could beat, even though Kirk mereeild be able to do so. Such is the nature of
these intransitive relationships.

These intransitive relationships may comprise only mirmtipns of the strategy space, or may permeate
the entire space. Especially in the latter case, is it thégjaalearner to develop a strategy that beats as many
other strategies as is possible, or is it the goal to bedegies that are considered quite good? Supposing the
former, how would a traditional EA solve such a problem? Agaierhaps a suitable teaching set is used and
the same brittle result is obtained, and again, perhapsd@napponent is used with the same poor result.

Without an intrinsic objective measure, coevolution affesomething even more than co-adaptation: an
implied answer to the question of “What is best”? Since (adlll discuss later in the dissertation) these
algorithms are predisposed toward Nash equilibria, cogiani offers the opportunity to find strategies that are
as non-dominated as is possible.
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Complex structures

While traditional evolution may be fully applicable to stasingle-objective optimization problems of arbi-
trary complexity, the decompositional nature of coevolut{whether implicit or explicit) may afford CEAs
with some advantages for dealing with problems that are t@mput highly structured. Assuming that the
algorithm either endogenously or exogenously decompbsgsroblem in an appropriate way, it seems natural
that a CEA (in particular a CCEA) could coevolve the varioamponents independently more efficiently than
could a traditional EA evolve the entire structure.

Indeed, this has been the primary motivating factor for evafive coevolutionary approaches from the
beginning, starting with early attempts to perform optiatian tasks with explicit, static decompositions (Potter
and De Jong 1994). Soon researchers began to explore dedtrolit dynamic decompositions (Potter and
De Jong 2000), and even more recently CCEA approaches haleited this notion further, employing a
kind of shaping technique callesbmplexification(Stanley and Miikkulainen 2002; Stanley and Miikulainen
2002). Here the structure that is coevolved starts out graptl is gradually expanded to help direct the search
space more hierarchically from simple representationespéehere the search space is much smaller) to larger
representation spaces (where the search space is coedthgithe earlier parts of the search).

2.2.4 The pathologies of coevolution

Despite the idealistic hopes of the power of coevolutiomliaptions of CEAs (both cooperative and compet-
itive versions) often fail, or the algorithms turn out to @& Mmore difficult to tune than are traditional EAs.
The reasons for this lie partially in measurement probleaused by the use of subjective fithess and partially
in the often particularly complicated dynamics of coeviolnary systems. These two difficulties together can
lead to a system behaving incomprehensibly at times andichvwnogress measurement issues also make such
behaviors difficult to diagnose.

There are a variety of fairly traditional pathological dymaal behaviors for coevolutionary algorithms;
however, they tend to be poorly defined in the literature.lll@@scribe the historical terms here at a high level,
but later in the dissertation | will modify the terminologs well as discuss the pathologies in more detalil.

Perhaps the most common pathology is the so-caddies of gradientproblem, in which one population
comes to severely dominate the others, thus creating arssifpe situation in which the other participants do
not have enough information from which to learn (e.g., a sofald, new to the game of chess, attempting to
learn to play by playing a grand master at her best). Anothemeon problem igyclic behavior where intran-
sitivities in the reward system can allow one populationdag slightly to gain an advantage over the others,
then the others follow suit, only for the original populatito change again, eventually, back to the original
strategy. A similar, but subtly different pathology is tlméitmediocre stability also referred to as “relativism”
(Watson and Pollack 2001). Here stable limiting behavieithér fixed-point or cyclic) are obtained, but do so
at particularly suboptimal points in the space, from sontereal perspective. This is a kind of disconnection
between what the engineers have in mind and what the systels fiost natural. Finally, CEAs can have
focussing problemsften producing brittle solutions because the coevahatip search has driven players to
over-specialize on their opponent’s weaknesses. Defidiagnosing, and treating these problems has been at
the forefront of CoEC research.

The measurement issue mentioned above has also occupiedtalgal of attention of coevolutionary re-
searchers, who have appropriated the biological teed Queero help understand this diagnostic problem.
The difficulty is that since fitness is internal and subjegtiit is impossible to determine whether these rela-
tive measures indicate progress (supposing one has amaxietion of “progress”) or stagnation when the
measurement values do not change much (or even the revesieeincases). Without engaging some kind of
external or objective measure, it is difficult to understartht the system is really doing. Perhaps an arms race
is occurring, or perhaps the system has stagnated in somiearesdbut stable part of the space. Because of
the relative measurements in the system, it is impossibkmdoav which is the case. Here one should be clear
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about what is meant by the terRed Queen effecsince it is defined somewhat differently in different plsice
(Watson and Pollack 2001; Pagie and Hogeweg 2000; FicicPatidck 1998; Cliff and Miller 1995; Dawkins
and Krebs 1979). In fact, Red Queen dynamics are neitherdraglood or, more precisely, thegaybe bad or
good, but it is impossible to tell which. A more precise déiimi follows.

Definition 6. Red Queen effect The diagnostic problem that occurs when populations sedne thanging,
but the internal subjective measure shows no progress isrong. The phenomena may describe
stagnation or arms race. It is created by the fact that obisgrinternal subjective fithess measurements
provides no external information about the behavior of ty&tem.

2.3 Background Work in Analysis of CoEC

Until recently, analytical work in the field of coevolutiotyacomputation was virtually non-existent. However,
the past decade and a half has seen an explosion of introgduabok in the area. This section reviews this work
in four categories: component analysis, performance aoblgm measures, Markov and dynamical systems
analysis, and asymptotic run time analysis.

2.3.1 Component Analysis

Component analysis of CEAs has primarily taken the form opieical analysis of methods of interaction,
effects of problem decomposition, and effects of genetirajprs. Of these three categories, the first has been
by far the most explored.

How an individual is paired up to evaluate fitness in a codiahary algorithm is not a small decision.
Naively, practitioners might want to perform complete pése interactions with all possible combinations of
individuals (what will later be termedomplete mixing however, this is obviously highly computationally
inefficient. Several studies have focussed on understgritw these decisions should be made for certain
kinds of problems. Perhaps the earliest such study is Amgealhd Pollack (1993), where empirical evidence
was given regarding the effects of different topologiesahpetitive tournaments. Here it was shown that for
some kinds of problems, a simple single tournament matolam sufficient for establishing a good measure
of an individual's qualitative value, while sometimes moanplicated mechanisms were required, more tour-
naments per individual necessary. A later extension ofgtidy done by Luke and Panait (2002a) examines
two specific competitive fitness mechanisms, single-eltiom tournament ank-random opponents, finding
that single elimination indeed seems to do well when theligtlsto no noise in the fitness function; however,
thek-random mechanism seems better in noisy situations.

Even in its introductory state, the original cooperativeadutionary paper by Potter and De Jong (1994)
offers some minimal empirical evidence that non-lineesitin problem components split across populations
may require more sophisticated choices in how one makesehaoif interactions for fithess purposes. A far
more comprehensive study, involving many different meghod selecting “Partners” was made by Bull (1997),
coming to a similar conclusion: non-linearities betweepulations may create the need for more sophisticated
methods of interaction.

This early focus on the absence or existence of non-lindatioeships between parts of problems split be-
tween populations (so-callettoss-population epistagigstablished an almost myopic focus on this property.
The natural question of how one should decompose the prolaledhhow that affects choices in the algorithm
seemed to intermingle with the question of method of int@wac Bull extended his study to include some
formalism (Bull 2001) using Kauffman’'s NKC (Kauffman 19943 a means of categorizing problems by their
degree of cross-population epistasis. A more surgical ecapianalysis, exploring various aspects of the de-
cisions factors involved in choosing a method of interagtivas provided by Wiegand, Liles, and De Jong
(2001), indicating that the issues at stake may not nedlsbarmerely the property of cross-population epis-
tasis at all. This study was followed by Wiegand, Liles, aredlJong (2002a), where it becomes clear that there
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are differenttypesof epistasis that can have different impacts on this detisBoth of these studies form the
basis a some of the research discussed in chapter 3.

In his 1997 dissertation, Potter (1997) conducts a smaligrapstudy to attempt to understand the effects
of static problem decomposition by analyzing a string miatgiproblem, in which the degree of overlap of the
match is controlled for the study. This study suggests vidtg save that, for some problems, even with strong
overlap his general CCEA framework can still work reasopai®ll. A year later, Bull published a companion
article to the above cited article on “partnership”, wheeeshowed that the effects of mutation on CEAs can
also be quite sensitive to problem properties (Bull 1998).

2.3.2 Performance and Problem Measures

Perhaps the first work attempting to establish a method fareal (though still subjective) measurement of
CEAs was Cliff and Miller (1995), where a method using thetdig of the run itself is employed to help
track and diagnose dynamics in CEAs. An information-theorapproach was used by Ficici and Pollack
(1998) in order to provide a measure that is both externalcdnjekctive for the purposes of such diagnostics.
This method helped them determine how, in certain settiagas race behaviors might be established. More
recently, Stanley and Miikkulainen (2002) developed arml, subjective measure based on dominance that
can be useful for comparing two different CEAs, but may pileviess useful information about the types of
dynamics exhibited in each.

In addition, several empirical studies also attempted togare search dynamics between CEAs and tradi-
tional EAs using problems with implicit external measureadie and Mitchell 2001; Juillé and Pollack 1998),
showing that arms race dynamics can often be quite trickystabéish, and that population structure choices
(such as spatial embedding) may be of some help. Watson diad#P(2001) establishes a precedent for using
a very simple problem medium in order to understand evaiatip dynamics, which was followed by a much
more formal study by Bucci and Pollack (2003) illustratifiatt many types of coevolutionary problems can
be reduced to this simple medium, and that the problem ofs&ing may be more common than many CoEC
researchers believe.

The above work was based on an order-theoretic approactelising to define problems that are in some
sense intrinsically coevolutionary (Bucci and Pollack 200 uke and Wiegand (2002), another formal study,
also shows that the order relationships in problem’s revsgaem can suggest characteristics about the dy-
namics, indicating that in certain cases coevolutionanyadyics in single-population CEAs can be equivalent
to traditional EA dynamics. In addition to these works, ©8$2001) provides an analysis that suggests that
asymmetries in coevolutionary problems can have profotiiedts on their dynamical behaviors.

Not only has analysis been done to help understand and diaghymamical behaviors in CEAs, but some
limited amount of effort has been employed to try to make usthat knowledge in improving the search,
such as the afore mentioned Ficici and Pollack (1998) papeditionally, Rosin and Belew (1997, Rosin
and Belew (1995) suggest mechanisms such as “hall of farsefpetitive shared fithess”, and “shared sam-
pling”, harnessed through a rough form of static equililamelysis, to help improve coevolutionary search by
providing a higher probability of finding adequate “teachsets”. In addition to this approach, Ficici and Pol-
lack (2001) considers the overlap between multi-objeqingblem characteristics and coevolutionary problem
characteristics to use the notion of Pareto optimality 1p mprove coevolutionary search.

2.3.3 Markov and Dynamical Systems Analysis

Dynamical systems approaches constitute perhaps the noosising category of theoretical analysis of coevo-
lutionary algorithms. These models have primarily becomeugar as a result of two, related influences. The
first source of inspiration comes from the fields of biologyl @ronomics, where the notions of evolutionary
game theory (EGT) (Hofbauer and Sigmund 1998; Weibull 1982ynard-Smith 1982) have helped illustrate
dynamical, “evolutive” (steady-state, in the dynamicatsyns sense) (Osborne and Rubinstein 1998) behaviors
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of systems that are very similar to coevolutionary systef® second source is from within the EC commu-
nity itself, where dynamical systems models have beconmeasingly more popular tools for understanding
the dynamical properties of EAs (Reeves and Rowe 2002; \@38)1

The early EGT model model introduced by Maynard-Smith wégimally applied, with little success, to
attempt to predict behaviors in an EA by Fogel, Andrews, apgef(1998, Fogel, Fogel, and Andrews (1995,
Fogel and Fogel (1995). However, these studies were sontegrnass with how they matched the assumptions
of the model with those of the algorithms being modeled. driahd Pollack (2000a), in an effort to re-apply
this method, was able to match behaviors of real algorittortid model predictions much better than these
earlier works. Moreover, Ficici and Pollack (2000c) carhpagas be credited with offering the first real promise
of using EGT for understanding dynamical behaviors in CEf@n which it has been learned that certain
types of traditional selection methods may be pathologditaértain single population EAs (Ficici and Pollack
2000b). This EGT model was then turned towards cooperatiz&33Wiegand, Liles, and De Jong 2002b;
Wiegand, Liles, and De Jong 2002a), where it begins to beadeae that the dynamical properties of CCEAs
may not be as simple as previously believed. Extensionsefimements to this work constitute a large portion
of this dissertation.

In very recent years, use of these dynamical systems agmedar coevolution has begun to become quite
prevalent. Quite independently of the EGT work, efforts leh@itt (2001) apply Markov modeling methods
to EAs in which the fitness of individuals is population degent, including competing agents under the con-
ditional that an overall dominant strategy exists. Agaimagpendent of the above work, Subbu and Sanderson
(2000) uses a dynamical systems model with an altogethierelit framework in order to analyze distributed
cooperative coevolutionary algorithms. This work, whikirtg heavily entrenched in assumptions regarding
Gaussian mutation operators and Gaussian-type problgmeiies, demonstrates surprisingly powerful results
regarding the convergence properties of such algorithntso, Aecent work by Liekens, Eikelder, and Hilbers
(2003) has applied Markov modeling techniques as a meansmparing CEAs, and in fact performs such
an analysis as a means to understand the benefits of diployevolution. Additionally, Schmitt (2003) has
further developed his Markov model for EAs to include certeinds of CEAS.

2.3.4 Asymptotic Run Time Analysis

Though still in the very early stages, some recent researobrporates more traditional computer science
asymptotic analytical methods, such as those applied tbaider types of randomized algorithms (Motwani
and Raghavan 2000). Jansen and Wiegand (2003b) presentmtkine performance of a very simple co-
operative coevolutionary algorithm on several separalbblpm classes in terms of expected time before the
global optimum is reached first. This research again castistam the older belief that cooperative coevolution
gains advantage when there is little or no non-linear @hatiips between pieces of the problem represented
by different populations. | will cover such analyses in geealetail in Chapter 4. Further analysis of this sort
was applied by Jansen and Wiegand (2003c) to illustraterdifices between two different implementations of
a simple CCEA, one parallel and one sequential in terms oftheweurrent populations are updated. This study
suggests that the differences and similarities betweem isojglementations are, perhaps, counter intuitive.
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Chapter 3

Coevolutionary Architectures

In the previous chapter, | introduced a tentative definitibra coevolutionary algorithm: an evolutionary al-
gorithm in which the fitness of an individual is a subjectiuadtion of its interactions with other individuals.
An exact definition of just precisely what is, or is not, coetion will not be offered; however, in order to
study something, one must certainly clarify the object afigtitself. This chapter seeks to do exactly this:
lay the groundwork for understanding the specific class e¥olutionary algorithms on which this dissertation
focusses.

The chapter begins this clarification by first offering a gatécal description of the properties of CEAs.
This has the double advantage of informing the reader ofcelsoavailable to CoEC designers, while also
providing a context for understanding the choices madehisrgarticular set of studies. With this beginning,
the second section is able to position tBeoperative Coevolutionary AlgorithfCCEA) framework under
study here within the larger hierarchy of CEAs in generahc8ithe point of my fundamental question centers
around the notion of static optimization, the third sects@eks to clarify this problem domain for the CCEA.
The result of this chapter should be a clear understandirigeoflgorithm | am studying and the problem to
which some seek to apply it.

3.1 Categorizing Coevolutionary Algorithms

Just as with more traditional EAs, there are many designcelscavailable to engineers employing coevolu-
tionary algorithms. Different choices lead to different &Fwith different properties; thus, it is in a designer’s
best interest to understand these choices. Some of theeshwéwe already been touched upon in the previous
chapter, but it is useful to provide a systematic, hieraahelicitation of them in greater detail. Indeed, this
section offers a categorical ontology of coevolutionagoathms, based on the choices available to algorithm
designers. The descriptions of these categories followrEi§@.1 on page 23, which provides a roadmap for
these descriptions.

A categorization such as this is necessary if one is to takstersatic approach to understanding coevo-
lution. Any given analysis of a class of coevolutionary aitjums can be made more clear (and specific) by
directly addressing which subset of properties are exglorehat analysis. Knowing a reasonably thorough
ontological breakdown of properties helps researcherspaactitioners understand what the generalities, as
well as what the limitations, of such an analysis must be. édeer, once a broad range of properties is more
obvious in some holistic sense (as is hopefully the casetithierarchy on page 23), more focussed and sen-
sible analytical processes are possible by establishigtzxt. Additionally, a better understanding of wisat
not covered in prevailing research is illumined in this way.

As we will soon see, there is a large amount of semantic arntpigurrounding many coevolutionary
algorithms that make them difficult to classify. This diffiguonly increases the need for some kind of catego-
rization. By describing the various choices that go intordef a coevolutionary algorithm, the places where
these ambiguities are the highest will be made more explicit

As you can see from the figure on page 23, there are at leastipholdvel branches to choices about
coevolutionary algorithms: choices centering around hoesevaluates fitness in a CEA and choices centering
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around how one represents the problem for the algorithm e soThe following subsections offer short
descriptions of each of these, and their subcategoriesrrin t

3.1.1 Evaluation

Since CEAs are defined by the fact that their internal measurevaluated fitness, is a subjective measure, a
logical breakdown of defining properties for CEAs shouldude evaluation as a high level category. Indeed,
there are at least four different properties of evaluatmpartant to coevolution: payoff quality, methods of
fitness assignment, methods of interaction, and updatadiniihough there may be other important properties
of CEA evaluation, these four must certainly be the mostii@mt, and within these categories nearly all
existing CoEC approaches can be described.

Payoff Quality

The first broad category of coevolutionary algorithm evatrasurrounds the character of the payoffs awarded
during interaction of individuals. This is essentially eitaeference to the game-theoretic nature of coevolution
that | will discuss later in the thesis. The basic questionifi®ne is evaluating interactions, how are these
interactions best characterized? There are at least thnadfypes in CEAs worth considering: competitive
fitness, cooperative fitness, and non—competitive fitnes® réader should be careful to note that these are
traditional, qualitative classifications that leave a lbgey area to be disambiguated. In fact, there is much
disagreement about the scope and relevance of these gesywaithin the field of CoEC. | will return to this
guestion of ambiguity below, but first let’s say a few wordsuattthe categories themselves.

In competitive coevolutignndividuals are rewarded when their opponents do poonlg,they are punished
when their opponents do well. In other words, their fithedsesmdepend onompetitionsand the individuals
participating in these competitions are considerechpetitorsor opponents

Alternatively, incooperative coevolutiotthe fitness of an individual is based on how well it cooperates
with the other individuals with whom it interacts. Indivials succeed when they are partnered well, when the
resulting team performs well. Here | term the interacti@elit acollaboration and use the terroollaborator
to mean those individuals with which the interaction is made

Though the definitions offered for distinguishing betwe@operative and competitive coevolutionary
methods remain somewhat vague, one thing that is cleartistigacan imagine payoff situations where some-
times participants are mutually rewarded, but sometimess furposes are at odds. Such situations are often
referred to asion—competitive This thesis will ignore non—competitive approaches sithey are (so far) of
little interest to those who study CEAs at this time. Newveldhs, it should be clear that it may well be the
largest of the three groups.

Returning to my point about the ambiguity of these definiiaihe question of how to clearly define these
groups of payoff quality is a very messy and complicated sgimg@roblem. There’s little doubt that more
precise, mathematically rigorous definitions of the didtaom between cooperation and competition may well
be helpful. Indeed, such distinctions may be plausibly iabth using the notational tools from game theory
(Rapoport 1970); however, the differences of opinions ap@OEC researchers currently regarding subtleties
of what is meant by these terms makes any unilateral attemgybtv a hard defining line between cooperative
and competitive coevolution unwise. This dissertatioeyéfore, will not attempt to do so. Instead, as will be
seen later in this chapter, the studies presented hereesitict their attention to a subset of such models that
are undeniably cooperative.

Perhaps of more fundamental interest than terminologistihdtions, may be whether or not any particular
characterization of this sort has any meaning in terms aftiffgng potential long term dynamics in a coevo-
lutionary system. This remains an open question, thouglkedhaection between payoff quality and long term
coevolutionary behaviors is widely believed to exist (Eieind Pollack 2000c).
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Methods of Fitness Assignment

Conceptually there seems to be a clear difference betealenlatinga fitness score, anasingsuch a value.

A given EA may calculate fitness using some well-defined abgdunction, but that value may be used in a
variety of ways either to influence the dynamics of the evoh#ry search or to provide an external measure.
Indeed, Chapter 2 discusses a variety of notions of meastesome of which are applied directly towards
search (so-called “internal measures”) and some of arespetdlled “external measures”).

Regardless of the specific issue of coevolution, internahguees can obviously be used in a variety of
ways to influence the evolutionary search, independent wfthey are used to finally report solutions to the
problem. As an example, consider the case of applying parsirmeasures in rule—based systems. In such
cases evolving individuals are often complete rule-sedsp@malties are dispensed to rule-sets that are too large
(Luke and Panait 2002b). In these situations, one can malgiaction betweemaw fitness and fithess under
some length bias pressure (for example). Although the febigtsed fitness is used during evolution, it is the
raw/computed form of the fitness that has meaning to us franpérspective of solving a problem. An even
more poignant example is proportional selection. In thisedheobjectivefitness value calculated is taken to
produce asubjectivevalue, which is then used for stochastic selection—andrig clearly not coevolution.

However, if one’s focus is on what impact fitness has on theadha of the evolutionary search, it is
primarily how it isusedthat is of interest, and less so how it is calculated. Thuetlare a variety of ways
fitness can be used in both implicit and explicit ways thaatgrehe kind of subjectivity—a subjectivity based
on interacting individuals one might feel more comfortat@dliing coevolution.

Examining the group of CEAs that use implicitly subjectivimdiss measures brings to one’s attention yet
another source of ambiguity. Indeed, the line dividing wkabnsidereda coevolutionary algorithm by the EC
community at large and what @nsideredmerely as some augmented traditional EA is a thin and fuzey on
There are a large number of mechanisms introducing formsplicit subjective internal fitness to traditional
evolutionary algorithms that tend to be viewed at best heriglly as coevolutionary algorithms, but often not
as CEAs at all.

Examples of this include methods for augmenting a GA to alifot® find multiple peaks in the fitness
landscape frequently using a technique caliggbss sharingGoldberg and Richardson 1988; Spears 1994). In
fitness sharing, the fitness of an individual is adjusted mesway based on the individuaigarit in some way.
Goldberg and Richardson (1988) uses a distance measurddntorreward diversity and punish phenotypic
similarity, while Spears (1994) uses a settag bitsin the chromosome in order to adjust fitness (as well as
restrict mating) based on partial genotypic matches. Slgdrithms tend not to be considered coevolutionary
algorithms, but if one accepts the above coevolution dedmitind by this include single population approaches
presented by many evolutionary computation researchemgele and Pollack 1993; Luke, Hohn, Farris,
Jackson, and Hendler 1998), it is difficult to understand Inogthods that employ notions of fitness sharing
can be excluded from the category of coevolution. Indeeslnthin point of these methods in many cases is
to help speciate the population (that is, separate the ptipnlinto distinct, non-interbreeding species). The
interaction that is happening, however, is implicit andgsubtle.

Though our working definition of coevolution is more or le$sac in this respect, it is also clear that it
cannot be taken too stringently. Applying the logic from Himve paragraph can lead to strange inclusions
into the coevolutionary camp_rowding for instance employs a method of diversity measure for tirpgses
of affecting replacement in a steady state GA (De Jong 19TB)e might be tempted, at first blush, to say
that this is not coevolution because the distance measutbsimethod are applied after fitness is calculated.
This observation, however, is somewhat semantic sinceythamlics of the algorithm are clearly affected by
this interaction. Moreover, taking the above logic to the@xe, it might be argued that a simple GA using
proportional fithess meets this vague definition of coewmtuin the sense that selection is performed not on
an absolute, objective measure, but instead on a relatiasune that is dependent on other individuals in the
current population. However, most EC researchers woulccoonsider either EAs that employ crowding or
canonical GAs using fitness proportional selection to beraloéionary in nature, presumably because these
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effects are not really (typically) anything more than redsgy. One might consider all such algorithms co-
evolutionary, though, but if they are, the subjectivity loé ffithess assessment is again implicit and even more
subtle than what I've previously discussed.

Typically coevolutionary methods are very explicit aboawttheir interactions occur, usually in a way that
leaves no doubt about the interrelatedness of the fitnessumessa When fitness is explicit, it is clearly stipulated
by the algorithm designer, prior to running the algorithnhisTis the case with most competitive approaches
such as Rosin (1997), as well as many cooperative approactobsas Potter (1997). Such approaches are
clearly forms of coevolution by almost any definition, thboutpere are still a variety of differences between
different types of CEAs that use explicit methods for sutdjeg internal fithess. CEAs using explicit fithess
measures constitute the bulk of emphasis in the study ofobaiganary algorithms.

As a side note, it is interesting to observe that in multipdeydation approaches it can be true that fitness
assignment in one population can be implicit, while in agotit is explicit. This is the case in the already
cited studies by Stanley and Miikkulainen (2002, MoriartydaVliikkulainen (1997), where individuals in
subordinate populations receive fitness indirectly viartbentributions to the performance of individuals in
the master populations.

Methods of Interaction

The question of how a practitioner determines collabosatwrcompetitors may very well be among the most
important design decisions for the successful applicatio8EAs (Wiegand, Liles, and De Jong 2001). The
most obvious (and computationally expensive) method ttuata an individual in a coevolutionary setting is
for an individual to interact with all possible collaboregamr competitors. In the case of binary interactions,
this is sometimes calledomplete pairwisénteraction, or, more generally, in game theory it is ofteferred

to ascomplete mixing An alternative extreme is for an individual to be involvedanly a single interaction.
Such a choice leaves open the obvious question of how to pilcollaborator or competitor. Of course,
between these two extremes is a whole host of possibilitiasihvolve some subset of interactions. Again,
collaborators/competitors for such interactions may bwseh in a variety of ways from uniformly random, to
fithess biased methods.

Angeline and Pollack (1993) provide a reasonable summarg ¥@ariety of methods of choosing competi-
tors, and most of that discussion is equally applicable toaperative context, as well. However, it primarily
consists of the enumeration of several methods and a disouabout the relative merits of these specific
strategies. Bull (2001, Bull (1997) also enumerate sevweethods for choosing “partners” (collaborators or
competitors), but again the discussions center arounddtieplar strategies chosen for these investigations.

While these efforts are helpful for specific cases, perhajsmore useful here to define some basic at-
tributes of this choice, suggesting a wide range of posstrktegies (many of which may not yet have been
conceived). There are mainly three such attributes:sdmple sizeselective biasandcredit assignmentor
potential interactions during fitness assessment. | desthiese briefly below.

interaction sample size The number of collaborators/competitors from each
population to use for a given fitness evaluation.

interaction selective biasThe degree of bias of choosing a collabora-
tor/competitor.

interaction credit assignment The method of credit assignment of a single
fitness value from multiple interaction-driven objectivmétion results.
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Since how one makes such choices may be of high import toifioaetrs, much of the empirical research
conducted by this thesis in Chapter 4 will center aroundrddténg how such choices affect the performance
of existing coevolutionary algorithms. There may be othepprties of this decision, but none so salient as
these three.

Update Timing

Introducing multiple populations into an EA brings to thBleasome necessary clarifications about terminology.
For example, some clarity with respect to the wgesherationis required. In a traditional generational EA, this
typically refers one complete pass through the parent ateffspring generation, evaluation, and survival
selection (steps 4.1-4.5 in Algorithm 1 on page 8). | wilaretthis term in exactly this way for coevolution.
That is, agenerationin a CCEA is the time it takes to move through these steps fimggespopulation. To refer

to the complete cycle of processing all populations, | useéhmround..

Next, do collaborators come from the current state of pdjaulg, or from populations from the previous
round? Really this is a question of the timing of when poporfet are processed and updated. The timing of
such things can be done in a variety of ways; | focus on two.

| use the ternsequentiato refer to a coevolutionary algorithm that processes eaphlation in a sequential
order, choosing collaborators from the current state ofotther populations. These populations can change
during theround, of course. As a result, populations processed and updatédren the round can affect the
processing of populations processed later.

An alternate approach is one in which the individual poporet are processed arallel, synchronized
only at the end of each round. In this approach, collabcsatioe selected from tharevious generatiofrom
each population. A clearer description of the differencesvien these two approaches can be obtained in
Jansen and Wiegand (2003c).

3.1.2 Representation

There are three particularly important groups of repredenmt-oriented decisions that design engineers must
make when implementing CEAs: how one handles problem decsitiqm, what is the spatial topology, and
how one structures the population(s). Among these thregoees, nearly all CEAs can be described one way
or the other, though not all CEAs rely as heavily on some aehgoperties as do others.

Problem Decomposition

For cooperative coevolution in particular, it is often nesary to decide how a larger problem will be decom-
posed into smaller components. There are many ways one myrpethis task; such methods fall into a
category here calledartitioning methods Chapter 4 will explore the issue of partitioning methodd #reir
effects more carefully.

The next question isvhenthis decomposition occurs. Just like any parameter adgrsinthe property of
decompositional temporalitynay bestatic, decided once and for &l priori by the design engineedynamic
adjusted during run time using a rule imposed by the desigimerra priori; andadaptive adjusted during
run time by the system itself. The idea behind this distorctis similar to more traditional EA choices with
respect to how parameters are altered (or not) at run tinee(Eand Michalewicz 1998; Angeline 1995).

The challenge of how and when to decompose a problem for tip@pes of coevolving the individual com-
ponents is one of the most important questions facing CoE€arehers. In fact, the nature of these decisions
on the part of design engineers poses unique questiongliegdine appropriateness of decomposition in terms
of the true structure of the problem at hand. Since these magty appropriate, or distinctly inappropriate, as
will be seen later in the dissertation, it is important to makormed choices. Due to the difference between a

1| prefer thegeneration/rounderminology to that offered by Potter (199 gjenerationversusecosystem generation
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decomposition made by the representation and the naturahgmosition of the problem, | use the teoom-
ponentto mean a part of a representation, given by the algorithnilewlise the ternpieceto mean portions
of the problem itself.

Spatial Topology

Fine-grained, distributed representations of populatiam important categories of traditional EAs (Sarma and
De Jong 1996), but they are also quite important in coevatatiy algorithms, since they beg the additional

guestion of how multiple populations relate to one anothpologically (Pagie and Hogeweg 2000). Indeed,

some early research has suggested that spatially-emb&2e&d might outperform non-spatial methods on

some problems, in certain confined circumstances.

Of course, the bulk of CEAs use no such spatial embeddinga lonbdest subset of application oriented
work now involves these fine-grained approaches. The researsuch models, as well as its apparent potential
advantage, suggests that this category should appear iontoiogy. Design choices for fine-grained CEAs
are complicated, but are for the most part outside the scbffésowork. This dissertation distinguishes only
between models that aspatially embeddednd those that areon-spatially embeddedit should be noted,
however, that topological relationships in spatially edded models are inherently connected to methods of
interaction in terms of evaluation.

Population Structure

There are many ways for a design engineer to break up a cdievawy algorithm; however, the primary
distinction made here is whetherultiple populationsor a single populationis employed by a given CEA.
These two mark off very different areas of coevolutionarsearch, so this division constitutes a highly useful
distinction.

For our purposes, let us assume that in single populatioroappes individuals interact with other indi-
viduals within the same population for obtaining fitnessjlevm multiple population approaches individuals
interact only with individuals frormother populations to obtain fithness. While it is possible to coesidlgo-
rithms in which there are interactions between individualthe same populatioand other populations, it is
relatively rare and unhelpful to consider such compligaiolndeed, as it turns out, there are apparently some
clear distinctions between single and multiple populaipproaches in terms of dynamics (Ficici and Pollack
2000c; Hofbauer and Sigmund 1998).

3.2 A Cooperative Coevolutionary Algorithm

In the previous section, | offered a categorical descniptidthe design choices available to those wishing to
construct coevolutionary algorithms. Using this hiergramearly any conceivable coevolutionary algorithm
can be described, even those that fall into the grey areadaf i considered coevolution. However, to say
something specific, to answer direct and pointed questlonast restrict our attention to a subset of CEAs that
are most salient for the purposes of the study at hand.

In my case, every attempt has been made to keep the class of @teler study as simple as is possible.
The ultimate goal is to preserve the coevolutionary natfiteealgorithm, while providing an algorithm that
gives rise to interesting and useful questions. Therefkmme of the choices available to us will be restricted
in the interest of simplicity and focus, while others will &ried in order to answer practical questions about
the class of algorithms considered. To help clarify this emgpecifically, | will divide my discussion into three
parts. In the first two parts, | describe properties of th@mtlgm relating to evaluation and representation,
respectively. In the final part, | will offer a more detailedsdription of the algorithms’ framework.



28

3.2.1 Evaluation

While there are certainly interesting questions relatmfdth cooperative and competitive coevolution, coop-
erative coevolution may meet the “simple” criteria sometvnare directly. The lack of a clear external and
objective measure for most competitive methods, in contiminavith the semantic difficulty defining optimal-
ity, makes progress measurement a problem. This creatdergies for study, since often this measurement
problem must be solved before any more analysis can be adisbegh Moreover, existing research suggests
that the dynamical properties of competitive systems may well be more challenging to understand than
those of cooperative systems. Since part of my goal is on@rgdlisication, the algorithms studied in this
dissertation will be explicitly cooperative, in the senbattthey meet the qualitative definition of cooperative
coevolution payoff quality and explicit fithess assignmeifiered in the previous section.

However, since one of the key decisions that face cooperatievolutionary algorithm designers surrounds
the method of interaction, this property will remain vat@for our investigations. Indeed, the next chapter will
explore the nature of this choice, and its effects in detail.

This issue of what kind of effects the timing of processing apdating populations has on the CCEA is a
complex one. My analysis here does not include a discusditmedifferences, though related work is cited
that does (see Jansen and Wiegand (2003c), for examplegviow will concentrate primarily on sequential
CCEAs in Chapter 4 and on parallel CCEAs in Chapter 5.

Before moving on to discuss representation, it is necedsasgy a few words about the ambiguity of the
term “cooperative” raised in the previous section. In thetrsection | will describe the problem domains to
which this dissertation restricts its attention, and thiniteveness of the cooperative nature of the algorithms
on such problems will be more clear. Despite the general gutliin this term, the most obvious and direct
static single-objective optimization tasks suggest a eoajve approach. Since the notion of optimization is
at the heart of the fundamental question of the dissertaticeems to be the most appropriate decision under
these circumstances.

3.2.2 Representation

For reasons of simplicity, the algorithms in this work usdyoa priori static decompositions, though the
partitioning method will be the subject of some of the resean the next chapter since it relates strongly
to methods of interaction. | primarily will focus on algdnihs that are non-spatially embedded; however, in
the final chapter a particular spatial model is used to makartng point about establishing and maintaining
evolutionary balance during the run. The primary reseangkstigations of this thesis focusses entirely on
non-spatial models, though.

Single population models can be quite messy and complidateiéscribe and understand. Moreover, it
is unclear whether cooperative algorithms are even passibkuch a setting, given that it is the nature of
individuals in a population to compete for selection, religgs of the nature of their interactions. To avoid
this complexity, as well as to place this research safelyha“coevolution” camp, | employ only multiple
population approaches in which the fitness of an individuaifone population is the result of collaborations
with individuals from each of the other populations.

3.2.3 A General Cooperative Coevolution Framework

The discussion above defines a rather large class of pdt@tias. Unless otherwise stated, from this point
forward the termcooperative coevolutionary algorithfCCEA) will to refer this particular class of multi-
population, cooperative algorithms using explicit fithessignment methods and static problem decomposi-
tions.

When applying a CCEA to a particular problem, typically omeamposes the problem into components
and assigns each component to a population. Save for eealuesch population is evolved more or less inde-
pendently of one another. since any given individual fromnadipular population represents only a component
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of a potential solution to the problem, collaborators alected from the other populations to represent the
remaining components. The individual is combined with dBaborators to form a complete solution and the
objective function is evaluated. If there is more than orteo$eollaborators (depending on the collaborator
sample size) for a given individual, the objective functimay be evaluated many times, but a single score is
somehow attributed to the individual for fitness (dependinghe collaborator credit assignment method). It
should be noted that the populations of a CCEA may or may ndtoneogeneous with respect to the repre-
sentation used for the encoding of individuals in them, erthderlying EAs being used to evolve a particular
component. For the sake of simplicity, all the studies is tlissertation will assume a more or less consistent
representation across populations. Figure 3.2 on pagéu3@rdtes this idea pictorially.

This class of CCEAs is in no way new. Indeed, Potter (1997¢riless a generalized framework for the
CCEA, one that has been applied in a variety of ways. To be s@eeific, the traditional EA code shown in
Figure 1 on page 8 is extended, describing the abstepientialCCEA in the pseudo-code in Figure 2 below.

Algorithm 2 (Abstract Sequential Cooperative Coevolutiorary Algorithm).
1. for population g € P, all populations
1.1 Initialize population p
2. for population g € P, all populations
2.1 Evaluatepopulation g
3.t:=0
4. do
4.1 for population pe P, all populations
4.1.1Select parentérom population p
4.1.2Generate offspringrom parents
4.1.3Select collaboratorgrom P
4.1.4Evaluateoffspring with collaborators
4.1.5Select survivorgor new population B
42t=t+1
until Terminating criteriais met.

3.3 Optimizing with The CCEA

In the previous section, | detailed the specific class ofritlygms | will be analyzing. Several things remain
to be clarified, however. For one thing, there is again thestiure of to which class of problem domains to
restrict attention. The answer to this question arises fbmth the need to meet the fundamental question
(Do CCEAs optimize?), as well as meet the condition of beimgimple as is possible to demonstrate useful
things about coevolution. Perhaps the simplest possibiieadoone might consider for the CCEA is the that of
single-objective, static function optimization.

Such problems have at least two properties of interest Herst, they suggest some direct and obvious
methods of decomposition. Second, given fairly straigitéod decompositions, they have a game-theoretic
property that is important to the analysis: symmetry. Betorning to these issues, | will clarify what is meant
by single-objective, static function optimizatioh focus on maximization. The results and observations are
equally applicable to minimization.

Definition 7. Let there be some function, F, over domain D,-— R. Asingle-objective, static maximization
problemis a problem in which the goal is to find @& D such that d = argmaxF.
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3.3.1 Decomposing a Static Function Optimization Problem

The problem class defined above is attractive in part beaattsesimplicity. Itis also attractive because despite
its simplicity there remain interesting research issuesosnding how one decomposes the domain such to be
represented by multiple populations. Moreover, since gelamumber of real world applications fall into this
domain, answering questions about static optimizationiges useful information for practitioners.

In essence, the decomposition issue is a question of howrtitiggaD. Consider, for example, the domain
consisting of a vector of arguments in Euclidean sp&ce R"). Here each argument of the function might
be represented by a different population. In such a caséyadvay an individual from the first first popula-
tion (argumentky, for example), requires choosing collaborators from tlieopopulations representing other
arguments (argumenks andxs, for example). Figure 3.3 on page 31 illustrates this case.

Collaborator(s)

Figure 3.3: lllustration of how a CCEA might assemble a dgoosed real-valued argument list to evaluate
against a static objective function.

In the case of a binary representation, such a partitiorsnmast obviously done by dividing the binary
string into different substrings. Individuals in each plgpion might represent a particular partitioned substring
and evaluation of an individual substring will require reggntation from substrings in other populations. For
example, Figure 3.4 offers an example to illustrate how agosed binary string might be assembled in
order to evaluate it with some objective function. In thistjgallar case, the string is broken up into three equal
length segments for each population. This is only one chdteet of the analysis in the next chapter will deal
with exactly this choice.

mppia

, Collaborator(s)

/
Evaluate individual f(01101100 0001
Collaborator(s)

Figure 3.4: lllustration of how a CCEA might assemble a degosed binary to evaluate against a static
objective function.
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3.3.2 Symmetry

The field of game theory (GT) has a useful notionsgmmetrywith respect to games. In this context, a
symmetric game is one in which the reward gained for a paatiget of strategies, as defined by each player
picking a specific strategy, will be the same, regardless lithvplayer is currently being considered. For
example, if one player plays strategwand the other player plays strategythe rewards to players depend only
onaandb, but not on the identities of the players.

On a more mathematical level, lat: Sx S— R define a function mapping strategies from each of two
players to a payoff value. Lat;(a,b) be the payoff for player 1 when player 1 plays strateaggnd player 2
playsb, and,(a,b) be the payoff for player 2. When a game is symmetmi¢h,a) = mo(a,b).

Having the property of symmetry certainly simplifies a gamenany ways. It is exactly this simplification
that makes it a good property to consider when looking agthfrom first principles. It should be clear that the
partitioning methods discussed in the previous subseutilbield problems with such a property. In essence,
the class of CCEAs in which | am interested is symmetric wiggilied to single-objective, static optimization
problems, as defined above.

This property has several benefits. First, it should now bardhat the multiple population CCEA defined
above as applied to problems with this property of symmeteycaoperative, by virtually any reasonable defi-
nition. A population (player) cannot succeed unless hikabotators (partners) also succeed, and it fails when
they fail. Second, because of this property of symmetryearabbjective measure is possible. Since the goal
is to optimize the function and the rewards are symmetrargtlis no red queen problem because any progress
against the external measure (the given problisiy definition, objective. This resolves several of the ana-
Iytical challenges observed in so far and leaves me with alsitoevolutionary system and a straightforward
objective: single-objective static maximization.



Chapter 4

CCEAs as Static Optimizers

Is this class of multi-population, symmetric cooperatieewolutionary algorithms useful as a class of function
optimizers? In some philosophical sense, all algorithresogtimizers when they are applied to optimization
problems; they may simply be quite poor optimizers, yiaydiow quality solutions or taking a far longer time
to find the optimum than other, better suited algorithms miglerhaps it is unhelpful to wax philosophic: if one
applies the algorithms to optimization problems, they qutinizers, and our issue (as scientists and engineers)
is how they perform and how well they function. Perhaps tlhadamental question” posed in Chapter 1, while
well-intentioned, is misphrased.

In this chapter, | take this exact approach and rephraseutiamental question to ask “How, and how
well, do CCEAs act as function optimizers?” Of course, thia very broad question, with questionable specific
research potential, so it must be further refined to offerenspeecific opportunities to provide explicative results.
| do this by concentrating on understanding what makes imaiptimization problems difficult for CCEAs,
and what algorithmic design decisions might be used to evuhese difficulties. By giving the fundamental
guestion context in this way, one can apply analytical andigoal tools to get more specific, useful answers
than might otherwise be possible.

The chapter begins by first discussing how CCEAs can be aplithe problem domain of static function
optimization defined in the previous chapter. This sectakes$ up a property commonly believed to cause dif-
ficulties for CCEASs ¢ross-population epistagisdefines this property, and describes the intuition anhczal
issues that have lead to the suppositions surroundingféstein CCEAs. The section that follows describes
what elements of CCEAs might plausibly lead to coevolutigredvantage over traditional EAs, then explores
this advantage in the context of cross-population epstdsiis is done by conducting theoretical investigations
of very simple CCEAs, as well as empirical analysis of therafmes involved in somewhat more complicated
CCEAs. The third section of the chapter examines what isgpsrithe most principal component of CCEAs
to deal with challenges posed by complicated problem dosnairethods of interaction (collaboration). This
is done via primarily empirical means. | use the final sectmbridge to the next chapter by illustrating, both
empirically and formally, some of the challenges that fa@EBs when they are applied to static optimization
problems.

4.1 Applying CCEAs

4.1.1 General Problem Domain Framework

Before beginning any analysis of the algorithm of study, sheuld be careful to select a framework for the
problem domain that facilitates analysis at some levelh@udomain should be simple enough to gain appro-
priate intuition, but flexible enough to allow for a thorougkploration of the relevant properties of interest. To
this end, this section concentrates entirely on so—caledido-booleafunctions,f : {0,1}" — R. Individuals
will therefore maintain binary representations throughbis chapter. The use of binary representation (in this
case) provides a greater intuition about the effects of émetic operators—something that will come in handy
during analysis.

Pseudo-boolean functions provides several additionaradges. First and foremost, they will make it very
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easy to describe the salient problem property that cotesitilne focus of the research discussed in this section.
Second, they make it very straightforward to construct gxam(or counter examples) illustrating certain very
explicit ideas relating to properties of the problem. Hidhe issue of how well suited a static decomposition
is for the overall problem representation becomes simglifig the ease with which clear definitions of such
partitioning may be established.

Basic Example Functions

Since they will be useful throughout this chapter, sevamapke pseudo-Boolean functions are defined below:
ONEMAX, LEADINGONES, and TRAP. These are very common EA problems (Mitchell 1997)NEM AX
simply counts the number of ones in a given binary stringaAiINGONES counts the number of consecutive
ones at the start of a string, an&AP essentially establishes a false’sEM AX gradient leading away from the
true maximum, found at the all O string. These are defineddtiynvelow.

Definition 8. The functionONEMAX : {0,1}" — R is defined by

ONEMAX (X Zx,

Definition 9. The functionLEADINGONES: {0,1}" — R is defined by

L EADINGONES(X Z:I_IxJ

i=1j=1
Definition 10. The functionTrRAP: {0,1}" — R is defined by

TRAP(X) := ((n+ 1)-12[xi> +n— ONEMAX (X)
i=1

Using these simple functions, somewhat more complicatedtions can be constructed. In fact the
ONEMAX problem can be seen as a specific case of so-callsdAR functions. Additionally, it is possi-
ble to generalize the EADINGONES problem to one in which onlp blocks ones may be counted at the start
of the string, LOR (Jansen and Wiegand 2003a). The following definitions fes¢htwo problem classes are
offered below.

Definition 11. The functionONEMAX : {0,1}" — R, and some vector w R" is defined by

LINEAR (X Z:w.x|

Definition 12. For n€ N and be {1,...,n} with n/b € N, the functionLOBy}: {0,1}" — R (short for

LeadingOnesBlocks) is defined by
n/b b-i

LOBy(x) :=> [[x

i=1j=1
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Separability

An important property of problem domains in general is théamoof separability Separability refers to the
ways in which one can partition the string so that the tot@ctive function value is merely the sum of functions
operating over disjoint substrings. A formal definitionléoVs.

Definition 13. A function f: {0,1}" — R is called(r,s)-separablewhere rs€ {1,2,...,n},
if there exists a partition of1,...n} into r disjoint sets, ..., I, with |; = {i,-.l, . ,ij,H,jH}
and||lj|| <s, forall je{1,...,r}, and if there exist corresponding pseudo-Boolean funstion
91,---,0 with gj: {0, 1}l — R such that the following holds:

r
VX=X1...% € {0,1}": f(x) = Zgj (Xij,lxij.z"'xijwju)
j=1

A function that is(r,s)-separable is one that can be broken down inioearly independent substrings of
length no greater tham The functionf is exactly(r,s)-separabléf f is (r,s)-separable but ndt’,s')-separable
for anyr’ >r ors <s. So, for example, the REMAX and LINEAR functions are exactlyn, 1)-separable (or
fully separablg, whereas the EADINGONES and TRAP functions are exactlyl, n)-separable (cinseparabl$.

During the course of analysis, it will be necessary to carestproblems with some specific degree of
separability. There is a common and straightforward wayadhis using a tactic calledoncatenation A
concatenatedunction is one in which the binary string is partitioned onse way, and the objective function
value is the linear sum of the underlying subordinate fuumctipplied to the individual substrings. Typically,
as well as in my case, the underlying function itself is irmgaple, so the constructed function is then exactly
separated by the number of concatenated pieces. Morelgirene simply defines a function in terms of
the sum ofr independent sub-functions, which are themselves insklgard simple example is obtained by
choosing an inseparable function ©bits and concatenating of theses-bit blocks to form arrs-bit (where
n = rs) problem the value of which is just the sum of the individuaidtional pieces.

4.1.2 Representing Optimization Problems

Given the choice for a binary representation and pseuddeBadunctions, what remains to be clarified regard-
ing representation is how problem components will be dfideo start with, let me begin by assuming an even
division of bits per population. That is, given a potentialLsion to f, a bit stringx € {0,1}", andk populations,

xis divided intok separate components of equal dizen/k. How those bits are assigned will be the subject of
study later in this section, but unless otherwise statdubitikl be assumed to be consecutive. That is, assuming
x=xUx@ . x® where|x"| =1 is the length of each piece, and {1,...,k} represents an index indicating
from which population the substring was drawn. Thereforean define the substring’) = Xi—1) 141" Xl

from the total bit string. A diagram of this is shown below.

(D N0 ()

X = X1X2 X X(ifl)-l+1"'xi-| X(kfl)-l+1"'xn

Figure 4.1: This figure illustrates how a binary string istip@ned into consecutive substrings, as well as
showing how the notation used relates to this partitioning.
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Here each population is assigned to one ofkisebstrings, and individuals from that population représen
potential values for that role. During the collaborationg@ss a total string is assembled and evaluated against
the objective function. As discussed in the last chaptés, datows for a very straightforward encoding of the
values for the problem into the representation, and degoalirthe represented solutions in order to evaluate
them in the context of the complete problem.

4.1.3 Cross-population Epistasis

What is omitted from the previous subsection is a much wisleué:in generalhow should an engineer stati-
cally decompose a problempriori? A partitioning method like the one above may seem naivdygpesr even
myopic. What are the properties of the problem? How can dhetether the problem has been “appropriately
divided” or not?

The presence of non-linear relationships between genepjstasis has been an important part of EC
research (Goldberg 1989). In cooperative coevolution tisidn of the problem into components generates a
new complexity to consider: whether or not such non-lirtearicross population boundaries. Indeed, various
researchers working on cooperative coevolutionary algms have attempted to understand the effects of non-
linear relationships between components (Wiegand, Lées, De Jong 2002a; Bull 2001; Wiegand, Liles,
and De Jong 2001; Bull 1997; Potter and De Jong 1994). Theailirey belief is that the existence of cross-
population epistasis poses particular difficulties for @SEThere is a certain amount of satisfying intuition to
justify this belief. If an EAs job is to assemble lower-ord#ocks into increasingly higher-order blocks then
presumably splitting up a function in such a way that grouggeHittle to no non-linear interactions between
them would seem to give the EA an advantage. At the same tiwvisiomhs that preserve or create non-linear
relationships across the population boundaries would se@ose potential difficulties to CCEAs. The question
of the existence or absence of cross-population epistsise of the main properties under investigation in this
chapter. Before this can be done, a more thorough undemstpofiwhat this question is really asking and what
the terms really mean must be undertaken.

While it is clear that one can divide the problem any way onghes, there may be more “natural” places
to divide it than others. By “natural” | mean divisions thatriespond to the notions of linearity versus non-
linearity across population boundaries. This is, of couessentially addressing the issue of the separability
of the function. Indeed, as engineers we are concerned dtbdégree to which an algorithm’s decomposition
may be closely aligned with the problem’s true separationsd the termmatchto distinguish between such
cases. When the problem pieces are separable between thermams represented in the populations, | say that
the decompositiomatcheghe separability of the problem. To be more specific, | say tiia decomposition
exactly matchethe separability of the problem when the pieces are exaeparmble. This is defined more
formally below.

Definition 14. Let a function f: {0,1}" — R be(r,s)-separable as in Definition 13. A decompositimatches
the separability of f if all bits that belong to one index sedrle in one population.

The decompositioexactly matcheghe separability of f if there are r components, and each Eéraies
on the bits contained in exactly one of the index sgts |

The phrasing used until this point reflects opposite sideébhafssue of matching. An algorithm that has a
decomposition that matches the problem can be said to baragle across population boundaries”, while one
that does not match exhibits “cross-population epistasishe sense that there exist nonlinear relationships
between components resulting from decompositions thaegartions of inseparable pieces in different popu-
lations. It should be clear that when decompositions do raitimthe problem’s separability, there will be such
nonlinearities by definition.
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An illustration will clarify the differences between compnts and pieces, as well as separability and
epistasis. Starting with notation, | will useto mean the number of populations, or EAs. This correspomds t
the division of the problem created by the algorithm’s desiginto distinct components, typically all of the
same length|. The true problem is divided into distinct, inseparable pieces, each of lengthFigure 4.2
below illustrates an example where these two do not match.

components X1X2 - -+ X X(i—1)1+1" " X2 o | Xk=2) 4417 Xn X(k=1)14+1"""Xn

pieces | X1X2 + -+ Xg | X(r—1)-s+1° " Xn

Figure 4.2: This figure illustrates how differences betweiersions chosen by the algorithm designer (compo-
nents) and the natural separations of the problem (piee@she mismatched.

4.2 Partitioning and Focussing

Perhaps the best place to start to address the reformulatedrhental question is to investigate two specific
guestions: “can cooperative coevolution perform bettanth comparable traditional EA on static optimization
problems” and, if so, “what properties of CCEAs lead to tmsréased performance”? As the reader will
see (and as is unsurprising), cooperative coevolution eafonmn better or worse than traditional evolution,
depending on properties of the problem. In fact, it is theosdauestion that holds more interest: what is the
CCEA advantage?

One nice thing about analyzing this particular class of CEAsperative symmetric multi-population EAS)
is that they are not so fundamentally different from trawfiil EAs that one cannot see and grasp (at least at a
high level) the differences between the two fairly simphdeed, there seem to be only two real augmentations
to these CCEAs that offer potential for outperforming maealitional EAs (in certain circumstances): their
ability to divide the problem into smaller subspaces in WHiz search and their ability to increase the effects
of the operators on those smaller components. This can loeasea kind of partitioning and focussing; that
is, exploration of the components can be increased witheu@ch risk of disruption of the entire candidate
solution. Understanding the nature of these two properpestitioning and focussing, is the point of this
section.

4.2.1 Run Time Analysis

When one is interested in understanding how an algorithfiopas, traditional computer science would suggest
an analysis of run time behavior in the context of canonioatlexity bounding functions (Cormen, Leiserson,
Rivest, and Stein 2001). However, EAs are very complicaligarithms offering much that creates difficulty for
run time analysis, CEAs are likely to be even more difficulevirtheless, a host tools available for analysis of
randomized algorithms (Motwani and Raghavan 2000) prowvidéhods for learning something about relatively
simple EAs.

Analysis of this sort typically works by attempting to answhee question: “How many function evaluations
does one expect to compute, on average, before the first ienglobal optimum is reached?” Typically the
algorithm is considered to run forever, and the expefitsthitting time or optimization timeis computed—
generally bounded by some probability measure. The restiksch analysis are firm, trusted predictions of
the order of the number of evaluations needed to find a solasathe problem scales in size.
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This analysis provides a good place to start in terms of wataeding wider classes of more complicated
EAs. This subsection discusses some early analysis of ds@@REA, indicating how and when the partition-
ing and focussing can give the CCEA an advantage. The majfrthe formal analysis in this subsection was
performed in collaboration with Thomas Jansen during a tasDortmund University. This visit was funded
by the Deutsche Forschungsegemeinschaft as a part of theb@aitive Research Center “Computational In-
telligence” (SFB 531), and much of the results of this work ba found in Jansen and Wiegand (2003b) and
(Jansen and Wiegand 2003c).

The simple CCEA | will analyze here is formulated by using awn simple EA in the Potter framework
described in the previous chapter.

The (1+1) EA

| begin by describing the simple, analytically tractable XL EA, shown in Algorithm 3 below. Analysis of
the (1+1) EA has provided the EC community with many resiadhlenbein 1992; Rudolph 1997; Garnier,
Kallel, and Schoenauer 1999; Droste, Jansen, and Wege@2r 3@harnow, Tinnefeld, and Wegener 2002),
as well as tools and methods that could prove useful for amajymore complicated EAs (Wegener 2002).
This simple EA serves the purposes of analysis well, sinég very simple but still quite similar to many
more complicated EAs in many ways. What follows is a formdinigon of the (1+1) EA as applied to the
maximization of pseudo-Boolean functions. The reader Ishioote that this is a specific case of Algorithm 1.

Algorithm 3 (1+1 Evolutionary Algorithm ((1+1) EA)).

1. Initialize population
Choose ¥ € {0,1}" uniformly at random.
2. Evaluate population

fo = f(X0)
3.t:=0
4. do

4.1 Select parent$rom population
Use x as parent
4.2 Generate offspringrom parents
Create ye {0,1}" by copying xand, independently for each bit,
flip this bit with probabilitymin{1/n,1/2}.
4.3 Evaluateoffspring
fo= f(y)
4.4 Select survivorgor new population
If fc > fp, then setx 1 =Yy, else setgq = X.
45t:=t+1
until Terminating criteriais met.

This algorithm can be described very simply. There is onlg odividual in the parent population. The
offspring is generated by bit-flip mutation on the parent &ta of 1/n, though the mutation probability cannot
exceed 1/2. The offspring and parent compete for survivathi® next generation, and the offspring survives if
itis as least as good as the parent. Itis, as | have said, desaigorithm about which much is known in terms
of run time performance. For example, for all linear funeiavith non-zero weights (such azneMAXx), the
running time is known to b&(ninn); the running time for the EADINGONES problem is known to b&(n?)
(Droste, Jansen, and Wegener 2002).
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The CC (1+1) EA

A simple CCEA can be produced by using the EA defined aboveeirPtitter framework. Such an algorithm
has many benefits for the purposes of analysis. For one thisgyerhaps the simplest conceivable cooperative
coevolutionary algorithm that can be applied to staticrofation problems. This is an attractive property
since, like the (1+1) EA, it shares some useful propertigh wiore complicated CCEAs, while being analyt-
ically tractable. Another useful feature of this simplifialgjorithm is that the issue of how collaborators are
selected is eschewed since the population size for each BAlysone, by definition. For pedantism, the CC
(1+1) EAis described formally, in detail below in Algorithén This is an augmentation of Algorithm 2 below.

Algorithm 4 (Sequential Cooperative Coevolutionary 1+1 EA(CC (1+1) EA)).
1. fora:=1...k
1.1 Initialize population a

Choose ¥ € {0,1}' uniformly at random.
2. fora:=1...k
2.1 Evaluatepopulation a
Not applicable
3.t:=0
4. do
4.1 fora:=1...k
4.1.1 Select parent$rom population a
Use X% as parent
4.1.2 Generate offspringrom parents
Create ¥ € {0,1}' by copying ¥ and, independently for each bit,
flip this bit with probabilitymin{1/I,1/2}.
4.1.3 Select collaboratorgrom population
Use all current components of,xexcept 55)
4.1.4 Evaluateoffspring with collaborators

£ =1 (XY y@ i

IRV NI

4.1.5 Select survivorgor new population a
i (79> 1Y) setf ==y
else set &) = x?
416 t=t+1
until Terminating criteriais met.

There is only one parent component for each ofkhmopulations. The algorithm works by sequentially
moving from one population to the next, producing a mutatéspdng component, and comparing it against
the parent in the current context of all other componentghdfoffspring is at least as good as the parent, the
offspring replaces the parent. It should be noted that tnimd@lation of the CC (1+1) EA requires two evalua-
tions for each generation (the parent must be evaluatedafir mew offspring component, since collaborating
individuals may have changed from the previous round). &thcs results in merely a constant factor in the
analysis, this fact is ignored in this section.

Even at this simple level, there are a variety of choicesrtiight have been made yielding slightly different
algorithms. Predominantly these have to do with which gatimm provides information to the next. The
differences between such “update mechanisms” is exploredare detail in the study presented by Jansen
and Wiegand (2003c). In this work, the update mechanismsisnasd to work as described above: each EA
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completes a generation with its respective populationreefte CCEA moves sequentially to the EA operating
on the next component.

Comparing The (1+1) EA and The CC (1+1) EA (Separability)

Let us suppose for the sake of argument that the CCEA gairmslitantage chiefly (if not exclusively) from
the advantage of slicing the problem up and solving the pigt@arallel. This certainly seems to satiate the
most straightforward intuition: if the subproblems areslinly independent, surely an algorithm that solves
these independent subproblems independently in paralehtivantage over the algorithm that treats it as one
big problem? After all, their relative search spaces woplgégumably) be much smaller. As a vague sort of
justification of this intuition, consider a two dimensiorggdtimization problemf (x,y) = g1(X) + g2(y), where

x € {a,b,c} andy € {d,e, f}. The algorithm that solves the fufl(x,y) must search a space with 9 search
points, while splitting the problem up into two algorithmegch searching;(x) andgx(y) respectively only
need search three points each, or a total of 6 search poistghessize of the relative sets increases, this gap
widens, of course.

But this is not the space that a CCEA searches, even underdbeideal circumstances, and this notion
of subproblems that are separable across population bonaadaven if the design engineer “conveniently” is
aware of such divisions in the problem) is also not the acgmit appears to be. To get a better understanding
of this it is necessary to first contradict intuition by arzhg the most separable problems conceivableielR
problems. If the mere splitting of the problem into appratwipartitions is sufficient to gain advantage, one
would expect the biggest advantage to appear when the preblmost divisible. In fact, this is not the case. As
Jansen and Wiegand (2003b) shows, the CC (1+1) EA is stilitbedi above b (nlnn), yielding no advantage
whatsoever. In fact, it is clear from the analysis producetthat work that no division of the problem will result
in an improvement for the CC (1+1) EA over the simple (1+1) EA.

Why is this? Consider that a linear problem still requirestmare than one-bit mutations for there to be
improvements. Such being the case, the increased focuteatiah by the mutation operator offered by the
CCEA is not necessary, and cannot be leveraged over théidredi EA for such problems. In fact, for the
CC (1+1) EA to show an advantage over the (1+1) EA, the probtarst requireboththe partitioningand the
increased focus of the operators. It must use the partipta protectthe other pieces of the problem from the
added disruption of the more attentive genetic operatas ismot the case in the linear problem.

A problem can be constructed to exhibit this property vegadly. Taking the LOB problem described
above, and creating a problem that is separable acrossgtigpuboundaries by “concatenating” several of
them together in a linear manner, it is easy to construct bl@no that has exactly the property in which | am
interested. Allowing, for the moment, the algorithm decasipon to exactly match this new problem’s true
separability, | can define the new function CL@8n terms of thek populations in the CC (1+1) EA.

Definition 15. Forne N, ke {1,...,k} withn/k € N, and be {1,...,n/k} with n/(bk) € N, the function
CLOBpk: {0,1}" — R is defined by

k

CLOByk(x) := (Zn- LOBb(x(h_1>|+1---xh|)> — ONEMAX (X)
h=1

forall x =xq---X, € {0,1}", with | := n/k.

Analysis of both algorithms on this problem shows a clearasspn between the CC (1+1) EA and
the (1+1) EA, in terms ob andk. The expected optimization time of the CC (1+1) EA on the fiomc
CLOBypy is © (KIP (5 +1Ink)) with | = n/k, if the CC (1+1) EA exactly matches the function’s sepaigbil
with k (1+1) EAs, and X b < n/k, 1 <k < n/4, andn/(bk) € N hold. The same problem requires the (1+1)
EAO (nb(n/(bk) +Ink)) evaluations. Dividing the former by the latter, the diffece is obtained and shown
below.
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O (n°- (g +Ink))

© (kI (§ +Ink)) ()

It is interesting to note that for some valuesko&ndb this can decrease the expected optimization time
from super-polynomial for the (1+1) EA to polynomial for tleC (1+1) EA. This is, for example, the case for
k = n(loglogn)/(2logn) andb = (logn)/loglogn. The proofs for these assertions are demonstrated in detail
in Jansen and Wiegand (2003b).

Comparing The (1+1) EA and The CC (1+1) EA (Inseparability)

Perhaps the reader is willing to accept that separation mmashbfficientto guarantee that a CCEA will outper-
form an EA, but thatnseparabilityconstitutes a particular stumbling block for the algorithmfact this, too,
need not be the case. This is clear when one considersgheINGONES problem. Simple analysis can show
that this problem is still solved in quadratic time by botewolutionary and non-coevolutionary variants of the
(1+1) algorithms described above. Though the proof of thiimwn below) is a bit tedious, it is nonetheless
constructive and I will include it here for completeness.

Theorem 1. The expected optimization time for the CC (1+1) EA on thetfand. EADINGONES is O(1?).

Proof. The proof for the upper bound is very straightforward. Lepassimistically assume that the algorithm
solves its components from left to right, one at a time. Dypdansen, and Wegener (2002) tells us that the
expected number of active steps needed for a given compofhdsngthl to reach the all-onrd string can be
bounded above byel?. Since a component is active evdegteps, it will require a given component at most
2el’k steps to reach! 1Components are solved one at a time, so the sum of the efipastaan be used to find
the expected waiting time for the entire procegﬁll 2el’k = O(n?). For the lower bound, begin by defining
the termprogressive componetd mean the left-most component that is not the all one stiiage that all of
the components to the right of the progressive componeme@vdthout influencing the function value. Since
the original string is drawn at random, and the mutation &vare generated independently and uniformly at
random, the result for each of these components to the ridhegrogressive component must contain random
strings. Thus, the process can be treated as successiterslio individual leading ones problems for each
component. The lower bound for a given component can beraatdrom Droste, Jansen, and Wegener (2002),
except that now one must show that no advantage can be abfaome the partition.

First, a proof the lower bound for the case- 3 must be provided. | define the ternead start bitsto
be the number of bits that lead a component when that compdingnbecomes the progressive component.
Since the string is random until the component becomes essiye, the expected number of such bits can
be bound above bl/3. Chernoff bounds indicates that the probability thatehene more thar%l head start

bits is bounded above b%l/ ®, Thus, from Droste, Jansen, and Wegener (2002) and thidpwes bound
of the expected number of active stepif — %I)Z) = Q(I12/9). A step is active everk generations, there
are Q(kl?/9) such generations. The algorithm can be slowed down by asguiimat after reaching' in the
progressive component, there are no more mutations in tmenturound. Since each component becomes all
one only once, this slows down the optimization by less tklarNow, in each round at most one component
can be solved, which yields'*_, kI2/9 = n2/9 as lower bound. Altogether this yield8/9 — k2 = Q(n?) for
| > 3.

For| < 3 it suffices to see that the expected number of leading orieedyan one round is constant. This
implies that there are on avera@€k) = Q(n) rounds before the optimum is reached. In each round there are
Q(n) function evaluations. O
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Of course, the EADINGONES problem is quite simple; however, i fully inseparable, meaning it cannot
be partitioned into any linearly independent pieces. Yespite of this, as can be seen above, there is no
advantage to the traditional EA over the CCEA: in both case®kpected waiting time for the global optimum
is quadratic. The algorithm’s performance seems to be eciafl by the inseparability of the problem. The
proof helps give us insight into at least two of the reasonshis. First of all, this problem must be solved in
a specific order in terms of the bit positions in the stringarelless of which algorithm it uses. As a result, the
partitioning makes very little difference to the problersédution, one way or the other. Second, there is nothing
intrinsically contradictory in the interrelated bits. TheADINGONES function cannot drive the algorithm to
a point where its partitioning makes it impossible to malerbcessary jump to the solution. This notion of a
certainquality or characteristic propertyf the cross-population epistatic linkages will become eriorportant
a little later in this chapter.

Not only is it the case that inseparability can pasg@roblem for the CCEA over the EA, it is not difficult to
construct problems in which the advantage of the CCEA isqovesl, despite the presence of cross-population
epistasis. Moreover, such a problem can exhibit an exp@taéntprovement of the CC (1+1) EA over the
more traditional (1+1) EA. The reader is referred to JansehWiegand (2003a) for more details; however,
this result should not be surprising, given the Free Lunch TheoreifGchumacher, Vose, and Whitley 2001;
Wolpert and Macready 1997).

4.2.2 Empirical Analysis

Though asymptotic analysis provides exact answers to ignesabout the expected waiting time until the
global optimum is reached, it does have its limitations. &ie, there is a difference between an asymptotic
result and the realistic conditions under which it can besoled. For another, the algorithms analyzed here
were intentionally very simple, and it would be nice to knoamwhthe results carry over to somewhat more
complicated algorithms that are more likely to be used bytjraners.

In fact, in this case the results discussed above hold fdr teatlistic conditions of the (1+1) algorithms, as
well as for somewhat more complicated and realistic algor#. | will address both of these issue empirically
below by considering their behaviors on the CL&}Bnd LEADINGONES problems.

Realistic Problem Conditions

With respect to the first point, knowing that there is an asptipdifference between the (1+1) EA and the CC
(1+1) EA on the CLOB problem (as an example) doesn't tellwbenthat difference may become visible.
If the constant factors are such that the coevolutionaramidge cannot be seen umtik 1,000,000, then the
analysis may mean very little to people who are applyingehmasthods to real problems. This is not the case
though, as we will shortly see. The CC (1+1) EA advantage the(1+1) EA is visible with very reasonable
sizes of problem dimensionality.

| performed the following experiments, first on the CL&Fproblem, then on the EADINGONES problem.
Asingle (1+1) EAand a CC (1+1) EA witk= 4 populations were compared. The algorithms were run in each
case until the global optimum was found, and the number aftfian evaluations necessary to achieve this was
tracked and reported.

In the case of the CLOR,; problem, the algorithm’s representational decompositiatched the problem’s
decomposition. Thus, there wéte= 4 components ansl= 4 pieces; however, the size of the components was
varied, | = {2,4,6,8,10,12,14,16} (n = {8,16,24,32 40,48,56,64}). In the LEADINGONES problem the
same
(n=1{8,16,24,32 40,48,56,64}) values were used. This yielded at total of 32 experimentalgs (8 for each
problem, for each group). All groups were run for 50 indepamdrials.

The results of the CLOB, experiments are not surprising. Figure 4.2.2 on page 44 shioat the CC
(1+1) EA performs increasingly fewer evaluations to redoh global peak than its EA counterpart. This
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difference is statistically significant for> 2 at a 95% confidence usinigests and the Bonferoni adjustment
(Hancock and Klockars 1996). On the other hand, Figure 4saghe page) shows no significant difference
(either visually or statistically) between the two algonits over the same range wfvalues. This indirectly
validates the theoretical results directly in realisticesi dimensions of the search space: the coevolutionary
variant is superior to the traditional variant on the seplar&LOB; 4 problem, but they are indistinguishable
(in terms of performance) on the inseparableabINGONES problem for alln > 8. In both cases a more direct
validation would be achieved by considering the ratio of ¢heves and determining whether this ratio was
non-constant. To do this, experiments with larger valueswbuld need to be run.

Realistic Algorithms

One complaint that has been leveled against the analytiogh that has focussed on the (1+1) EA (and, by
extension, this work focussing on the CC (1+1) EA), is thd that it does not appear to be a “realistic”
algorithm in the sense that it is not one that practitioneesliely to use. While a comprehensive study of
a wide catalog of coevolutionary algorithms is outside t@pg and point of this dissertation, there are some
natural steps that can be made to make this algorithm a bi¢ mealistic. Here | describe one such step and
conduct the same empirical studies as were presented abdkiese more plausibly practical EAs.

The non-coevolutionary EA works as follows. There is a papiah of parents (in this case 10), and at each
step a single offspring is produced by fitness proportiosatection and bit-flip mutation, with a probability of
1/n, wherenis the length of the bit string. The offspring is then evadaband compared with parent population,
replacing the worst member if it is at least as good. If theeenaore than one such parents, then one is selected
at random for deletion. This is the so-callsttady stat&eA (De Jong 1975). The reader should be careful
to note that this algorithm is not too terribly different thtéhe (1+1) EA. In a sense, one could consider it a
modified (1+1) EA, where proportionate parent selection is used rdttaar uniform random selection. This is
an intentional choice, as it lends itself well toward futesg@ansions of the theoretical analysis. | will refer to
this as the SS-EA

The coevolutionary variant of this should be of no surprigethis case, there are (again herek = 4)
populations, each of size 10. As with the sequential CC (IHA) the populations of this SS-CCEA are
processed sequentially, in order. In each case, one stége einderlying steady state EA is performed. Now
that there is a population, though, | must address the idst@laboration. For now, | will simply pick a single
individual from each of the other populations that has tlyhést fithess from the last time that population was
processed (the so-callsthgle-bestollaboration strategy).

Again | consider the CLOB4 and LEADINGONES problems with the same experimental groups=
{2,4,6,8,10,12,14,16} for CLOB,4 andn = {8,16,24,32,40,48,56,64} for LEADINGONES. Again all 32
groups were for 50 independent trials.

The results of the CLOB4 experiments are consistent with those of the simpler (1afipats. Figure 4.2.2
on page 45 shows that the SS-CCEA still statistically sigaiftly outperforms its EA counterpart (95% confi-
dence using-tests and the Bonferoni adjustment), though forlthe2 groups now. Additionally, Figure 4.2.2
(same page) still shows no significant difference betweenwlo algorithms over the same rangenofalues.
This justifies, to some extent, the use of the simple algoritthe theoretical results for the simpler (1+1) al-
gorithms seem to hold for similar population-based apgreacHere again the valuesmére too small to see
non-constant ratios between the the curves.

4.2.3 The Parallel CC (1+1) EA

The above analysis reflects consideration of Algorithm Zidlesd on page 39. As I've already mentioned,
this algorithm issequentiain the sense the individual components are processed orgnad,an order. This
allows for changes in an individual occurring during a rodadaffect the fitness of individuals representing
different components evaluated later that same roundrrdtizely, one might apply a mogarallel updating
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Figure 4.3: Results for the CC (1+1) EA (black) and the (1+AY&ashed, dark grey) on the CLQB problem.
The x-axis shows the length of a componehtand the they-axis shows the number of function evaluations
until the global optimum was reached. The vertical wingsastiee 95% confidence interval of 50 independent
trials; the plotted point shows the mean.
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Figure 4.4: Results for the CC (1+1) EA (black) and the (1+A)(Bashed, dark grey) on theelaADINGONES
problem. Thex-axis shows the length of a componehtand the they-axis shows the number of function
evaluations until the global optimum was reached. Theeartvings show the 95% confidence interval of 50
independent trials; the plotted point shows the mean.
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Figure 4.5: Results for the SS-CCEA (black) and the SS-EAl(dd, dark grey) on the CLQR problem. The
x-axis shows the length of a component /pid¢@nd the the-axis shows the number of function evaluations
until the global optimum was reached. The vertical wingsastiee 95% confidence interval of 50 independent
trials; the plotted point shows the mean.
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Figure 4.6: Results for the SS-CCEA (black) and the SS-EAHKéd, dark grey) on theHADINGONES prob-
lem. Thex-axis shows the length of a component /piggeand the the/-axis shows the number of function
evaluations until the global optimum was reached. Theeartvings show the 95% confidence interval of 50
independent trials; the plotted point shows the mean.
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approach, where individuals select collaborators fromgtevious round, allowing no inter-round changes
to have any affect on the fitness result from individuals @ad in the current round. | call this parallel
because the components can then be processed asynchyanaumsi order, or they can be processed in parallel.
Algorithm 5 can be obtained by simply making a slight changéne 4.1.4 of Algorithm 4. This substituted
line is shown below.

Algorithm 5 (Parallel CC (1+1) EA).

4.1.4 Evaluateoffspring with collaborators
£ = 1 (XY ...y@ .

£0 g (XY@ W

The reader should note that using the previous round’s ithais for the evaluation affects not only the
offspring evaluation, but the parent’'s as well. In fact,hie parallel variant one need only evaluate the parent
once a round, since its value will never change while the dasrin progress. This gives the parallel imple-
mentation an implicit advantage in terms of the number ofuations performed, albeit by at most the constant
factor 2.

The situations in which these two variants differ are peshiaps than obvious. Let’s first look at the situ-
ation where problems are separable across population baaedthen turn attention to a problem constructed
to exploit the difference between these two algorithms. |l return to this algorithm at the end of the chapter
to discuss some of its pathologies compared to those of theesial model.

Equivalence on Separable Functions

Conventional wisdom suggests that, while these two alyostare very similar, they make a fundamentally
different type of choice with respect to selection and uipdaiand thus can differ profoundly from one another.
While this is true in the general case, it is not true for peofs in which components relate in merely linear
ways. Indeed, the parallel and sequential variants of thg13@) EA have equivalent running times on all
functions that are separable across population bounddresproof of this is shown below for Theorem 2.

The result of this is to suggest a far more subtle differeretevben these two algorithms. Certainly they
differ, and thus must exhibit different running times fomsmproblems, but not for separable ones. This analysis
suggests that if an algorithm designer is confident that tietomposition matches that of the true problem,
there is no reason based on running time alone to choose doerg&l algorithm over the parallel, or vice-
versa. Thus they are free to consider other factors in matkiisgdecision (such as whether or not a parallel
computational environment exists of which they can takeaathge, for instance).

Theorem 2. For any function f {0,1}" — R, if the parallel and sequential forms of the CC (1+1) EA use th
same division into components on f and if f is separable agoopulation boundaries, then the two
CC (1+1) EAs behave identically.

Proof. Contradiction is used to show that the two algorithms musethe same performance because they
behave identically in all cases when applied to the sameaelggproblem. Given that they behave identically,
the number of generations needed for optimization is etpritaand their respective expected waiting times
for the global optimum cannot differ by more than a factorved t

For there to be any difference in behaviors, the algorithmastmake different decisions during the selection
step, and by consequence the evaluation step, step 4.1stipbitain different results. Given that the function
is separable across population boundaries, the linearilootibn of the active component to the total fitness,
ga: {0,1} — R, can be the only difference in the total fitness score. As altrefor a different selection
decision to be made, it must be true tiiafy®) > ga(x?) andga(y®) < ga(x?). Since both inequalities
cannot be simultaneously true, there is a contradiction. O
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Tricking The Sequential (or Parallel) Algorithm

Despite the fact that the parallel and sequential CC (1+19 &#& very similar algorithms, and despite the fact
that they perform identically on problems that are separabtoss population boundaries, they are nevertheless
different algorithms and behave differently on some pnotde The problem classes for which a distinction in
running time is possible are a subset of problems contairriogs-population epistatic linkages; however, there
is no reason to believe that all such problems pose an ady@atieone or the other—quite the reverse: some
problems favor sequential algorithms and some favor mmijjorithms. Let's begin by looking at the latter.
When might a parallel algorithm gain advantage over the esatipl algorithm? To see this, first note that
the parallel algorithm actuallthrows information awayn the sense that information might be learned during
a round, but cannot be used until the next round, after otf@nges may have occurred. It makes sense, then,
that parallel algorithms are favored when such informaisamisleading in some way. With a bit of effort, such
a situation can be constructed. Consider the definitiormsabel

Definition 16. For any me N with m> 6, we define n= 2m and the function g{0,1}" — R. For
X=X1--+X, € {0,1}" the x string can be written 3% xX'xX” with X = X1 - - Xm € {0,1}™ and
X' =Xmi1-- % € {0,1}™. The function g is defined by

2n+2 if x =0"
2n+n-|x|| ifxX=0" v X =0"
2n+1 ifx' £0™ A X' £0M A x| =2

: ifX 0™ A X' #£0M A x| >2 A
2n+2- ||| (X[ < [m/3] v [[¥]| < [m/3])

n* -+ ||x| otherwise

for all x € {0,1}", where||x|| = ONEMAX (X).

This function,g: {0,1}" — R, is not(r, s)-separable for ang < n. What is of interest is the performance of
the two CC (1+1) EA variants agwhen using two sub-populations, one operating/and the other operating
onx’. These two parts are non-linearly related, but splittingmtup in this way will facilitate opportunities
for the parallel and sequential algorithms to come to difféeiconclusions based on the information they have
at their disposal when processing a given generation. Ome fager is needed to complete this picture: let's
embedg into another function, SPFUN, the target of our analysis. Now the difference betweenethes
variants is clear and provable.

Definition 17. For any ke N with k> 6, define n= 4k?, m:= n/2 = 2k? and the function
SEPFUN: {0,1}" — R. For X=X --- Xy € {0, 1}, the x string can be written % xX'x" with
X =% Xm € {0,1}™and X' = Xm1- - Xy € {0,1}™. For X = x1---Xm € {0, 1}, the X substring can be
written X = xMx2) .. x® with XV = Xp(; 1)1+ Xai for alli € {1,...,k}. The functiorSEPFUN is defined
by
n— ||X|| + LEADINGONES(X") if x” #£ 1M

SEPFUN(X) := k .
) n+ 3 g(x") otherwise
i—1

for all x € {0,1}", where||x|| = ONEMAX (X).

As | will discuss at the end of this chapter, neither the satiaenor the parallel algorithm are able to find
the global max for some types of problems with cross-pomratpistasis. This is such a problem: there is no
expectation that the CC (1+1) EA finds the global optimum BPFSUN. Instead one must change perspective
to one of approximation. | wish to know which of the two algbms finds the larger function value in a specific
number of generations, fixed in advance. Concentrating arge but still polynomial numbers of generations,
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Jansen and Wiegand (2003c) prove that for the sequentialitalign, the best fitness is so-far discovered in
steps (wheré > 6n%/2 4 6n2 andt — n®(%)) is & + n¥2 1 nwith overwhelming probability. In the same number
of steps, the parallel variant will have attained tifecase fromg. Jansen and Wiegand (2003c) verify this
experimentally, as well.

Perhaps more interesting than this, however, is the fattathalatively obvious change in the underlying
function reverses the situation. Consider an alternafiveelow, substituted in 8°FuN for g.

Definition 18. For any me N with m> 6, we define n=2m and the function’g {0,1}" — R.
For x=x3--- %, € {0,1}", the x string can be written ¢ x'x” with X =x; - - -y € {0,1}™ and
X" = Xm1- - % € {0,1}™. The function gis defined by

2n+2 if x =0"

2n+n|x|| ifxX =0"vx' =0"
gx):=<2n+1 if X' £ 0MAX" £ 0MA X =2
2n+2||x|| ifx #£O0MAX £0MAX]| > 2
n*+|x| otherwise

for all x € {0,1}", where||x|| = ONEMAX (X).

Now the sequential implementation is clearly superiorabese having
x(1) € {1%0K,0%1%} yields much better pay-off thaxi’) = 12, Thus, while in some cases the parallel variant
clearly performs better than the sequential algorithm tireocases the reverse is true. The basic advantage of
the parallel over the sequential CC (1+1) EA seems to certend whether accrual of local information during
a round will be misleading, while this advantage is reveigéte omission of such information is misleading.
Again there is no general reason (without domain knowletty@pply one or the other type of algorithm.

4.3 Collaboration

Selecting a collaboration method for a CCEA is one of the nroportant decisions an engineer must make.
Not only can such methods make or break the performance bCl@&As on real problems, the available
choices seem to be integrally tied to certain problem ptogser Many researchers believe that the existence
of cross-population epistasis will demand more sophiitaollaboration methods. This section presents
empirical analysis of the collaboration mechanism fromgaespective of this property.

4.3.1 Sampling Interactions

Independent EAs in a coevolutionary framework operatesoomponents with incomplete information. Recall
the thought exercise earlier where the search space seebesremluced by splitting the problem into two
parallel and independent searches of the linearly semamétes of the problem. This idea is flawed because
the coevolutionary algorithm isot only searching the projection of the problem. It is searglarprojection of
the problemat one timeand this projectiothangeghroughout time, as the other populations change.

Collaboration is the process by which the population culyeimder evaluation collects information and
the whole problem, about the relationship between compené&respite the fact that CCEAs will look only at
a projection of the problem at any one time, the quality of firajection in terms of their ability to characterize
the relevant features of the complete search space deagdiylon the tractability of that characterization, as
well as the ability of the collaboration process to gathe&fulsnformation about the other populations.

The best way to think about the collaboration process is isider it as a method faampling interaction
space Given this view, how one selects collaborators is a maguassince the degree of complexity of the
interaction space is complicated. It may be that more cottaors are needed per evaluation in order to better
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characterize the interaction space (a larger sample sizé¢hat theway they are picked might lead to more
efficient use of the samples one already has (a biased samafie)lf one selects more collaborators than is
necessary, search performance is harmed by unnecessémgtieves. In the worst case, complete mixing is
used. In complete mixing all individuals are coupled withirdlividuals from all populations. This becomes
combinatorially large as the number of populations inceelasearly. However, if only a single individual
from each population is sampled for collaboration, the @llgmn may have insufficient information about the
interaction space with which to construct a suitable segreldient. This problem is worse when such an
individual is chosen poorly. The questions is: What kindssafmpling methods are most appropriate for
problems with different properties?

4.3.2 Decompositional Bias

As we have already seen, different problems have differegtags of separability that may or may not corre-
spond with particular CCEA representation choices. Simgasability information is not generally available
for difficult optimization problems, the focus here is on ttese where there is a particular kind of mismatch
between the CCEA representation and a problem’s “natuesddohposition. The issue here is not whether such
mismatches make the problem harder to solve. This will bldeappen for some problems (Potter and De Jong
1994; Bull 1997; Bull 2001; Wiegand, Liles, and De Jong 200hstead, the question is whether adopting
more complex collaboration methods can alleviate such atisies.

In order to answer this, it is useful to have problems that lmarexplicitly controlled in terms of their
inherent separability. For pseudo-boolean functions ighisot difficult using the method of concatenation
already mentioned. From a practitioner’s point of view,rivey any problem specific domain knowledge, the
simplest way to represent pseudo-boolean functions isamdgeak up the total bit string of lengthinto k
equal sized components of lendthnd assign each component to a different population. Réll denotes
the number of separable pieces of lengthGiven these two different divisions, a decompositionasmmatch
of the representation may be dueaeer-decompositiorfk > r) or under-decompositiok < r). If there are
more populations than there are separate pieces of theepmptitere is likely to be strong interaction between
populations in the system with respect to the problem, Gress-population epistasis. kf< r, the advantage
of the parallelism of coevolutionary search is sacrificed.

Again, our interest is whether difficulties due to the existe of decompositional bias can be alleviated by
more complex collaboration methods. The motivation fos thterest stems from an important observation: if
there is no cross-population epistasis, a simple seleatietmod for collaboration is sufficient. If two popula-
tions represent independent pieces of the problem, themiaptg one population independently of the other
will result in the complete optimization of the problem. At as the collaborator chosen for each population
member is the same, it doesn’'t matter how one chooses it. vowik does matter how many collaborators
one chooses, since picking more than one will incur more cessary evaluations. Therefore, in the absence
of cross-population epistasis, selecting the single etidual (i.e., the most fit individual(s) in other popu-
lation(s) from previous evaluation) from the other popiolas for collaboration is sufficient. In fact, one could
pick this individual randomly, as long as it was the sameviiddial for each member of the population during
a given generation. The point isn't that any partnering sehevill result in a better collaboration than another,
but that since each population can essentially be optimimependently, one only needsansistensample
from which to establish collaboration.

So when would a more complicated collaboration selectiotihatebe needed? Recall that how one chooses
collaborators essentially determines how samples the potential interactiomsth the other population. There
has to be a reason to believe that more than one sample isdhemdhat sampling with a particular bias
(say choosing the best) will result in a qualitatively diffet characterization of the relationship between the
populations. Either way, some interaction between the fadipuas is certainly needed to justify this need. More
than simply having such epistasis is at issue, however.

In order to study the effects of collaboration on such situest, the following experiment was constructed.
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The steady state CCEA (SS-CCEA) described above was appledoncatenatedHADINGONES problem.
In this particular case there were 128 bits in the total bihgtof the problem, subdivided evenly into= 2
pieces. The function below gives a more specific descrigfchis function.

f(x) = LEADINGONES (x(1>> + LEADINGONES (x(2>)

A total of 6 collaboration selection methods were used. Timalver of collaborators chosen for a given
evaluation was varied (2, &3) and two selection biases were usaedbest andc-random. These worked as
follows. In the first case, the best individuals were chosen from each of the other populsti evaluated
with the current individual, and the best of those scoresuwsasl as the fitness value for the individual. In the
second case; individuals were chosen uniformly at random without replaent, evaluated with the current
individual, and again the best of those scores were useadgrtbss value for the individual.

Aside from these 6 collaboration methods, the number of jatipas,k, was varied. However, in all cases
the number of individuals in each population was 10. Thelte$or k = 2 throughk = 16 in Table 4.1 show
the average number of evaluations for the algorithms tdréae optimum. There were 50 trials performed per
group. Unless otherwise stated, confidence levels for st t@re 95%.

Table 4.1: Steady state CCEA results on tieabINGONES problem. Each value represents the mean number
of evaluations needed to reach the optimum out of 50 trialsmRhe top left corner, proceeding clockwise, the
tables represent data for decompositional biases createg two, four, eight and sixteen populations.

r=k # Collaborators k=4 # Collaborators

1 2 3 1 2 3
c-best | 8841.56 17546.52 25331.32 c-best| 9355.16 18994.36 28061.20
c-rand | 8838.46 17621.88 25640.28 c-rand| 10636.90 19229.02 28769.28

k=8 # Collaborators k=16 # Collaborators

1 2 3 1 2 3
c-best | 10420.48 21178.52 31253.44c-best | 11930.08 23723.20 34587.76
c-rand | 13161.24 23657.76 34302.52c-rand | 19458.44 30713.74 42862.28

Statistically, the relevant groups were compared witkiest using the Bonferoni adjustment. In all cases
choosing one collaborator is significantly better. This Imigt first be puzzling since there is clearly cross-
population epistasis present wherr 2. However, note that a mutation that turns some bit to 1 imdividual
in the first population will always result either a neutrabaositive change in fithess, regardless of the contents
of the other population. The reverse is also true. In addlitibis fact is not true symmetrically fér= 4. The
second and fourth populations will remain relatively unortpnt to the first and third populations for some
time during the evolution, since eaclEADINGONES subproblem is solved left-to-right. This is essentiallg th
same observation made by the formal analysis of the CC (1AlpBove.

Observe that by changing the number of populations, thetionteate is effectively being increased (recall
that the mutation is Al, wherel is the number of bits per individual in each population). Isissues may affect
the empirical results, consequently | ran all populatioiertted experiments discussed above with a constant
1/64 mutation rate. The results (below) remain consistenh Wibse reported above. Again, statistically
speaking it is better to select only a single collaborator.

Recall that one observation about theADINGONES problem made during formal analysis earlier in this
chapter was that there is nothing intrinsically contramtigtin the interrelated bits of this problem. This can be
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Table 4.2: Steady state CCEA results on th\bINGONES problem with a constant mutation rate of 1/64 for
all experimental groups. Each value represents the meabertuof evaluations needed to reach the optimum
out of 50 trials. From the top left corner, proceeding cloidaythe tables represent data for decompositional
biases created using two, four, eight and sixteen popuakatio

r=k # Collaborators k=4 # Collaborators

1 2 3 1 2 3
c-best | 8428.28 17315.64 26535.94 c-best | 12646.04 2712252 37218.52
c-rand | 9103.48 17128.94 26677.74 c-rand| 13759.30 27517.72 39194.62

k=28 # Collaborators k=16 # Collaborators

1 2 3 1 2 3

c-best | 22654.56 42379.00 68231.68c-best | 40193.10 79460.12 119571.76
c-rand | 24298.46 45986.04 69805.16c-rand | 43751.84 83424.06 124537.00

easily rectified by a simple change to the problem: scale #eDINGONES part bys and subtract QEMAX
from the total, i.e.g(x!)) = s- LEADINGONES(x)) — ONEMAX (X)) +5, and f (x) = 32K, g(x). The en-
tire function is translated up by to prevent any negative values that will create a difficutty the fitness
proportionate selection method.

With this new function the right side will affect the seardhce bits to the right of the left-most zero bit
will contribute to fitness, but there is some tension betwiadividual bit contributions to fitness and those of
their non-linear interactions since those right-side bastributenegatively This modification is a half-step
towards pure contradiction since this tension is one dorat. Take the string: “1100Q0.” as an example.
Flipping the fourth bit to a one will decrease the fithesshiligif the third bit remains 0, while flipping both
the third and fourth bits will increase the fitness. Howetles, same is not true on the other side. Flipping the
third bit while the fourth bit remains 0 will also increasenéss. So some of the interactions have this property
of sign-dependent epistasis, while others will not. In #ddj the linear effects of the bits are very muted
compared to the non-linear effects due to the scaling issue.

Thiss- LEADINGONES— ONEMAX function is again concatenated using two pieces R), that isf (x) =
g(x®¥) +g(x?). Again, | applied the SS-CCEA algorithm using the 6 collaition methods described above.
The results fok = 2 throughk = 16 in Table 4.3 show the average number of evaluations ittie®klgorithms
to reach the optimum (50 trials each).

In addition to the data presented, | performed similar erpents at highek values. In all cases there was
again no statistical reason to choose another collabaratiethod other than the single best individual from the
other populations. Not only does this increased decomipoaitbias not alter the collaboration methodology,
it appears as though this problem becoraasierfor the CCEA to solve, not harder, when using thbest
strategies. This turns out to be statistically significamiydor the k = 16 andk = 64 cases where using the
single-best strategy, for the> 16 cases using 2-best, and the 32 andk = 64 cases using 3-best. Figure 4.3.2
below shows results for thebest strategies asis increased if{2,4,8,16,32,64}.

So far, these experiments confirm what one sees in practeeely that the simple collaboration method
involving just the best individuals from each populatiorgisite robust even when there is cross-population
epistasis. However, what is still not clear is when it fail® understand that better, | next focus on the the
various forms of cross-population epistasis.
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Table 4.3: Steady state CCEA results ongheEADINGONES— ONEMAX problem. Each value represents the
mean number of evaluations needed to reach the optimum & tfals. From the top left corner, proceed-

ing clockwise, the tables represent data for decompositibiases created using two, four, eight and sixteen
populations.

r=k # Collaborators k=4 # Collaborators

1 2 3 1 2 3
c-best | 15082.82 30814.68 45780.04c-best | 15233.84 30805.00 44637.04
c-rand | 16207.60 29958.68 46421.48c-rand| 16213.30 29664.68 45027.10

k=8 # Collaborators k=16 # Collaborators

1 2 3 1 2 3
c-best | 14407.84 29190.36 42922.96c-best | 13996.32 28421.08 43566.16
c-rand | 16437.56 28516.20 46327.98c-rand | 20674.84 3472452 49562.24

4.3.3 Linkage Bias

While decompositional bias focusses on potential misnegtdietween a problem’s “natural” decomposition
in terms of separability and the number of CCEA populatiossdy there may still be cross-population non-
linearities when the design engineer decomposes the pnobl® the same number of components as there
are separable pieces of the problem. This is because it $gp@$0 assign lower-order components with such
non-linearities to different populations. Breaking uphtlyg linked bits can result in significant cross-population
epistasis. Indeed, as | will show at the end of this chagtéstype of non-linearity can become pathological to
CCEAsin some cases. In general, the degree to which linkedhba piece are assigned to the same population
for the purposes of representation can be thought bhksge bias

Once again it is easy to construct a method for controlling lifas: define a mask over the entire bit string
that specifies to which population a given bit belongé.c {1,2,...,k}". Note that in the case of these mask
definitions, the superscript suggests repetition, and nax@onent. For problems like those in the previous
section involving a series afconcatenated non-decomposagleit blocks and assuming for the moment that
r = kands=1, a mask that corresponds to the most biased linkage (i.eoiie olosely aligned with the real
problem, omatcheghe problem well) isMs = 1'2' ... k'. Coming up with a highly pathological mask is very
problem dependent, but a mask that will turn out to be comynquolte bad isMy, = (123...k)'. Here every
bit in a block is distributed to every population, resultinghe likelihood of a high degree of cross-population
epistasis for most common problems.

Again, increases in the amount of cross-population epsstiashis case may affect a problem’s difficulty to
solve with a CCEA. By applying different types of masks, whitistribute different pieces of the blocks of the
problem to different degrees, | can explore the affect thaying degrees of linkage bias have on collaboration
methods.

Consider again thes- LEADINGONES — ONEMAX problem, assuming = k = 2. Using the Mg =
11...1 22...2 mask produces the same decomposition already discuskedk there is no cross-population
epistasis, while the masi/,, = 1212...12 2121..21 creates a situation with very strong cross-population
epistasis. Once more | apply the SS-CCEA problem, with thellafworation methods described above; how-
ever, this time | compare the effects that these two maskohatie choice of collaboration methods, rather
than the number of populations used. The results are pegsentable 4.4.

Differences between the means f@best andc-random groups fotM,, are significant for one and two
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Figure 4.7: Results for the SS-CCEA on thd. EADINGONES — ONEMAX problem for increasing values of

k. The bottom curve (solid) illustrates results for the sialgest collaboration strategy, the middle curve (long
dashed) represents results for the 2-best, and the top @hoe dashed) represents results for the 3-best. The
x-axis shows the size & and the the-axis shows the number of function evaluations until thdgl@ptimum

was reached. The vertical wings show the 95% confidencevaitef 50 independent trials; the plotted point
shows the mean.

collaborators, but not for three. There are no statisticsitnificant differences between these groups (for the
same number of collaborators) for the simpler linkage bias.

Once again simply distributing the epistatic linkages ssrthe population boundaries is insufficient to
require that a more complicated collaboration method bd.uBkis may seem surprising at first, but note that,
for this particular problem, introducing such masks dodschange theéypeof cross-population epistasis, only
its degree. Moreover, although not germane to our questiginteresting to note that in this particular case
increasing the mixing seems tmprove performance versus th&fs mask (this is significant for all but the
3-random case).

What remains to be shown is what the effect of the most diffituim of cross-population epistasis has on
collaboration selection. When neither the sign nor the ritade of the interaction can be reliably predicted,
will it become necessary to select collaborators diffdy@ntintuition seems to suggest that it will. If no
prediction can be made about the higher order blocks frontothier order blocks, then a more sophisticated
method of sampling the interaction space should be needédt Wieed to do now is construct a problem with
just such a challenge.

Fortunately, the CLOBx problem mentioned previously has exactly this propertyteNbat this problem
is already one constructed by concatenation of functioes swaller, inseparable pieces. Because this problem
is already quite difficult wheb = 2 and | am looking at linkage bias, rather than decompositibias, here the
focus is on the specific function CLQB. This offers the simplest such problem still more compédathan
thes- LEADINGONES— ONEMAX. As it turns out, it is so difficult under th@#, mask that the algorithms did
not find the global optimum witim = 128. The reason for this should be clear by the end of thistehapt
any rate, as a consequence Table 4.5 represents the meas Véihges obtained after a fixed budget of 100,000
evaluations. The reader should be careful to note that sncise higher values are better.
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Table 4.4: Steady state CCEA results on thé. EADINGONES — ONEMAX problem for different linkage
biases. Each value represents the mean number of evakia@ued to reach the optimum out of 50 trials.
The left table represents a linkage bias that usesithmask, while the right uses th#fy, mask.

Ms # Collaborators Mh # Collaborators
1 2 3 1 2 3
c-best | 15472.42 30393.32 46064.92c-best | 15558.96 29963.64 45702.88

c-rand | 15669.34 30830.90 45401.42c-rand| 17417.48 32920.20 47527.80

Table 4.5: Steady state CCEA results of the CL.QBroblem. Each value represents the mean value obtained
after 100,000 function evaluations out of 50 trials. The teble represents a linkage bias that usesfthe
mask, while the right uses thi#fy, mask.

Ms # Collaborators Mh # Collaborators
1 2 3 1 2 3
c-best | 1811.22 1140.4 1002.78 c-best| 379.1 477.06 499.38

crand | 1708.34 1167.63 1022.57 c-rand| 782.65 788.74 810.5

Now we see exactly the reverse situation as we did beforénoAgh it is clearly better to select a single
collaborator when there are no cross-population epistatiages of this type, as soon as those linkages are
spread across populations a more complex collaboratiomamém is required. In the latter case, increasing
the number of collaborators does in fact result in stat#ifidmproved performance. Specifically, using one
collaborator is significantly worse than using two or thr@éis statistical result was obtained using Tukey-
Means at a 95% confidence interval and was confirmed using@His$D. The same result was obtained using
pairwiset-tests and the Bonferoni adjustment when run for 100 triatd (eported). It was also the case
that picking collaborators randomly was statistically estgr to picking them greedily when there was cross-
population epistasis.

Though the property of inseparability has a role to play imtof informing us of how one selects collab-
orators, that role is not a simple one. The formal analysieaked that the mere presence of cross-population
epistasis is insufficient to guarantee either that the CCHIAoe expected to perform better or worse than the
EA. The above empirical analysis indicates that the simpdsgnce of cross-population epistasis is also not a
reason to prefer more complicate collaboration methodfadt) it appears to be thigpeof non-linearity that is
relevant. More sophisticated methods are needed wherendith sign nor the magnitude of the fithess change
can be predicted from changes in the lower order pieces. maies sense: if collaboration is about sampling
the interaction space, there needs to be a reason to santeidggest reason to sample is when lower order
pieces can be contradictory to the result, thus requiriegatgorithm to discover more sophisticated informa-
tion about these linkages. | will return to this idea in a bitf first let’s turn our attention to properties of the
collaboration choice itself.

4.3.4 Selecting Collaborators

In the previous subsection, | identified the salient praperin the problem that result in the need for more
sophisticated methods for collaboration. In this subsectl will use the CLOB, problem examples with
both the simple and hard masks to discuss the other sidesodin: what kinds of choices can be made when
selecting collaborators, and what results should one ¢&Xymn these choices? Recall that there are essentially



55

three attributes to consider for collaborator selecti@mgle size, selective pressure, and credit assignment.

The first case is simple since the sample size can be coutrsitieply by controlling the number of col-
laborators selected. As above, | will us¢o denote the size of the collaborator sample. Of courselatiger
this value is, the more objective evaluations will be reediper individual. It should be clear that increas-
ing the sample size and the number of populations togethrehaae a combinatorial effect on these function
evaluations. So, in general, it would seem that the fewdalootatorswe needo obtain “good” results, the
better.

The second case requires a slightly more complicated miechain this case, a simple tournament draw
method can control the degree of selective bias of collabmwaThat is, the algorithm seledsollaborators at
random with replacement, and chooses the one with the hifjtresss from its previous evaluation. This does
not increase the number of function evaluations perfornecesthe algorithm simply uses the results from
previous evaluation. The net effect is that the selecti@sgure can be increased from purely randgr ()
to elitist (q :~ plg p, wherep is the population size).

When multiple collaborators are evaluated for the purpa$dness (whert > 1), there is still the open
guestion of how one assigns a single fithess score from tlitged multiple objective function evaluations,
collaborator credit assignment. Here only three possitdditassignment methods are consideigatimistic
hedge and pessimistic These correspond respectively to using the max, mean, amefnthe c available
objective function results.

Let's consider collaborator credit assignment first, sitie@results of credit assignment are perhaps the
most obvious. | applied the two population SS-CCEA to the ®2@ problem under each of the two masks.
Again the population size is 10, bit-flip mutation at a ratelgf was used, and the total length of the bit
string was 64 bits. | ran this algorithm 50 times againsteht@g problems using all three credit assignment
methods varying € {2,3,4,5}. The table below displays the mean best fitness found af@0Q0 function
evaluations is computed. Though the hedge and pessimisticatls may notisethe objective value for the
purposes of fithess assignment, any value compdteihg the credit assignment process (before a score is
selected to be assigned) is available for consideratiohebest-so-far information reported. This alleviates
any unfair advantage the optimistic method may have in #spect. Not surprisingly, the result is a clear
statistical advantage to the optimistic approach. In tlee @ the simple mask, none of the three approaches
is statistically superior to either of the others for anylaobrator sample size. Fév,, the optimistic case is
statistically better than both the hedge and pessimistitoaks.

Table 4.6: Collaboration credit assignment results forstieady state CCEA applied to the CL@Bproblem
using two different masks. Each value represents the mesrsbefar of 100,000 objective function evaluations
out of 50 trials. The top table represents a linkage biasubas theMs mask, while the bottom uses tiv,
mask.

Ms # Collaborators

2 3 4 5
Optimistic | 1210.50 984.64 919.04 823.56
Hedge 1216.66 966.14 879.36 817.32
Pessimistic| 1226.56 964.96 840.96 828.54

M # Collaborators

2 3 4 5
Optimistic | 465.28 966.14 595.88 537.74
Hedge 460.32 504.96 507.44 526.04
Pessimistic| 361.56 406.56 397.70 379.50




56

Let's now turn our attention to the remaining two parameteenple size and selective bias. Again, the
SS-CCEA was applied to these two problems. This time a tétaD@xperimental groups were used for each
of the two problemsc € {1,2,3,4,5} andq € {1,2,3,4,5}. Figure 4.3.4 below illustrates the results of 50
trials of each group for the CLOS problem using the simple mask, while Figure 4.3.4 belovsitiates the
results of 50 trials of each group for the CL@Bproblem using the hard mask.

The results of these experiments are a bit more interestBagring a couple of exceptions, there is no
statistical advantage to biasing the selection procesthéoproblem with the simple mask. The exceptions are
that theq = 2 andqg = 4 groups differ for the two collaborator case, but not for attyer collaborator sample
size. The reverse, however, is not true. Clearly the sanm@ehinders performance in all but a few cases. There
is no statistical difference between= 3 andc = 4 for theq = 1,2, and 3 groups, and there is no statistical
difference between = 4 andc = 5 for any of the groups.

Likewise, when using the more complex mask, biasing did ppear to affect the results. In this case, no
g value was superior to another at a particldaalue. Again the collaborator samples size is crucial, bist t
time its service is reversed: increasing the sample sizks leabetter performance.

What is the message? When there is significant contradictargs-population epistasis, practitioners
should consider using a more sophisticated collaboratiethad. In the case of static function optimiza-
tion, using an optimistic credit assignment method is tgibyca good choice. Finally, between increasing the
sample size and biasing the sample, the former is more igffecthis is consistent with observations made
from existing research (Wiegand, Liles, and De Jong 2001;1297).

4.4 Difficulties with CCEAS

The work leading up to this point has shown that CCEAs can siores outperform traditional EAs, even when
cross-population non-linearities are present. Moreavéigs also been shown that the reverse is true as well:
there are inseparable problems for which the EA outperfahmsCCEA. The conclusion to draw here is not
that the CCEA is better or worse than the EA, but that thergayperties of the problem that lend themselves
toward CCEAs, and those that lend themselves to EAs. Thisti@n altogether surprising conclusion, of
course, especially given the No Free Lunch theorem.

However, the crucial piece of (perhaps counter intuitiveflerstanding is this: the relevant property con-
trolling CCEA performance on static optimization problemsomething more complicated than merely the
presence or absence of separability. The non-linear oekttips between components represented in popula-
tions may or may not create difficulties for coevolutionalyogithms. The issue is clearly more complicated
than this. There are some canonical problem propertiesehétto lead to difficulties for coevolutionary algo-
rithms, but the multi-population symmetric algorithmsatissed in this thesis are carefully designed to avoid
these difficulties. For example, intransitive relatiopshin the rewards are not possible in the class of CCEAs
under investigation. If not the presence of cross-poputagéipistasis (or, even, tlikegreeof such), and if not
the more recognizable coevolutionary stumbling blocksatvthen are the relevant properties?

There are at least two important properties that compli€Z&A search: contradictory non-linear effects
between populations and consensus in the joint distribstad strategy rewards. Both of these properties often
cause CCEAs to fail to find the global optimum of an objectivection. The subsections below will discuss
both of these, but the first is emphasized here since the dézaddressed much more extensively in Chapter 5.

4.4.1 Contradictory Cross-Population Epistasis

The idea that there are differetypesof epistasis is not new. Reeves (2002) shows that the otigindy of
epistasis by Davidor (1990) is flawed, in part, because adisgsimption that it is only existence of epistasis that
matters for a traditional GA, and not tiygeof epistasis. Indeed, as for GA hardness, the type of efsEdias
this case, cross-population epistasis) is the importaoggaty. Thedirection (sign) of the non-linear contribu-
tions with respect to the linear contributions is importatere what is meant bgontradictory cross-population
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Figure 4.8: Collaboration selection results for the SS-B@E the CLOB 4 problem using theWs mask for
linkage bias. The-axis shows the best-so-far of 100,000 objective functi@iuations. The panels (from top

to bottom) represent increasing selective pressgrenvhile the items in each panel represent increasing sample
size €). The points are plotted at the mean of 50 trials, while thézbatal wings show the 95% confidence
intervals.
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Figure 4.9: Collaboration selection results for the SS-B®E the CLOB 4 problem using theéM;, mask for
linkage bias. The-axis shows the best-so-far of 100,000 objective functiaiuations. The panels (from top

to bottom) represent increasing selective pressyrevhile the items in each panel represent increasing sample
size €). The points are plotted at the mean of 50 trials, while thezbatal wings show the 95% confidence

intervals.
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epistasigs the situation in which the linear effects of lower ordemgmnents existing in different populations
are opposite in magnitudend direction of the higher order blocks. This is a type of crpspulation decep-
tion where the algorithm is tricked into believing that tlsgver order components accurately predict the total
function value, when in fact they are misleading.

This is particularly damaging in a coevolutionary procded tocks off all but the current component while
conducting a projected search. It is not hard to see thataime partitioning process that assists the CCEA
in gaining advantage against the EA in certain situatiomskeome its Achilles heal in the presence of this
deception. Consider the CC (1+1) EA again, now working orraA function, presented in Definition 10 on
page 34. This function is unsolvable by the CC (1+1) EA pregkat the start of this chapter. Consider the
following proof.

Theorem 3. Let TRAP: {0,1}" — R, be decomposed intok 4 equal sized components of length R, such
that n=kl. The sequential CC (1+1) EA will fail to converge to thelggboptimum ofT RAP with
probability 1 — 22,

Proof. Define the termsolved componertb mean a component that is the all one string,ahd the term
unsolved componeid mean a component that contains at least one 0.

The proof consists of two basic parts. First, it is proved titgh a probability exponentially approaching 1,
there are at least two subpopulations of the sequential €0 @A whose individual is an unsolved component.
Next it is shown that, given there are at least two unsolvadpmnents after initialization, the mechanism of
the algorithm itself will prevent it from accepting mutaisthat will lead it to the global optimum.

For the first part of the proof, observe that the probabiligt &a given population’s individual contains the all
one string after initialization equa%, so the expected number of such individual& subpopulations equals
fkl. Chernoff bounds gives the probability that at most halhefid subpopulations are solved after initialization
is at most

[ 211 } k/2

(21 2-1
. 1 e k/2l _2I—1
= w7 (?—_1)
26\ k/2
= g7 (F)
ok/2—Kl/2  gk/2—k/2!
= ﬁ — 2-Q(n)

So the probability that at least half of thgoopulations are unsolved is-12-2M_ Thus, giverk > 4, there
are at least two unsolved components with probability erptially approaching 1.

For the second component of the proof, let us first supposeliithe subpopulations contained the all one
string except for two of them, one that is the current activgp®pulation under consideration by the algorithm,
populationa, and another that has yet to be considered during the cuoend, populatiorb. Suppose that the
necessary mutations are performed( such that the offspring/® is the all one string. The offspring?®
can be accepted if and only if the following holds.

(b)

TRAp(xt(i)l...y(a) c X (k)

-~ o),

) ETRAP(Xt(i)l"'Xt(a)"'Xt (k>)

However, this cannot be true sinx{%}) does not contain the all one string. Therefore the offspwiignot be

accepted. Since the parem&f’) was not the all one string, the same event will be true symoadiy for xt(b).

Given thatk > 4, there cannot be fewer than two unsolved components. Bawore than two unsolved
components cannot resolve the problem, since an offspneigcbntains more ones than the parent will have a
lower fitness than the parent if at least one other composamigolved. O



60

Is this result surprising? Perhaps it is a function of the faat the algorithm processes the populations
sequentially, rather than updating all the populationsuismeously and in parallel to advance to the next
round. Unfortunately this is not the case, as the followlmgprem and proof demonstrate.

Theorem 4. Let TRAP: {0,1}" — R, be decomposed intoxk 4 equal sized components of length R, such
that n= kl. The parallel CC (1+1) EA will fail to find the global optimuof TRAP with probability
1—-2-9Mm,

Proof. Recall that the terrsolved componenefers to the the all one string',.1

Again, the proof consists of two basic parts. The first paditained from the proof to Theorem 3, since
the two algorithms do not differ with respect to initialimat. With a probability exponentially approaching 1,
there are at least two subpopulations of the parallel CC)(EALlwhose individuals are unsolved components.
The second part is also similar: it must be shown that giveretlare at least two unsolved components after
initialization, the mechanism of the algorithm itself wiltevent it from accepting mutations that will lead it to
the global optimum.

To see this, first suppose that all the subpopulations awdaihe all one string except for two of them,
one that is the current active subpopulation under coreider by the algorithm, populatioa, and another

that has yet to be considered during the current round, ptipolb. Suppose that the necessary mutations are

performed ik such that the offspring/@ is the all one string. The offspring® can be accepted if and only

if TRAP(XY - y@ . xP ) > Trap(Y - X - .xP) .. x(9),, which cannot be true, sino¢” does not
contain the all one string. Therefore the offspring will et accepted. Since the paraxfﬁ) was not the all

one string, the same event will be true symmetricallyxf@r. Given thatk > 4, there cannot be fewer than two
unsolved components. Again, having more than two unsoleetponents cannot resolve the problem, for the
same reason as in the last proof. O

This problem cannot be solved by the CC (1+1) EA even when fuate mechanism is performed in
parallel, no matter how much time the algorithm waits. Thelihood of finding the solution on initialization
is 1— 272 put even an infinite number of steps will not be sufficientiszdver the solution in the event that
it is not discovered during initialization. The reason iattthe algorithm is misled by the problem to solve the
—ONEMAX portion, leading to the bit string of all zeros; however, g n-bit mutation is possible due to
the division (irrespective of the updating mechanism). prablem can be made less difficult by aggregating
many smaller trap functions, producing a problem that casdbeed by an EA in a tunable amount of time
(depending on the size of the traps), btill can never be solved by the CCEA assuming there is still aidivis
that splits at least one trap between two populations.

Is this result attributable to the fact that only a singlegparindividual exists in the population? Again,
unfortunately this is not the reason. Many larger poputatipproaches (including the SS-CCEA) will not
resolve the problem even when the populations are very &rdearbitrarily complex collaboration mechanisms
are used. The populations will quickly become flooded by theesio string. Maintaining enough diversity to
preserve at least one all one string component in even ondgi@mm would require a population size2").
Looking back at earlier parts of the chapter, this is exastly the CLOB» problem using theé\, mask could
not be solved by the SS-CCEA, and why neither the sequerdraparallel variant of the CC (1+1) EA can
solve the &PFUN problem.

The optimization problem need not be so difficult to see tlthplogy. Consider the following = 1
problem that nevertheless divides the bit string into twaeakgubstrings of 8 bits apiece (for a total of 16 bits).

f(x) = n-[LEADINGONES(xV)) - LEADINGONES (x?)] —
LEADINGONES (V) — LEADINGONES (X?) +n
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| applied the same two population SS-CCEA used earlier inctiggpter on this problem, ranginge
{1,2,3,4,5} and running the algorithm for 100,000 function evaluatiofise global optimum was never found
out of 50 trials (the reader should note that 65,536 evalnatwould be needed to find the optimum under full
enumeration). In fact, as should be clear from the aboveysisathe highest value ever found by the SS-CCEA
was 16.0. The SS-EA found the optimum in, on average, 208 dlgiaions.

4.4.2 Consensus in Joint Distributions

The second difficulty that challenges the CCEA is much mob#isulf one considers the rewards of the payoff
function for fitness as a mere projection in the search syialsecomes clear that the collaborators, or samples
of the interactions, are samples from a joint distributicroas all conjoining strategies.

Consider that many potential collaborators are unlikelypeéorepresented in the other populations, much
less be selected for collaboration. Given this, it is pdestbat such a sample may misleading. The bias
in the alternate population indicates a possible bias instimaple. Since high rewards are likely to draw
populations, those problems for which there are local peakgg large joint distribution values are likely to
pull populations away from peaks with smaller joint distitibn values, even when the peak is much larger. This
is a form of “rule of the mass” that misdirects search intcaarthat are suboptimal, because the populations
themselves prefer the consensus. In other words, CCEAsingpda problems with broad, but suboptimal
peaks and narrow peaks for the global optima, will tend toveaye the the broad suboptimal peaks. This effect
is the predominant subject of Chapter 5.

Obviously such a fact is often true of many traditional EAs well; however, in the case of the CCEA
the pathology is more endemic to the structure of the algworittself. Consider that even a perfect local
optimizer working on an incorrect component projectionhaf problem will suboptimally converge. The CCEA
is directed, not just by the problem itself, but by the intéray dynamics between the populations working
on that problem. As larger joint distributions attract ormoplation, that population becomes a degenerate
representation for the others. This idea will be clarifiedrfally in the next chapter since the idea ultimately
stems from the fact that the CCEA is not really meant to optinthe external static objective functions as
described so far.
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Chapter 5

Optimization versus Balance

One key property with all coevolutionary systems is thabalaince At least two different notions of balance
are important to CCEAs. First, the systems tend to continuaake progress only as long as a certain degree
of balance in evolutionary change is maintained dynamjiadliring the run of the algorithm, calleatlaptive
evolutionary balanceThe second, more important form of balance is caltdulist resting balanceTrajectories
describing dynamic behaviors of CCEAs tend to come to rephits of the space that offer a type of game-
theoretic balance between populations: the most impodaatacteristic for stability is that both populations
consist of individuals representing strategies that camadworse when collaborating with the individuals from
the other populations.

This latter notion of balance is a familiar one in game-tlgedris exactly the idea of Nash equilibria (Nash
1950). Unfortunately it turns out that in many cases the natisactive Nash equilibria for coevolutionary
systems are not ones that correspond with ideal partne¢skipthe specific collaboration that results in the
optimal fitness) in any objective sense. This chapter make®tia familiar game-theoretic modeling technique
for coevolution in order to explore these notions of “bakihmore explicitly. In particular, the chapter looks
at the traditional goals of optimization applications asytlare often encoded into CCEAs and examines how
well these goals correspond with the CCEA propensity towaalance. | begin by first offering the assertion
that naively applying CCEAs to static optimization probkemay constitute a fundamental failure to appreciate
the true function of these algorithms. The two sections fibi&iw first defines, then analyzes the evolutionary
game-theoretic model in order to justify this assertionthia final section, | provide empirical investigations
based on the theoretical results demonstrating real caesegs for CCEAs in applied settings.

5.1 CEAs are Not Static Optimizers of Ideal Partnership

A cooperative coevolutionary algorithm can be modeled agambical system. Like many dynamical systems,
trajectories describing system behaviors over time temaaee toward, and settle in, stable fixed points—points
that often have certain (sometimes predictable) progetigch as the afore mentioned game-theoretic balance.
To some extent the question of whether or not cooperativedvautionary systems optimize is semantic: in
fact, in a sense CCEAdD optimize. It is simply a question afhatthey optimize.

In the previous chapter, the reader was asked to assume @A Lare well-suited to static optimization
problems that are straightforwardly encoded into a repitesen in more or less the same way that traditional
EA static optimization problems are encoded. In such atsitadhere is an implied optimization goal: find the
arguments that correspond to the optimal objective valeee Befinition 7 on page 29, for example). But what
is themeaningof this argument in a cooperative coevolutionary setting?

Let us define the terrideal partnership(or ideal collaboratior) to mean a particular set of all component
strategies of a problem as yielding the highest objectiveard. In other words: assuming each population
offers a particular individual to be evaluated, if the cbbeation yields the highest possible reward of any
collaboration, we consider it ideal. Consequently, sudlaborations would correspond with the global max-
imum of the problem, at least insomuch as it is defined by tlweding scheme so far assumed. To believe
that CCEAs are “well-suited” for optimization problems regented in this way, is to believe that they are
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dynamically predisposed to move toward (and rest in) spoteé search space that correspond with the ideal
partnership.

Unfortunately, this is not the case. Importantly, its fedlto be so driven results not from stochastic error,
or being mislead by sampling of the search space (as is dfeecatse with traditional EAS), but by the CCEA's
very nature to move toward parts of the space that are nossadly considered “optimal” in the above sense.
In other words, even with perfect information, infinite ptadion sizes, and no probabilistic noise, CCEAs
can be expected to settle in suboptimal areas of the spadernaiively, it has been shown in many places,
traditional EAs do not suffer from this affliction (Reevegddrowe 2002; Schmitt 2001; Vose 1999).

In the previous chapter, | discussed two properties of praldlomains that can become stumbling blocks
for CCEAS: contradictory cross-population epistasis amasensus in joint distributions of the reward. Both
of these properties can lead to an optimization failure. &\@v, knowing that these problem properties are
possible, and themightlead to unfortunateesults does not help us understand how certain behaviors observed
in CEAs relate to these problems. What are we looking for éndyinamics of a CEA? What is good and what
is bad? Indeed, the goal of this chapter is to uncover sontgegttlynamicproperties of the CCEA.

| begin by providing a brief overview of some dynamical bebes associated with coevolutionary algo-
rithms. | attempt to classify these behaviors in a tangilolé appropriate way. After the analysis presented
in this chapter, | will offer specific empirical examples damstrating two of these pathological behaviors in
CCEAs. The point of this section, however, is to show somd@efstymptoms of common afflictions of CEAs
such that the reader will have some perspective for the ¢fieal analysis to follow, which attempts to explain
two specific pathologies of cooperative coevolution in tgedetail. These pathologie®$s of gradientand
relative overgeneralizatignare, in fact, outward symptoms of the more fundamentallprobCCEAs are not
static optimizers of ideal partnership.

5.1.1 Overview of CEA Dynamics & Pathologies

This section provides an overview of the types of dynamicaronly observed in coevolutionary algorithms.
Some of these dynamics have been mentioned in passing inttbddction. Frequently they bring to mind
certain qualitative judgments: fecund (good) behaviord @aithological (bad) behaviors. Alternatively, other
behaviors are merely descriptive of certain charactesisibserved of CEAs during run time. A more directed,
specific discussion is needed. To be clear, the discussimmken into two categories: fecund behaviors and
pathological behaviors. To suit the interests of the viampof this thesis, some of the early terms used to
describe various behaviors are altered for clarity andesdnt

Fecund Behaviors

What promise coevolution suggests! In the case of competitbevolution, practitioners are attracted by its
potential for inherent adaptiveness. It offers the oppotyuto adaptively focussing a search on only those
portions of a space that are important—of driving poputatitowards increasingly better results by the sim-
ple mechanisms of co-adaptation between populations.ethd®metimes CEAs work in exactly this way, a
behavior typically referred to as @mms race More explicitly,

Definition 19. Arms race— A behavior in a coevolutionary system in which changes égraup or population
results in reciprocal, co-adaptive changes in the otheug®or populations, and by iterative
application of this process the system produces increfsimgtter performing individuals by an external
measure.

To take a competitive example, consider two populationgvewp game-playing strategies against the op-
posing population for some arbitrary game. In an arms ratenwlayers in one population learn some new
tactic to gain an advantage over players in the second pigruléhe second is forced to respond and adapt. If
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this innovation—response cycle continues indefinitelgrehseems to be the opportunity for limitless progress
for both players.

Of course, the very terrarms raceimplies a competitive system; however, a similar phenonwrabe
observed in cooperative models. The term is often used iparative domains, as well, though perhaps it
would be more aptly (and generally) considered a type ofrieald evolutionary change. Indeed, this is exactly
the property mentioned abovadaptive evolutionary balanc&reserving such a balance in a cooperative CEA
is akin to preserving an arms race in a competitive domainoprg as the balance is maintained, objective
progress can continue.

Pathological Behaviors

Though productive behaviors from coevolutionary systemesbe&haviors for which we, as users of such sys-
tems, most desire, they are not the only behaviors, nor évembst common ones. Many coevolutionary
behaviors lead to poor or middling external performancé sscthose described at the end of the last chapter.
There are at least three common behaviors that are widelsidened pathological in this wayoss of gra-
dient relative overgeneralizatignandmediocre objective stasidVhile all three can occur in competitive or
cooperative algorithms, some are more problematic for bae tor the other.

Perhaps the simplest to describddss of gradient This term refers to the event that the search gradient
suddenly becomes too steep to climb while a run is in progress

Definition 20. Loss of gradient- The coevolutionary behavior that occurs when one popariadr group
reaches a state such that other groups and populations lesessary relative fitness diversity from
which to continue meaningful progress.

A classic example of a lack of gradient between competitdgrolutionary opponents is the situation were
a chess Grand Master plays a small child. If the child reseneinformation other than the outcome of the
game, she has almost no means of learning how to improve hes.gA “loss” of gradient can occur in this
competitive setting when one population suddenly achiavesel so superior to the other, that simply nothing
can be learned by either population by competing.

Loss of gradient is not strictly a competitive CEA problemough. In a more general setting including
cooperative CEAs, the same behavior can be seen as simpbg aflditness diversity in one or both popula-
tions with respect to the other. That is: one or more popuiatisuddenly loses diversity and the remaining
population(s) are reduced to searching the projected spaated by this diversity loss.

A different pathology can be seenrglative overgeneralizatianthe subjective nature of coevolution drives
populations towards areas of the search space that are emeeyaj relative to the performance of other similar
strategies. As a result, trajectories tend toward overhega solutions that may not be in any way optimal.
Indeed, for cooperative algorithms, the result of such Wiehsiisrobust resting balance

Definition 21. relative overgeneralizatior- The coevolutionary behavior that occurs when populatiarthe
system are attracted towards areas of the space in whicle #uer many strategies that perform well
relative to the interacting partner.

Again, this behavior can be observed in both competitivecaugerative algorithms, alike; however, stated
as it is above, it is more an issue for cooperative algorittimas for competitive ones. Historically, papers
discussing competitive algorithms have more often refetoesuch behaviors more generally as “relativism”.
This alternate term reflects behaviors that result fromasitas in which the adaptive changes in a coevolu-
tionary system become disconnected from some absoluteungeaisd may be driven to parts of the space that
are undesired (Watson and Pollack 2001). | do not use thisitiefi, since it describes some sets of behaviors
that can be categorized in “relative overgeneralizatioug, and other sets that can be categorized in the next
pathology (mediocre objective stasis). Such a divisionvbet these two groups is important for categorical
purposes with respect to the underlying algorithms (ccetpar versus competitive).
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The final pathology is one that is primarily an issue for cotitipe algorithms:mediocre objective stasis
In such cases objective progress seems to have stalled thvikeis still apparent subjective change going on.
Since the multi-population, symmetric CCEA has such amiate connection between subjective and objective
measures, this pathology is particularly unlikely, if noipossible.

Definition 22. mediocre objective stasisThe coevolutionary behavior that occurs when there is st
progress according to some reasonable objective measespité continued adaptive subjective steps
in the interacting individuals and population(s).

The term “mediocre objective stasis” corresponds, in path the more common term “mediocre stability”
as well as some behaviors alternatively classified as ivedtit” (see above). | have altered the terminology
for clarity since it is possible that such behaviors act stable in the dynamical systems sense. The term
specifically refers to a stalling in the objective measurd,mecessarily in domain space (Watson and Pollack
2001; Ficici and Pollack 1998). | also include in this defamtthe “focussing problem” described by Watson
and Pollack (2001), in which competitive coevolution faisfind general solutions as a result of alternating
between two or more specialized exploitation of particwaaknesses.

5.2 Modeling CCEAs with EGT

In order to get a better understanding of the behaviors gbedive coevolution, a dynamical systems model
was constructed. It is a well-known model, which that exgléhe game-theoretic properties of coevolution:
an Evolutionary Game Theoretic model. This section willadig® the model in detail, beginning with a short
discussion about notation.

5.2.1 Notation

Throughout this chapter the following notional convensiomill be used. Lower case letters will be used to
represent real numbers and functions. Vectors will be lavase letters denoted Bswhile capital letters will
be used to denote sets and matrices. Euclidean spaces wiéinmedR", wheren is a positive integer and
indicates the dimensionality of the space. Given a set afiedted points in Euclidean spacg,theinterior of

it is denoted as irfX). The boundary oK is denoted bnX).

The n dimensional sub-Euclidean space givenMy.= {X:x € [0,1] and > [ ; X = 1} is called theunit
simplex The Cartesian product of two simplexes is dendick A™. | represent infinite sized populations by
describing ratios of genotypes in the total populationsgisi point in the unit simplex. A point iA" x A™
describes the state of a two-population CEA.

In simpler models, omitting genetic operators entirely, paoticular genotypic representation is implied
or assumed by the above notation; however, to be consistémtearlier chapters a binary representation is
assumed when genetic operators are applied. More formalhgfers to thei" element of the population
vector, wherd is a binary string in the set of all strings of lendth That is,i € Q, whereQ = {0, 1}' and
|Q]| = n. In this chapten is the number of distinct genotypes represented in the ptipal The symbolsd
and® will representbit-wise exclusive oandbit-wise andoperations on binary strings, respectively. In the
context of bitwise operation& will mean bitwise complement and the notatifkj| signifies an explicit count
of one bits in the bits string.

5.2.2 Modeling The CCEA with Multi-Population EGT

As stated above, the dynamical systems model | present nilad&essumption that populations are infinitely
large. This allows existing EA theory to be leveraged (Vo889 directly, as well as the more biologically-
oriented EGT theory (Weibull 1992; Hofbauer and Sigmund899laynard-Smith 1982). In both cases,
populations consist of an infinite number of individualst adinite number oh distinct possible genotypes.
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With this, one can represent the state of a population at amndime by a vector in the unit simplex and
changes in a population over time as dynamical system tagjes in the simplex.

This thesis investigates a class of multi-population CCH#s are relatively straightforward applied to
static optimization problems. Modeling these CCEAs on sucblems affords several analytical conveniences.
In addition to these, there are one or two simplifications ertaccase the burden of analysis. A short discussion
of some of these conveniences and simplification follows.

Symmetry

Consider a two-population cooperative coevolutionaryoatgm. A common way of expressing the payoff
rewards from individual interactions in the system is byngsa pair ofpayoff matrices In general, when
individuals from the first population interact with indiwidls from the second, one payoff matrix is used (e.g.
A), while the second population receives rewards defined bgansl payoff matrix (e.gB8). Figure 5.2.2 below
illustrates this idea. However, my model is somewhat moeei§ips.

A | pop B | pop
1 3 2 1 2 1
pop; |2 S5 3 pop, |3 5 2
1 2 4 2 3 4

Figure 5.1: Example of payoff matrices for the rewards patioih 1 receives when playing population A ,(
as well as the rewards population 2 receives when playinglptpn 1 8).

The approach to static optimization used here is one in wéal population is assigned a specific argu-
ment of the function to represent or a partition of some tstahg (as in the case of binary representation),
and individuals in a given population must collaborate vintividuals from other populations in order to form
a complete input with which to obtain a fithess value, the eatithe objective function (Potter and De Jong
1994). The reader is referred back to the diagrams showmgirés 3.3 and 3.4 on pages 31 and 31 in Chapter 3.

Recall the comments about symmetry made at the end of Chaptdotice that the two payoff matrices
for static single-objective optimization problems havesgan kind of symmetry—not symmetry with respect
to each matrix independently (they are not necessarily sgtmah, but symmetry with respect to the game
itself. That is, when a specific strategy from one populaigopitted against a specific strategy from the other
population, the reward is the same regardless of which ptipal one is scoring. The game sgmmetri¢
B=AT.

A simple two argument function serves as an example. Suppeseould like to optimize the function
f(x,y) = x? +y? 4+ x using cooperative coevolution. Potentizirgument values are represented in one popu-
lation, and potentiay argument values in a second population. In the CCEA, of epuise evolves the two
populations separately (i.e., they do not interbreed) when it comes time to evaluate an individual in the
population, as always, we will need to select collaboratintlividuals from they population in order to obtain
a value from the objective function. The same process isitrueverse for they population, with respect to
collaborations fronx. Assuming the number of distinct genotypes for each pojoulas finite, one can elicit
a payoff matrix for the first population by simply determigithe objective function values at each combi-
nation of genotypes with the collaborating population'si@ggpes. Since the game is symmetric, the second
population uses the transpose of this matrix.

Indeed, the CCEAs discussed here are modeled well by whatnawen as multi-population symmetric
(MPS) games (Wiegand, Liles, and De Jong 2002a). The defittiagacteristic of MPS games is that they
are symmetric with respect to their payoff matrices. Thimsyetry assumption allows for some subtle simpli-
fications of the mathematics involved. For example, simfgelaraic expansion will show that the weighted
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average payoff of the first population is the same as thateo#itond- Ay = y-ATX. In the game-theoretic
framework, the genotypes from tlgoopulation determine which row of the payoff matfwill be used, and
genotypes from thg population to determine which column Afwill be used.

Another advantage to this approach is that it provides aicectarity with respect to the algorithm’s coop-
erative nature. When rewards are symmetric between twimcligiopulations, there can be no doubt that the
problemis cooperative by nearly any definition. Individuals from th@tpopulationscan onlysucceed or fail
together, due specifically to the symmetry. While it may rotrdoe that cooperative coevolutionary algorithms
musthave a symmetric payoff, it is almost certainly true that amylti-population coevolutionary algorithm
with symmetric rewards between the populati@sooperative. This allows me to avoid the debate discussed
in Chapter 3 entirely: these algorithms are definitely coatie ones.

Model Assumptions & Simplifications

With an EGT model comes a variety of simplifying assumptj@several of which have already been touched
upon. For example, it has already been stated that the mssi@ines that populations are infinite in size. This
assumption, while certainly important and restrictivendg as naive as it might first appear. First of all, the
model can be expanded in the future to consider populatibfisi® size by modeling populations aamples

of the infinite population. Existing Markov model theory daen be applied to these augmented systems (Vose
1999; Schmitt 2003; Liekens, Eikelder, and Hilbers 2003gcdd, there has been some study suggesting
that finite population models with very large populatioresiapproximate behaviors of infinite population EC
models (Mose 1999), albeit the meaning of the word “larges &dmittedly only been investigated in certain
constraining circumstances (Rabani, Rabinovich, and&mt998; Schmitt 2001).

Another simplification mentioned above is that the modesenéed here specifically describes dynamics
for only two populations. While this again may seem an ex&esimplification, it should be noted that the
original intent of this work was to lay a foundation of studpd that this foundation would, by definition, begin
with simpler systems for which behavioral understandingn@se tractable. Multi-population models become
complicated quickly, both in terms of their demands on odwiiion, as well as the mathematics involved
to model them. Modeling CCEAs with two populations is a remdde way to gain a better fundamental
understanding of the behavior of these algorithms.

In addition to these two issues, assumptions must be madehasvtindividuals interact in order to obtain
an assessment of fitness. Although many kinds of interacteoe possible, | will retain the standard EGT
assumption otomplete mixing This means that during the evaluation phase of the algoriihdividuals
in one population are assumed to have interacted with all meesnof the alternate population in pairwise
collaborations, and vice-versa. To be clear, here the worihg” refers to how individuals interact, not
variation. However, unless it is otherwise stated, theeeabould assume that references to the word “mixing”
refers to variation. With complete mixing, one not only exdés a given member afwith every member of
y for collaboration purposes, but also takes the averageeofaulting fithess values. Other mixing methods
are often used in practice (see Chapter 4 of this dissamtetio example) due to the computational difficulties
that arise from this method; however, the theoretical malebmplicated by such methods because they can
introduce discontinuities and other complexities. An@lythat relaxes this assumption is the topic of future
research; however, several alternative mixing models ersepted at the end of this chapter as a first step
toward such an analysis.

Parents in the CCEA modeled here are chosen using propatei@election. In this case the algorithm
is generational It should be noted that the EGT framework allows for analysfi coevolution using other
selection methods (Ficici and Pollack 2000b).

One final important difference between the algorithm désctiso far and the model about to be presented
should be discussed. Recall that the abstract CCEA presen@hapter 3 on page 29 sgquentiain the sense

1in a generational EA a new population entirely replaces tepopulation in a given step, while in a steady state EA eaep s
replaces only one parent with one child.



69

that each population is processed and updated in a partmdar. The EGT model that follows performs such
an update simultaneously, so reflectsamallel update mechanism. That is, generations for the first pdpualat
and the second population are processed at the same timg, inkrmation from the previous round. The
net effect is that changes in one population in the middle afumd cannot affect the other population in
such a model. Since both are legitimate implementationcelsdior the CCEA, and since there are reasons to
believe that many CCEA properties are general between thélansen and Wiegand 2003c), this is reasonable
modeling choice.

The MPS Model

I now define the MPS dynamical system specifically, initiallighout variational operators. A round consists
of two phases for each population: fitness assessment agatigel At an abstract level, one might write the
equations as a composition of these two phases for eachgtimpul The equations below show this abstraction
using the notatiornf to represent a function that assigns some vector of relfitivesses to the strategies and
the notations to represent a function for selection. Note that selectiostrnonsider fithessndthe population
vector itself.

Gx =S (Fx.X) (5.1)
Gy=S(%,y). (5.2)

Biologists and economists have a more specific form of thégrabtion, defined by what they cadiplicator
dynamics(Weibull 1992; Hofbauer and Sigmund 1998). | make use of itislel, in discrete time form, in
order to describe the CCEA in the following way. Given two plapions, (X, y) € A" x A™, representing ratios
of genotypes in two infinite populations, the following etjoas are used to define the dynamical system for a
cooperative coevolutionary algorithm (without variali@perating on these populations:

b = Ay (5.3)

w = ATR (5.4)
Ui

>< = <X—Ay>xl (5.5)
Wi _

Y = <m>y. (5.6)

whereX’ andy’ represent the new population distributions for the nextegation. A and AT describe the
payoffs associated with each pair of possible interactidims more specific model relates to the abstract one
in a straightforward manner. Given the payoff ma#ixi = %(X,y) andw = F,(X,Y)

For completeness, it should be noted that frequently antigeldionstant appears in the first equation,
U= Ay+ wy, Wherew, = 1—min(A), as well as a similar constant for the second equation. Temsstants
are used to make sure elementdiandw are non-negative so that under proportionate selectiosytbieem
remains invariant in the simplex. That points remain in th& simplex as trajectories are advanced through
the replicator dynamics. To keep the model simple, the gagafrices will contain only positive values. As a
result, the constants are not really necessary and will @oisied.

Though variation is omitted here, it will be discussed |atethe chapter.

5.2.3 Term, Tools and Problems

Before conducting the analysis, some further groundworlstrive established. | begin by providing more
explicit definitions for terms that are important for theatissions relating the dynamical systems ideas to the
algorithm being modeled. After this, | present two speciims that | will use to help augment formal analysis:
rain-gauge validation and trajectory visualization. Hinad describe some useful problem domains.
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Terms and Concepts

One of the benefits of having a more rigorous description ®QICEA is that it provides the opportunity to be
more specific in describing intuitive ideas. Let’s begin bgkimg it clear what we mean by several common
dynamical systems terms.

Definition 23. Given a function £ S— S, a point s= S is said to be dixed pointif f (s) =s.

Definition 24. TheEuclidean lengtiof a vectork = (xq,...,%,) € RVis||X|| = /X2 +---+x2. Let

v=(vi,...,Vn) € IR", and lete be a positive number. Treeneighborhood\¢ (V) is the set
{Xe€IR": ||X—V]| < €}, the set of points within Euclidean distanceeaif v.

Definition 25. Let f be a map ofR" and letv € IR" be a fixed point. If there is an> 0 such that for allX in
thee-neighborhood NV, limy .. fK(X) =V, thenv is astable fixed point

Definition 26. Let there be a function fS— S and a fixed points S f(s) = s. We define the se{8 C S
to be the set of initial points in S that eventually map to tfigedd point. The set defined bydBis
considered théasin of attractiorof s.

In conjunction with the dynamical systems terms, it is neagsto clarify some basic game-theoretic terms,
as well. For example, the terpure strategyrefers to a population vector that is at a basis vector €,
wheree =1 andVj # i,e; = 0). For clarity | will distinguish non-pure strategy popiide vectors by the
term polymorphic In order to keep the notation clean and simple, the teimused to refer to a fixed point
(X,¥) € A" x A™, whether polymorphic or not.

Perhaps the most important game-theoretic term that mudefieed is that of Nash equilibrium (Nash
1950).

Definition 27. A pure Nash equilibriumof a two player, strategic game is a pure strategysich that for
every player i€ | we have:

T (s.5,85j) <7 (s}.5%). Vs, ;€S

A Nash equilibrium is consideredstrict Nash equilibriumif it is unique, that is the inequality is
strictly >.

Less formally, a Nash equilibrium is a point such that, iheitpopulation adopts the strategy associated
with the equilibrium, the interacting population cannot geetter payoff than to also play at the Nash point.
As a result, the best course of action for both populations gay at a Nash equilibrium (there may be more
than one). The basic idea of this definition is the same foyrmpolphic Nash equilibria.

All of this terminology from the mathematical tools is udefwut there is still the question of how to relate
the mathematics to the study of the algorithm in ways thatestdthe fundamental question. For instance, what
does it mean for such a system to “converge”, or to “nearlyeaye”? In the previous chapter, the run time
analysis viewpoint seems to suggest that convergenceswadtlrfirst hitting time: the algorithm has converged
when it has first reached the global optimum. While this is efwlsviewpoint for that kind of analysis, it is
not consistent with the way most practitioners use the t&imce EAs have no guarantee of finding the global
optimum in some fixed budget of time, real-world applicasi@eldom consider the algorithm in terms of its
having run until the global optimum is reached (even if it&/known). Generally practitioners refer to the term
loosely to mean the event that occurs when there is very titlersity left in the system, and objective progress
seems to have stalled. In this dynamical systems contexétheconvergencean be defined as follows.

Definition 28. A population vector, in a CCEA hasonvergedor converged to homogenejtwhen it is
represented by some basis vecibhasnearly convergeavhen there is some very small, positive
constante such that|x— g || < €.

An algorithm hasconvergecdr nearly convergedvhen all its populations have done so.
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When populationg andy have both converged, | say that the those populationass@ciatedr correspond
with a payoff values; ; € A, whenX- Ay = & j. When a CCEA has converged to a basis vector associated with
the maximum value in the payoff matrix, | say that it ltaswverged to the global optimuniihe example below
shows a sample payoff matrix with a maximum value of 5. Thetrategy population vectoys=X= (0,1,0)
correspond with this global maximum.

A | pop
3
5
2

1

Figure 5.2: This figure demonstrates an example payoff fometith a maximum value of 5. The pure strategy
population vector§ = X = (0,1,0) correspond with this global maximum.

Modeling Iteration: Validation and Visualization

In the previous chapter all analysis was conducted diramilyhe actual algorithm. In an effort to provide a
more general theory for understanding CCEA behavior, thégter instead analyzesvadelof the algorithm.
Specifically, it analyzes this multi-population symmeteGT model we've discussing. It isn't always clear
how closely the model matches the real algorithm, or perhape foundational what the mathematical results
meanin terms of the real algorithms.

To help bridge this gap, it is often useful to take the math@abmodel andterateit. By this | mean pick
a random initial condition and apply the model repeatedlyl Ubelieve some limit behavior has been reached.
How this end point is determined is a relatively complicagestion, which | will forgo for the moment. The
result of this iteration is @rajectory through the Cartesian product simplex space, as well asxed foint
resting place of the trajectory. With these pieces of infatiom, projections of the trajectories can be visualized
and the basins of attraction can be measured. These twondbitelp us understand some of the connections
between the model and the real algorithm at a less formall. leve

I have defined the term basin of attraction in the usual wag:bsin of attraction of a given fixed point,
or any limiting behavior, is the set of initial points thatl@ventually map to that point, or appropriate limit
behavior. Measuring the sizes of the basins of attractioallahe various limiting behaviors of a dynamical
system is difficult. First of all, there is no guarantee tiatré is any general analytical way to do so. Second,
it is typically difficult to definitively knowall the possible limiting behaviors, much less measure thesins.
Moreover, the dimensionality of the spaces of the systemghich | am interested are very large, so even
when restricting attention to just the fixed points, assgntirere are no cyclical or chaotic orbits, the space of
potential attractors may be quite large. Fortunately, asvileshortly see, the results of my analysis will allow
me to make this more tractable. This will be discussed in rdetail after the analysis.

To estimate the size of a basin of attraction the simple nuethtded arain gauge measur@lligood, Sauer,
and Yorke 1996) is used. An initial point is selected uniftyrrat random from the product simplexes using
Zuev’'s method (Zuev and Kahan 2001), a trajectory throughstface is computed using the initial point, the
system is iterated some large number of times, then thartigitehavior is examined. In my case all trajectories
move to a finite set of known potential fixed points, so | mamghistogram corresponding to these points.
If the trajectory seems to have converged “very close” toréiqudar basis vector, | increment its value in the
histogram. | then repeat this process some large numbene§t{5000).

While the condition “very close” is somewhat qualitativadan generalmay not be sufficient (e.g., unstable
points will push points that are “very close” away), eanbe more comfortable with this choice if an observed
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trajectory approaches a known stable fixed point (which mglishown in this case). Validation studies of this
nature were run for 2000 iterates, or until they were “vegsel meaning within a delta of 10 in terms of
variational distance. All iterates in this work met thigéatcriterion.

Iterating the model not only offers the opportunity to assthe relative sizes of the basins of attraction,
an additional benefit is its ability to help us visualize ahdracterize the trajectories themselves. This can be
done by plotting something similar to the so-caltateover curvesised for standard GA analysis (Goldberg
and Deb 1990). However, in this case the curves must be twerdifonal in order to capture both populations.
The plots are constructed by first identifying which genetygorrespond with the maximum payoff value in
each population and plotting over time the proportions esthgenotypes in their respectandy population
vectors. This can be seen as a top-down view of these twordiimal takeover curves.

With these two tools, one can gain intuition about a numbéhiofys. First of all, with the visualization we
can gain some limited understanding of what the populategifiis doing during the search: where it is going
and how various algorithmic and problem characteristiesadiiecting this trajectory. Second of all, with the
validation we can gain some perspective on how likely ttajées are to move to particular fixed points. This
helps connect us to the real algorithm by addressing theiqnesf likelihood of global convergence.

Problem Domain

In order to conduct an analysis, | will need to do so in the exindf problems or, at the very least, properties
of problems. Thus, it is necessary to explain how a simpl®ding of a static optimization problem can be
mapped into this EGT model context. The process is quitelsimp

Any two argument function can be mapped into a payoff matwixd two population symmetric game
(Wiegand, Liles, and De Jong 2002a). Doing so only requireassumption that the fithess space is discrete.
A matrix can be produced by simply enumerating all genotygices for one population along the rows, and
all genotypic values for the second population along thesy@md evaluating the given function at each ordered
pair. In practice this process would be absurd (since eratingrthe space would solve the optimization
problem), but here the idea is an abstraction for the purpbeeoretical research.

Let us start with a straightforward problem for which it issgao gain some intuition, and for which
visualization is tractable, a simple 2D parabolic functiSrMPLEQUADRATIC.

Definition 29. Given a constant offset k and a location for the center dealy.), the function
SIMPLEQUADRATIC : N x N — R is defined by

SIMPLEQUADRATIC (X,Y) = K— [(Xc —X)? + (Ye — ¥)?] -

In my case, the domain values for both arguments are in teevait/1,8]. To be specific, let us say that the
maximum valuek = 100, is found near the center of the bowl—locatedxaty:) = (4,4). In all cases each
argument has eight distinct genotypes represented by lopthligtions, making a & 8 payoff matrix (when
variation is considered, this can be seen as being repegesbyt3-bit strings each). The figure below illustrates
a surface plot of this function, as well as the payoff mattigited by this objective function.

This landscape is helpful precisely because of its sintglidiVhile it is simple, there are still interesting
observable phenomena when the CCEA is applied to it, as witlléar when we look at the effects variation
has on CCEA dynamics. Further, in these cases the unimpddlihe simple 2D parabolic function allows
more complicated dynamical behaviors (such as convergenseboptimal, local peaks) to be ruled out as a
means of explaining some of these effects.

A somewhat more interesting object of study is the MDFTWOQUADRATICS landscape, which presents a
bimodal problem. This problem retains much of the simpfiocitthe SMPLEQUADRATIC in terms of analysis,
while adding the additional complexity of having two peaH#is provides the possibility of converging to a
suboptimal peak in the landscape. | define a broad class fifjooable landscapes below.
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A Pop,

82 87 90 91 90 87 82 75
87 92 95 96 95 92 87 80
90 95 98 99 98 95 90 83
pop, | 91 96 99 100 99 96 91 84
90 95 98 99 98 95 90 83
87 92 95 96 95 92 87 80
82 87 90 91 90 87 82 75
75 80 83 84 83 80 75 68

Figure 5.3: This figure depicts theNB>LEQUADRATIC function pictorially (left), as well as the payoff matrix
it elicits (right). The global maximum appears in bold in tregyoff matrix.

Definition 30. Given constant values defining the two peaksaikd k to define the peak heights, and
s, to define the peak width, as well @g,y1) and(x2,y2) to define the locations of the peaks, the function
MAaX OFTWOQUADRATICS : N x N — R is defined by

quad(xy) = ki—si- [(il —X)°+ (V1 —y)z}

quac(xy) = k—%-[(G—X’+ (-]
MAXOFTWOQUADRATICS(X,Y) = max(quad,quadc)

The useful thing about this function class is that the pnobt&n be tuned in such a way that the global
peak covers much of the domain, covers an equitable porfittealomain, or covers very little of the domain
relative to the local peak. This allows one to define spediiticapes where the globally optimal and locally
sub-optimal peaks have different attracting potentiale parameter settings for Ak OFTWOQUADRATICS
used for my investigations are defined in Table 5.2.3 on pdge 7

The value fors; will be varied in order to control relative amount of covegafe two peaks have over the
domain. The two figures on page 74 show two different insééiotis of this problem class, at the extremes
of s;. The first provides one in which the global and local peakscovore or less comparable areas of the
domain, while the second shows a landscape with a broad sot@dpeak and a narrow global peak.

5.3 Dynamical Systems Analysis

With this model, and these definitions in place, the fundaaiguestion can now be stated much more specif-
ically: “Are CCEAs generally predisposed to converge todhabal optimum?” Rephrased, this can be stated
as follows. Starting in an arbitrary spot in the Cartesiasdprct simplex, are trajectories likely to converge to
homogeneity at, or near, the basis vector associated watintiximum payoff value? For dynamical systems
models, this raises such questions as what points in the spadixed points, what is the stability of those fixed
points, and what is the relative size of basins of attraatiosuch points?

The remainder of this chapter will focus on attempting tonsrsquestions about these characteristics with
the tools | mentioned above, both without and with variaglarperators. | begin with the model as it as already
been presented, without variation.
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Table 5.1: This table describes the parameter settingsfastite MAX OFTWOQUADRATICS function.

Parameter Value(s)
k1 100
Ko 75
S1 {2,4,8,16,32 64}
S 1
(X1,Y1) (8.1)
(X2,Y2) (1,8)
A pop;

26 28 50 68 82 92 98100

39 38 48 66 80 90 96 98
50 49 46 60 74 84 90 92
pop, | 59 58 55 50 64 74 80 82
66 65 62 57 50 60 66 68
71 70 67 62 55 46 48 50
74 73 70 65 58 49 38 28
75 74 71 66 59 50 39 26

Figure 5.4: This figure depicts the Mt OFTWOQUADRATICS function withs; = 2 pictorially (left), as well as
the elicited payoff matrix (right). The global maximum appein bold in the payoff matrix.

A pop;

26 25 22 17 10 1 36100
39 38 35 30 23 14 3 36
50 49 46 41 34 25 14 1
pop, | 59 58 55 50 43 34 23 10
66 65 62 57 50 41 30 17
71 70 67 62 55 46 35 22
74 73 70 65 58 49 38 25
75 74 71 66 59 50 39 26

Figure 5.5: This figure depicts the A OFTWOQUADRATICS function withs; = 64 pictorially (left), as well
as the elicited payoff matrix (right). The global maximunpegrs in bold in the payoff matrix.
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5.3.1 Analysis without Variation

The goal of this section is to communicate a better undetsigrCCEA dynamics by analyzing the correspond-
ing MPS models from a dynamical systems perspective. Iricpdat, the focus is on population trajectories,
the existence and location of fixed points and their basiretadiction. | summarize what is known for MPS
models without variation, set the stage for studying theat#f due to variation, and address questions about
where fixed points are, and when they are stable.

Stability of Fixed Points

If variation is excluded, there is much that can be said dicaljy about MPS models. For example, any
strict Nash equilibria (see Definition 27 above) must contain onigestrategies; that is, they must be at the
basis vectors, the corners of the simplexes (Hofbauer agmh8id 1998). This means that in the absence of
variational operators, one can expect the populationsdgetlsystems to converge to homogeneity. It is also
known, however, that mixed strategy equilibria are possil the bndA" x A™) when the Nash points are not
strict. This can happen when there are plateaus or ridgé® ioldjective landscape, for instance.

Indeed, there’s much that can be understood about therigrihavior of these algorithms from this model.
Below, | present proofs of some useful properties abouteliscime MPS systems as models of CCEAs applied
to static optimization. These proofs are very instructiveom them several things are shown about when basis
vector fixed points are purely stable and purely unstableadidition, a basis is provided for understanding
how certain kinds of local convergence problems can occar@CEA, even with infinite populations and no
variation.

However, before beginning, some context and plan for thefprshould be established. The intent is to
be able to make some general statements abouattebianof the system of equations generated by algebraic
expansion of the replicator and selection equations (Seb.Bg5.6 on page 69) evaluated at fixed poimthat
are associated with the corners of the simplex. Since onstua#fie rows and columns of the payoff matrix and
the game remains the same, without loss of generality licesiie discussion to the case whereorresponds
with the elementy, ; in the A payoff matrix. A can be expressed as shown below. All other cases follow as a
result.

a1 a2 - Qun
a Lo A

A= | 2n (5.7)
an1 - ann

| start by showing that there are particular patterns thétneicessarily be found in théacobianwhen
evaluated at the fixed poind,(Vy,, ). This structure allows me to make assertions about the eafjees of the
Jacobianin the general case. These steps lead directly to a theowraxplains that the fixed point associated
with the maximum value in the payoff matrix is always stab&everal corollaries follow directly from this
theorem that give more information about the nature of Btglin basis vector fixed points.

Lemma 1. Let J, be theJacobiarof the system of equations generated by algebraic expaosite
two-population, n-strategy evolutionary game, where Aésgayoff matrix and the replicator equations
are given in Equations 5.3 — 5.6. Given the fixed pwuint associated with the;a item in A, the
eigenvalues of th@acobiarevaluated at the,, , fixed point, J(va,, ), are the diagonal elements.
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Proof. The proof begins by partitioning,(va, ,) into four partitions. These partitions are used to show that
Jv(Va, ,) must be in a particular form, then conclude it by proving teaima 1 follows as a result of this form.
Ju(va,;) can be partitioned into four equal sized partitidsC, D, andE shown in equation 5.8 below.

Let partition B of the Jacobiancorrespond to al%f, Cto % Dto % andE to % Let's begin with theB
partition.

W(Vay,) = [%’%} (5.8)

The n™ column and row from the matrix are omitted. This can be doreabse thex, variable may be
re-written using the other componentsXithat is,x, = 1 — Zi”;fxi), and because the new proportion for the
Xn component in the next generation is fully specified by theaiqns without the redundawf. Of course, a
similar argument holds for thé" column and row of all four partitions.

The algebraic form of; = & 1y1 + & 2Y2 + -+ + & (n—1)Y(n-1) + @in (1— Zi”;llyi> can be obtained from
equations 5.3 and 5.4. In tipartition case the partials are taken with respect to onleext variables, so the
y values can be substituted frorg ; since they will be considered constants in the derivatiidss provides
a somewhat simpler algebraic form to use:=a; 1y1 +an(1—Yy1) = & 1. Most of theX values may also be
substituted as constants as long as the partial derivatmesstill legitimately be taken. Elements that fall in
theit" row or jt" column, as well as those in the first column and row are preseirv order to examine the
partial—all other values iX are zero, so further simplification is possible. Thelgebraic form is shown
below.

Xi, _ ai,lxi
X181 +X (&1 —an1) + (8,1 — 1)
If i # j then one can substitute either O or 1 fpwhen taking the partial with respect xp. If i # 1, then

itis true thatg—;f = 0 since the numerator will remain a zero factor after thevadéie. Therefore it can be said

that all elements in thé partition of J,(va,,) are zero as long ds# j andi # 1. The form of the partition is
shown below in equation 5.9.

j11 J:172 R ]
J\/(\Tal,l) = 0 J2,2 0 T (5.9)
: o . 0

By symmetry theE partition has the same form.

TheC andD partitions never have= j, so their diagonals are always zero. There is only one case fo
these partitions that remains to be considered: whed. This is dealt with by first taking the= 1 case for
C and returning to the replicator function to get the follogialgebraic expression after appropriate constant
% (ai1+a jyj—ainyj )
x1 (@ 1+aijyj—ainy;)

The terms in the numerator and denominator cross out \wheh and becomes constant, the partials of which
are zero. Thus all elements in t8epartition (andD by symmetry) are zero.

Now that the structure ak,(va, ,) is known, consider the eigenvalues of this matrix. Recall tb compute
this, the characteristic equation must be solved such téiz(tl\q%?l) —)\I) = 0. One can compute this by
expansion of cofactors on the first column. From the abovweudison it is known that the first column of the
Jacobianare all zeros except elemenjts;. The cofactors of 1 is the product of the diagonal terrdgva, ,)
excludingji 1. This can be seen by repeated application of the expansicofadtors. '

Thus, the determinate is simply the product of the diagarah$ of the matrix
Jv(Va, ,) —Al, and the roots of the characteristic equation will be thgalil elements of th@acobian There-
fore the eigenvalues df(va, ,) are its diagonal elements. O

substitutionsy; = & 1 + a; jY; — ainyj. After simplification, the selector equation is theén=
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Lemma 2. Given J(Va,, ), the following properties are true.

ax,-’ _ 1.,
hah} = = 1 5.10
o (Veur) = ooV # (5.10)
an1 .
™ (5.11)
6)/i — - ai .
a—yi(val,l) = o, 71 (5.12)
a.]_n .
ar1 (5.13)
(5.14)

Proof. Again, begin with partitionB of J,(va,,). Returning to the replicator Equation 5.6 after appropriat
constant substitution provides = & 1y1 +an(1—Yy1) = a 1. There are two cases# 1 andi = 1. In the fist
case, again retaining for the partial, the remaining values fi@rare substituted as constants and obtain the
following selection equation and subsequent partial déow.

§ = Xidi1
X1811+ X (&1 —an1)
x| (\7 ) B g 1X1a1 1
(v =
ox Nt (X811 + X8 1~ Xan1)?
_ A
- ann

In the case where= 1, X is not preserved, so the following is obtained after relegaibstitution.

)< . X1a1.1
B X181,1 +8n1 — X18n1
0_Xi’ (\7 ) _ a;18n1
ox \ ot (8h1—a11—an1)
_ am
A
The proof for the‘%—‘i’ i case can be obtained from tBepartition by symmetry. O

Theorem 5. Let m be a unique maximum value in A=nmax(A). Given a non-polymorphic fixed pomt
if the payoff value g = m andv corresponds with;g, thenv is a stable fixed point.

Proof. Givena; j = mand thaty; ; can be moved into positicay, 1, then all eigenvalues are1 by lemma 2. [J

Noting in lemma 2 that all the eigens for a particweare ratios ofA values at some fixed column or row,
and applying the same juxtaposition logic from Theorem %es# interesting corollaries can be derived. For
example, it follows directly that ang ; that is the unique maximum value of tii& row andjt" column ofA
is also a stable fixed point. Additionally, aay; that is the minimum value of thé row andjt" column ofA
is a purelyunstablefixed point (meaningll its eigenvalues are 1). With these, | can bound the number of
stable and unstable basis vector fixed points in the systg@naral. These corollaries are stated more formally
below.

Corollary 1. From Theorem 5 it follows directly that if
aj; > a;Vvl#i, and
aj > akVk#]j,

thenv, ; is a stable fixed point.
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Corollary 2. As per corollary 1, lemma 2 and theorem 5 dictate that if

aj < a;Vvl#i, and
aj < akVk#],

thenv, | is a purely unstable fixed point. The global minimum vafu(A) is always purely unstable.
Additionally any other fixed points at the corner of the siexplihich are neither purely unstable nor
stable will be an unstable saddle point.

Corollary 3. From corollaries 1 and 2 we also know that the maximum numbetable basis vector fixed
points is n and the minimum number of stable basis vector fingds is1l. The same rule is also true
for the number of purely unstable fixed points. Thereforentiraber of unstable saddle basis vector fixed
points must be at leastn- 2n.

What does this analysis explain about convergence and igption? As | made clear in Definition 28
above, when trajectories limit to a fixed point at the basitae this corresponds to the populations becoming
homogeneous. The question is, where can this occur in tefrthe ditness landscape? Recall that in our MPS
model of cooperative coevolution, the payoff matrix is hg@lst a quantized version of the fitness landscape.
Given this, perhaps the most important thing worth notinghat a form oflocal convergence is possible
even with an infinite population, no variation, and uniqukeiga in the fithess landscape. Trajectories can fall to
basis vectors that correspond with suboptimal fitness sallieis is not possible in the simple genetic algorithm
under the very same assumptions (Reeves and Rowe 2002; 3@3g 1

However, knowing the stability of a fixed point in a system sloet necessarily indicate how likely it will
be reached by any arbitrary initial condition, unless merenown about the dynamical system (Hofbauer and
Sigmund 1998). Fortunately, even without the deeper utaledsg required for formal proofs, considerable
insight into these issues can be obtained using the modelatiah and visualization techniques discussed
earlier. In the following section | summarize these insigior MPS models without variation.

Population Trajectories and Basins of Attraction

Let us now turn to the visualization and validation tools trered previously to help clarify the meaning of
the formal results. Recall that visualization of theseeayst involves iterating the model until the fixed point is
reached, then displaying its trajectory in terms of a pitpecoffered by looking only at the component vectors
associated with the global maximum. The visual effect apoads to a form of 2D takeover curve and helps
one understand where trajectories are going relative tgltiml peak. A rain-gauge measure can be taken for
the relative sizes of the basins of attraction of the fixedhisoby doing this many times and recording where
the final resting points.

Of particular interest is the size of a fixed point’s basin tifaetion relative to the other fixed points to
which trajectories go. Since I've now some idea that thesevary likely to be basis vectors (in the absence
of variation), the question of global convergence can beesded in a way that makes sense relative to the
problem space itself. In other words, viewing convergermca basis vector as a collapse to homogeneity in
both populations and knowing the relative sizes of the Isasimttraction of each possible pair of homogeneous
populations should give us insight into how likely it is tlzgpair of random initial populations will converge to
some particular pair of homogeneous populations.

Indeed, there is reason to believe that the size of the basiatiraction of a fixed point indicated by a
basis vector has more to do with relative local column andvalues in the payoff matrix than how large the
specific payoff value is at that point. The idea is thatjtiet distribution of the rewards for a given strategy
in one population as defined by the setpofssiblecollaborating strategies from the alternative populai®n
more attractive for trajectories than tepecificvalue of the optimal collaboration for that strategy. Inesth
words, broad and suboptimal peaks will pull trajectoriegyaivom taller, more narrow peaks. This is the form
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of local convergence in CCEAs mentioned above, and touched in other studies (Ficici and Pollack 2000c;
Wiegand, Liles, and De Jong 2002a).

Recall that measuring the basins of attraction can be qaitgticated in general. In this case though, there
are three things we know, or can do, to make this a more trigcfabblem. First, some useful properties are
already known about these systems that help. For instarise&riown that as long as the maximum values on
the rows and columns are unique, the only strict Nash edgjaildre at the basis vectors. Second, knowing this,
| can construct a problem such that this property is true opayoff matrix. Finally, | can apply the validation
method already discussed in order to obtain this measure.

As an example, consider theM®LEQUADRATIC function previously discussed. In particular, | take the
8 x 8 payoff matrix elicited for this function and iterate the BIFhodel many times until convergence is reached.
Having done so, the expected result that all trajectoriad te the basis vector fixed point associated with the
global optimum was obtained. That is, when an initial stgrstate for the populations is chosen at random, the
model predicted that a CCEA algorithm will converge to homrugjty at the global maximum of this function.

Figure 5.6 illustrates this for several example trajeemriEach curve begins at the point indicated by a
hollow circle, and terminates at the point indicated by ah(ix this case all of these terminate in the corner).
Every 100 steps of the trajectory are marked on the curvesttamgidea of the rate of progress of the curves,
though all points on the plot represent steps produced bgntiael. Trajectories that converge near the global
optimum appear as thicker lines than those that do not. $nwilaly, one can track the proportions of the com-
ponents associated with the maximum value over time as tloee finiom the initial population configurations
toward its ultimate limit behavior. Asymmetries in the mcied trajectories are due to asymmetric differences
in the sample of initial points or asymmetries that existia function itself (the latter of which, in this case,
are minimal).

1.0

0.6
|

Ymax
0.4

0.2

0.0

Xmax

Figure 5.6: 2D Takeover plot for trajectories operating ba simple quadratic problem with no variation.
Curves begin at points indicated by hollow circles, and teates at the point indicated by an “x”. Every 100
steps of the trajectories are marked.

The result of the of this is expected. But what of the fact #aalysis reveals that there can be other
stable basis vector fixed points than the one associatedhatlobal maximum, and what of the problem of
consensus caused by cumulative weights along joint digtoibs in the payoff matrix mentioned in the previous
chapter? Indeed, the Ak OFTWOQUADRATICS problem is constructed so that trajectories are more &ttlac
to the suboptimal peak than to the global maximum. This isedop making sure the rows and columns
in the payoff matrix corresponding with the suboptimal logeak are significantly biased over the row and
column values corresponding with the global peak. Randiagitparameter in the Mx OFTWOQUADRATICS
problem presented above makes this fact palpably clear.
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Consider all 6 example functions from theaMOFTWOQUADRATICS class presented above resulting from
varying s € {2,4,8,16,32,64}. Again, | use these functions to elicit-88 sized payoff matrices; however,
varying the parameter now results in different amounts getage between the two peaks. Table 5.3.1 below
describes the percentage of domain that the global peakscass is increased.

Table 5.2: This table describes the percentage of domairigioi MAX OFTWOQUADRATICS that are covered
by the global peak as the parameter is varied.

s1 | Coverage of global peak
2 43.75 %
4 29.69 %
8 17.19 %
16 12.50 %
32 6.25 %
64 4.69 %

The rain gauge method described above was also run for edbbsa problems. The result was that in all
cases trajectories converged to basis vectors associétedne of the two peaks, but not necessarily the global
peak. Note that the relative difference in height betweerptiaks remains the same in all functions, regardless
of 5 (refer again to the figures on page 74).

Ratio Converged to Max

00 0.2 04 06 08 1.0

S1

Figure 5.7: This graph shows the ratio of trajectories tbaverged to the basis vector associate with the global
maximum of the M\X OFTWOQUADRATICS function as thes; parameter is varied i§2,4,8,16,32,64}.

Looking more closely at where the trajectories are actugiing helps these results. Figure 5.8 on page 5.8
illustrates trajectory behavior for a subset of the thosgalnconditions for each of the problems generated
by varyings;. The panels appear in order from left to right, top to bottdd@me minimal amount of initial
probability in the components associated with the globakpe necessary to converge to the global optimum.
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As the coverage of the global peak diminishes, we begin ttreeeffects of the increased attraction to the local
peak. This justifies our intuition that cumulative payoffues local to some suboptimal maxima can distract
trajectories from finding the global peak when they are seffiity large.

5.3.2 Analysis with Variation

In order to extend the MPS framework to model variationarafms, the methods outlined by Vose (1999) have
been employed. Hence, the dynamical system becomes a citiompo$ the original model and a variational
mixing function, M. For simplicity, | assume that the variational operatoestae same for both populations
and the populations have the same number of distinct geestygo the sam@/ can be used for both popula-
tions. With these assumptions the abstract formulatiom@MPS model now becomesg, = M (S (F«, X))
and Gy = M (S (%,9))-

Mixing can be done in any number of ways, so this abstract déation does not commit to a particular
representation; however, to build concrete mathematiaaeats | will need to be more specific—and doing
so will imply particular representations for individuaks well as particular operators. Remaining consistent
with earlier chapters, | assume that the representatiom&yp and focus on two common operators for such
representation (one for mutation and one for crossove®.MHfunction is constructed for these operators.

Let's start by enumerating what the probability is that theero string will be produced by any arbitrary
pair of individuals acting as parents. It is clear thatren n matrix, M, results from such an enumeration.
Supposing one has such a matrix, obtaining the probabiléaythe all zero string is generated after replication
and variation is a relatively straightforward exercise:

X5 =Y XXMyy (5.15)
u,veQ

Yo = Y Y¥Muy (5.16)
u,veQ

Variation works as follows. Parents are selected using B3356. The resulting probabilities are used for
X andy. TheM,, value represents the likelihood that the all zero stringisstructed or not destroyed when
andv are parents. Finally, the sum over all such combinationskisrt. To produce a value for any child string,
not just the all zero string, the mixing matrix is permutedeg(8/ose (1999) for more details). Given this, the
next generation’s population states (now notatedndy’) can be obtained using the following equations:

><</ = Z%K,Mu@k,v@k (5-17)
uveQ

Yo = D YYiVMugkuek (5.18)
uveQ

Computing values for the mixing matribj is involved. The reader is referred to Vose (1999) for thévder
tion and motivation. Given two parentsandv, what is the probability that the all zero string is constied or
survives? To answer this, we first note that masks can be agadtantiate the effect of a particular crossover
or mutation event. To determine probabilities for a gilg, a distribution across all such masks will be nec-
essary. To be consistent with existing work, | use the symgliolrepresent the distribution of crossover masks
andp to represent the distribution of mutation masks. Modeliagipular genetic operators involves eliciting
these two distributions. The probabilik},, can be obtained as follows.

k+ Xk
IVluv = Z UUUVX 2Xk
u,v,keQ

1 if (ieweke((jev)ek) =0
|(i,j,U,V,k) - 0 otherwise (5.20)

(i j,u, v K) (5.19)



82

1.0

02 04 06 038

1.00.0

02 04 06 038

1.00.0

04 06 08

0.2

0.0

Figure 5.8: MPS trajectories on Ak OFTWOQUADRATICS with s € {2,4,8,16,32,64}. The panels appear in
order, left to right and top to bottom. Open circles reprégaitial points for trajectories converging to global
maximum. Closed circles represent initial points boundsfoaller local maximum.
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The meaning of the indicator functidrdescribed in Equation 5.20 is this: indicate whether or hetdll zero
string is formed when themutation event mask is applied to parenthe j mutation event mask is applied
to parentv, and thek crossover event mask is used for the recombination of theseparents. Crossover
produces two children, sk is needed to represent the reflected side of the recomhbimaygmmetry. The
model assumes only one of the two children is used, thus thected value is taken between the malsks
andk. The reader is referred to Vose (1999) for a more in depthaggtion of how these mixing matrices are
constructed for particular operators that are not disclbsee. | will illustrate howM can be created using two
specific operators, but first let's look more formally at therengeneral MPS model under mixing.

Fixed Points under Mixing

There is little doubt that variational operators signifitaonhange the underlying dynamical system of a CCEA,
just as they do in a traditional EA. Not only can the limitingperties of the fixed points of the system change,
but the location of the fixed points themselves can changese&ahis, note that for a fixed point of the MPS
model toalsobe a fixed point of the variational model, it must be true #fat X = Xandy’ =y =Y. For the
purpose of this fixed point discussion, Equations 5.17 ah8 &re re-written as follows.

X = ) XXMuyskvak (5.21)
uveQ

Y = ZYUYVMu@k,veBk (5.22)
uveQ

As we saw earlier, the fixed points of MPS models without wemewere basis vectors. What happens when
variation is added? Suppose we are interested in the baslisrseassociated with payoff valagg, that is

X = 0,Vi # p,xp = 1 andy; = 0,Vi # q,yq = 1. If such is the case, then the resulting values from the@bov
equations are always 0, except whes v = p for the first case, and = v = q for the second case. Thus, the
next point in the trajectory, when starting at the basisameistthe following:

X% = Mpokpak (5.23)
Yk = Mgekgak (5.24)

There are two important things to note about this obsematkirst, one can ascertain thg (%,y), Gy (X,Y)
step of the MPS model from any arbitrary basis vector pbunh just the mixing matrix Second, resulting
values turn out to be diagonals of tp® andq" permutation of the mixing matrix fogy and Gy, respectively.

If this diagonal is equal to the original bases, then the fpxaidt of the original system is also a fixed point of
the system under variation, and if not then it is not. As | wilicuss in the following sections, this is true for
almost all traditional crossover operators and never wuééditional (non-zero) mutation.

Assessing fixed point stability under mixing is harder thathout variation, since the fixed points may
now be in the interior of the simplex product. This means thaecomes necessary to simultaneously solve
the collective system fogy(X,y) = X and Gy(X,y) = y. However, when one is certain that the basis vectors are
fixed points, even under mixing, one can evaluate them asihdltk previous paragraph.

Stability of Fixed Points

Unlike the MPS models without variation, the stability ofdikpoints of the model under variation is a function
of M. Moreover, this dependence is not due simply to the inctusiaM itself into the model, but also from the
resulting non-linearity added from the crossover openatiche proof of this is trivial, but | offer it for the sake
of completeness.

Theorem 6. Letv be a fixed point of the cooperative coevolutionary alganitivith variation as described by
equations 5.17 and 5.18. The stability of such a fixed poiththepend on the specific values in the
mixing matrix, M.
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Proof. To assess the stability of a fixed point, one must first knowtwha fixed point is. While some of the
fixed points are known for crossover, this is not necessétily for mutation (or for mutatioand crossover).
Still, assuming one knew what the fixed point was, Iaeobianof the system could be evaluated at that fixed
point. Let’s look at one terr%%, but first let's expand and re-write the equations 5.17 afh#é.5The variablef

is used for the convenience of notational simplificationyonl

X{(/ _ Z (Ay)uxu(Ay)vvaueBkN@k

uveQ (XTAV)Z
_ ZuyeQ(AV)VXU(Ay)vaMueBkN@k B f
N (XTAY)° - (TAY)?
o I (TAY) 2 (FTAY)°
9% (X" AY)*
S (XTAY)*— £ 2(XTAY) (AT
- (T AY)*

Taking the partial off now results in the following.

AP > (AD)XMigkiek+ 2(ANPXMickiek
ieQ,izl

By symmetry, the same is true T%. From this we learn that both terms in the numerator dependloies

from M, and that they cannot be eliminated. O

Although this was perhaps already obvious, the proof isuictite since it illustrates the fact that the non-
linearities introduced by equations 5.17 and 5.18 presefdas more complicated expression that requires that
change in any given component depends on all the compormemisbbth populations. This differs from the
model without variation, since in that case taking the agive eliminated all components of one population
from the expression. Therefor, its dependence is due nbtgube explicit presence of the valueshh but
also due to the non-linearities created by its inclusion.

Parameterized Uniform Crossover

Let's look at the effects of crossover alone. In this casepfost types of crossover, the probability of obtaining
some stringk when crossing over two identical parents is 0 unless thenparm@e themselvek. Whenk
is crossed-over witlk, the probability that the resulting child is aléois 1. Thus the diagonal of thi"
permutation ofM is always 1 aimg and zero elsewhere. This implies that the pairs of basiowedbrming
fixed points of the MPS model without variation are still fiygaints under crossover. This is consistent with an
understanding of the effect of crossover on a totally homegeas population (namely that there is no effect).
In order to study the effects of crossover on populationettaries and basins of attraction, one needs
to complete the MPS model by selecting a particular crogsoperator and constructing the corresponding
mixing matrixM. | model parameterized uniform crossover (Syswerda 19868afs and De Jong 1991). Here
pc represents the probability that a crossover event will odéa crossover event occurs, two individuals are
mated and each bit position is considered independentlpdtential exchange. The paramepgirepresents
the probability that the values at a given bit position wal é&xchanged between the mates. Therefgre 0.5
corresponds with traditional uniform crossover.
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Recall that the method described above models particubasower events using a mask over the bit strings
and a crossover operator is modeled by describing a ditribacross such masks. For parameterized uniform
crossover, this distribution is obtained as follows.

[lil —|i ;
X — { pc(ps (1—ps)~| :) f>0 (5.25)
1—pct+pc(l—ps) =0

Having created an MPS model that includes parameterizefdromicrossover, validation and visualiza-
tion of population trajectories through the mathematicaldei is now possible. Let's consider again the
SIMPLEQUADRATIC problem and assess the effects of crossover on populatg@ctories and basins of at-
traction. Since it is known that the basis vectors of the & product of the unit simplexes are also fixed
points of this model (though not necessarily stable in theesplaces), rain-gauge measures can be obtained.
However, one must be careful to account for any trajectdhias do not converge to a basis vector, since the
existence of interior fixed points have yet to be formallyrefiated as a possibility as it was without variation.
As it turned out, all of the trajectories converged to a basigor of one sort or another.

Initially, ps was set to (b to obtain pure uniform crossover. The rate of crossopgrwas varied between
0.0 and 1.0. All trajectories moved to one of four basis ve;tthose vectors associated with @, a4 5, as 4,
andas 5 payoff values (the center four cells of the payoff matrixynfrthe top left as described in equation 5.7
and page 75). Example results are shown in Table 5.3. Thissstite percentage of trajectories from the
randomly chosen initial populations that go to each of tHese basis vectors. More specifically, it shows
that as the rate of crossover is increased, the number @l ipdints that eventually converge to a fixed point
associated with the global maximum shrinks. In other wattiklsmeasure of the size of the basin of attraction
of that fixed point associated with the global peak is redumethcreasing crossover.

The reader should be careful not to draw too many conclusibosit the significance of the “nearness” of
these fixed points from a topological point of view. From timagex product space, every basis vector is a
distance of either 1.0 oy'2 from every other basis vectoy.2 is the largest distance possible between any two
points in the space. Moreover, as long as the relationslapgden the strategies of the game remain the same,
one could permute the payoff matrix and the underlying namational dynamics would not change. Thus it
is possible to imagine the very same model with resultingsuess that seem topologically farther apart. The
relationship almost certainly has to do with the level ofdga on a given row and column relative to other
strategies and the topological relationships are estauliby the representation assumed under the operator
modeled.

Table 5.3: Rain gauge results of model validation studiesB$ cooperative coevolution model with uniform
crossover. The tables represent the measure of the basatsaaftion of the fixed points associated with the
ay 4, 845, 85,4, andas 5 payoff values. The probability of crossovey, is varied in{0.0,0.2,0.4,0.6,0.8,1.0}.

Pe=0.0 100.0%| 0%  p.=02 84.8%]|7.7%
0% |0% 7.0% | 05%

pe=0.4 79.0%| 101% p.=0.6 759%]| 11.0%
10.0%| 0.9% 11.3%| 1.8%

pc=0.8 73.2%| 12.0% pc=1.0 71.6%| 13.1%
125%| 2.3% 12.8% | 2.5%
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| also looked at parameterized uniform crossover wpes 0.2 andp; = 1.0. The results for this showed
that the(4,4) basin captured roughly 62.6% of the trajectories, whilgth8), (5,4), and(5,5) basins captured
16.2%, 17.0% and 4.2% of the trajectories, respectivehaidall trajectories found their way to one of these
four basis vectors.

These are interesting results. They suggests that it isigf@sthat previously unstable basis vector
fixed points become stable attractors under crossover. lenges crossover seems to “distract” trajecto-
ries from always converging to the basis vector associatighl tive maximum value. To get a sense for
why this might be, let's look again at the 2D takeover plotevah in Figure 5.9 on page 87. In this case,
pc € {0.00,0.05,0.15,0.15,0.20,0.25}.

There seems to be some kind of stretching transformatiohevauter corners of the product simplex going
on as a result of crossover. As the rate of crossover ingetsetrajectories are pushed away from the center
and move toward the edges at a much faster rate. In some t&sesttajectories are drawn to basis vector
fixed points (homogeneous populations) not associated thvithglobal optimum. This behavior is observed
in CCEA applications as well where one population convempesh faster than the other and reduces the
dimensionality of the search by collapsing the space in whigjectories can pass to a face of the Cartesian
product simplex. This corresponds to a reduction of the espathe unit simplex for the second population,
still evolving population.

This is most likely explained by the accelerating effectssmver can have on population convergence
(Menon 2002; Rabani, Rabinovich, and Sinclair 1998). Thisskeration is applied asymmetrically, since the
initial conditions of the populations are almost certaiabymmetric. To test this hypothesis, | ran an additional
experiment in which all initial points fox were chosen uniformly at random from the unit simplex, ard al
initial points fory were set symmetricallyyi (¥); = (X);, where(X); is theit" initial point. Although not all
trajectories converge to proper basis vector (the corrsciested with the maximum value)pneconverged
sooner in one population than in the other. Figure 5.10tithiss these results for different valuespef

Bit-flip Mutation

In a similar fashion, the mixing matrix M for the bit-flip muten operator can be constructed. In this case,
the diagonal elements &fl cannot be basis vectors as longms# 0 and pm, # 1 since a population that is
completely converged cannot remain so after mutation (imfamte population model). Therefore it is fair to
conclude that the basis vectors are no longer fixed pointsrundtation.

Modeling bit-flip mutation is much simpler than modeling ssover, though analysis is much more difficult.
Again a mask is used to apply a specific mutation event and iftebdtion of mutation masks models the
operator as a whole. With bit-flip mutation this is deterndinising a simple binomial distribution

W= phl(1—pm)' I (5.26)

wherep, represents the independent probability that a bit in a gnesition will be flipped. A careful review
of the mixing formula will confirm that as long a%, # 0 andpm, # 1, the diagonal of any valid permutation of
the mixing matrix cannot be a basis vector. This makes sengepulation that is completely converged cannot
remain so after mutation.

Unfortunately, this means that rain gauge measures of the Ityised so far are not practical. Instead, |
can measure the distance of the point to the basis vectociats=b with the maximum payoff value. | ran
trajectory studies witlpy, set to a variety of values. The result was that all the trajezs converged very close
to the same fixed point in all cases for a givygpvalue, all 5000 initial conditions mapped to the same ioteri
point within an error radius of I&. Nevertheless, this point moved into the interior of thegder product as
mutation was increased. Figure 5.11 shows the 2D takeowés far a few of these runs. The reader should
note that the distortions of the trajectories due to mutagice different than those produced by crossover.

This behavior matches intuition, as well as known resultgtie simple GA. As mutation is increased, the
limiting behavior is characterized as a distribution of plapion states that spread out away from the peak into
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Figure 5.9: 2D takeover plots for MPS trajectories in witlifomm crossover. Reading from the left to the right,
top to bottomp. = {0.00,0.05,0.10,0.15,0.20,0.25}.
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Figure 5.10: 2D takeover plots for MPS trajectories in witliform crossover with symmetric initial conditions.
Reading from the left to the right, top to bottom
pc = {0.00,0.05,0.10,0.15,0.20,0.25}.
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Figure 5.11: 2D takeover plots for MPS trajectories in wiiaflijp mutation. Reading from the left to the right,
top to bottompmy, = {0.00,0.001, 0.005,0.01,0.05,0.1}.
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the rest of the fitness landscape. However, notice that ttaliézing effects of crossover do not seem to occur
in the case of mutation.

Mutation and Crossover

Validating and visualizing the effects of MPS models withtthorossover and mutatiorp{ € {0.0,0.1,0.2}
and py, € {0.000,0.005,0.05}) is now a straightforward exercise in producing a combinéximg matrix. It

is clear that the basis vectors are no longer fixed points. t\ighanclear is whether the combination of both
operators will amplify the trajectory distortions proddaadividually, diminish them, or produce some other
effect.

Figure 5.12: 2D takeover plots for MPS trajectories in wiikflip mutation and parameterized uniform
crossover. Reading from the left to right € {0.0,0.1,0.2}, from top top bottorpm, € {0.000,0.005 0.05}.
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Figure 5.12 on page 90 shows six combinations of the modégrdstingly, the result of combining the
variation operators is additive in a sense. In these stuttegectories fall towards the basis vectors associated
with the center four payoff values as they did under crossal@ne. The bottom two graphs in figure 5.12
shows a projected version of this effect. However, obserthe right two graphs, the limit point is pulled into
the interior of the simplex product space due to mutation.

5.3.3 Alternative Mixing Models

One reasonable complaint about the traditional EGT modtd 8ipposition of complete mixing. Real CCEAs
rarely evaluate an individual by pairing it with all possildollaborators. Indeed, as | discussed in the previous
chapter, many CCEAs use a very few, fixed number of collabosat

Still, there is no reason that the model cannot be modifiedisider alternative mixing models, though
what kind of quality of analysis is possible with them is as yeclear. | will discuss two very simple partial
mixing models as a proof of concept. These two methods cenbioth the idea of biasing the collaboration
sampling process an the idea of enforcing a fixed size to thmplsa complete-weighted collaboration and
c-random collaboration.

Complete-Weighted Collaboration

The idea behind complete-weighted collaboration is simpl@ividuals are paired with all possible individuals
from the alternate population, but the degree of contridoutd the fithess assessment process is weighted by
fitness result of the individual in the previous generatibmplementing this approach requires modifications
of the original replicator equations that consider a timealde,t. Given thatt := 1 is defined in the initial
conditions, then the system can be described by the follpwiuations.

Ui () (AY); -wi(t—1) (5.27)
wit) = (ATz Uit —1) (5.28)
X = ( ) (5.29)
Y = ( ) (5.30)
u(0) = 1vie{l,....r} (5.31)
wi(0) = 1Vie{l,...,r} (5.32)

c-Random Collaboration

Constructing a partial mixing model that uses only a finitenbar of collaborators in an infinite population is
somewhat more difficult. | begin by noting that the originaplicator equations (Eg. 5.3-5.6) can be used as
is for a single-random collaborator. In such a case, theoveimponents in the first two utility assessment
equations refer to the probability that a particular cadiabor is picked. Since the population is infinite, and
the collaborator is picked uniformly at random, the restithe same set of equations for complete mixing can
be see as a model for tlepectecbutcome when one selects a single random collaborator.

To c such selections, return to the idea of using masks. Defineskintabit string of lengthn and a
particular string indicating the outcome of a particulallamoration event in terms of which genotypes will
serve as collaborator. Given a distribution of magkshe augmented replicator equations follow.
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0 = ) Cj-A(diag(j)-y) (5.33)
jeQ

W = > Cj-AT(diag(j) ) (5.34)
jeQ

X = (%)m (5.35)

Y = (yW\lN> i (5.36)

The function diagj) considers the bit string of lengthn and constructs anx n matrix such that the bit string
represents the diagonal of the matrix and all other valuegeno.

This is a somewhat general mechanism that allows for margskiri collaboration methods by detailing
different kinds of mask distributions; however, | will cara myself with using only a fixed number ofan-
domly selected collaborators. The result is againetkgectedbutcome of the particular collaboration sampling
method. For a fixed number of collaborators, the distribugbcollaborator masks can be computed as follows.

SR i) =c
C = n! i 5.37
) { 0  otherwise (5:37)

This model still suggests an averaging of multiple functimaluations is used for credit assignment pur-
poses (i.e., thbedgemethod). There are obvious augmentations that can be dppli@nstruct a model that
assigns fitness using the maximum possible payoff of thalsothtors, but they have the distinct analytic dis-
advantage of being discontinuous. Additionally, the twggastions here may be naturally combined with one
another to produced a biased, finite sample expected outowdel for collaboration.

5.4 Empirical Examples

Some empirical examples are helpful since the theoreticalets I've provided differ in several significant
ways from real CCEAs applied to static optimization prolden®ne difference is that populations are quite
obviously not infinite in size. Another difference is thatlaboration methods do not really resemble complete
mixing, in general.

However, despite its limitations, this dynamical systenmlel has provided some concrete answers to rel-
atively philosophical questions, as well as some insigtat Wwhat some coevolution pathologies might actually
look like. Moreover, the infinite population model can berses an expectation for the behavior of finite
population models. With this, we have an answer to the furethtah question: one cannekpectthese sys-
tems to gravitate toward optimal collaborations, even @itteal case where stochastic effects are minimal, or
non-existent. This corresponds exactly with the relativergeneralization pathology discussed above.

Moreover, visualization of the model has revealed insighd how asymmetries in initial conditions and
problem characteristics can exacerbate asymmetriesds oditevolutionary changes between populations. As
such, we caseeloss of gradient actually occur.

Nevertheless, a bridge between the abstract model in whisetpathologies gained clarity, and real al-
gorithms in which they are manifested is necessary. Indeed, that a better understanding of these two
difficulties has been achieved, it is a simple matter to ereaamples that illustrate them in more realistic set-
tings. This section provides two such examples. In the fasecthe pathology of relative overgeneralization is
demonstrated using the Ak OFTWOQUADRATICS problem already defined, while in the second case a variant
of this problem is used to show loss of gradient. Such exasnpit make tangible connections between theory
and practice.
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In both cases | used a two population, generational coaperabvevolutionary algorithm with fitness pro-
portionate selection. Collaboration involved all membefrshe cooperating population, and the mean result
(hedge) was assigned as fitness. This is consistent wittothplete mixing idea in the formal model. The pre-
vious generation of the alternate population was used esaginess for individuals (i.e., the parallel updating
mechanism). Each population contained 100 individualdividuals are encoded using a binary representation
(64 bits), and the genetic operators were bit-flip mutatipg £ 1/64) and parameterized uniform crossover
(parameter values vary between experiments, see subisebidow). In all, the real CCEA was quite similar
to the theoretical model.

Comparisons to a traditional EA are made in both exampleg HA in question is as analogous to the
CCEA with which it is compared as is possible. The populationtained 200 individuals, and individuals
were bit strings of length 128. The same genetic operators agplied, but the mutation rate was set at28.
Again, fithess proportionate selection was used.

5.4.1 Relative Overgeneralization

In order to demonstrate the relative overgeneralizatiaghgdagy in an empirical setting, the algorithms de-
scribed above were applied to theaMIOFTWOQUADRATICS problems defined the parameters listed in Ta-
ble 5.4.1. Each algorithm was run 50 independent times ageach of these 8 problems for 100,000 function
evaluations per trial. Crossover was not used in these ¢pses0.0).

Table 5.4: This table describes the parameter settingsfasélte Max OFTWOQUADRATICS function in the
empirical experiments.

Parameter Value(s)
k1 150
Ko 140
S1 {2,4,8,16,32 64,128 256}
S 1
(X1,Y1) (8.1)
(X2,Y2) (1,8)

Two graphs were produced to illustrate the results, showpage 94. The first (on top) shows the averages
and confidence intervals for the final best-ever fitness satdained for each group, while the second more
informatively shows the ratio of those values that excee@l Izhe purpose of this second plot is to illustrate
the ratio trials that escaped the suboptimal peak.

Pairwiset-tests with Bonferoni adjustments show that the best-etreed$ values obtained by the CCEA
were statistically inferior to the comparable EA for all gps. In both cases, however, the best-ever result
unsurprisingly declines as the value fincreases. From the ratios we see what differs between these
algorithms: in the CCEA case, an increasing number of taedsbeing mislead and converge to the suboptimal
peak, rather than the global optimum. Conversely, the EA ao¢ seem to suffer from this problem as deeply.
While average best-ever fithess values are clearly affdmtelde parameter change, no such drastic increase in
the local convergence is observed at very high values,af; = 256 in particular (wher@oneof the CCEA
trials escape local convergence).

5.4.2 Loss of Gradient

The loss of gradient challenge is more difficult to illustré realistic settings. To try to do so, let's consider
the algorithms described above were applied to a modifieth fafrthe MaX OFTWOQUADRATICS problem
class, called AYMMETRICTWOQUADRATICS. In this case, the peak widths can be varied independently to
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Figure 5.13: CCEA and EA empirical results omMOFTWOQUADRATICS as$, is increased. Thg-axis for
both graphs shows the value for tegparameter. In the top graph, tgeaxis displays final best-ever fithess
results. The points are mean values of 50 trials, while thegs/iare 95% confidence intervals. The bottom
graph shows the ratio of the 50 trials in which the best-eatuesexceeds 140.0.

adjust asymmetric conditions in the landscape betweennbetguments. The function is defined below. In
the experimental groups here, all problem class paramaterdefined as they are above, save for the following
differences. The,, andsy, parameters were both set to 1, and sheparameter was held fixed at 4. Thg
parameter, however, was varied using the vafie4d, 8,16,32,64, 128 256}.

Definition 31. Given constant values defining the two peaksaid k to define the peak heights. Asymmetric
peak widths are defined by the parametgis Se, 5,1, and §2. Again, the pointgxi,y1) and (X2,Yy»)
define the locations of the peaks. The func#®YMMETRICTWOQUADRATICS : Nx N — R
is defined by

quad(xy) = ki [sa-(&—X?+sn (7i-y)?]
quag(x,y) = kz—[&e-(@—X)zﬂLsﬁ-(Yz—y)z}
ASYMMETRICTWOQUADRATICS(X,y) = max(quad,quad)

Again, each algorithm was run 50 independent times agaawst ef these 8 problems for 100,000 function
evaluations apiece. This time crossover was appligd=1.0, ps = 0.5) in order to exaggerate the effects of
loss of gradient. The first figure below again shows the bestf&ness values and convergence ratios for each
of the 8 groups with crossover.
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Figure 5.14: CCEA and EA empirical results orsWWMETRICTWOQUADRATICS without crossover as, is
increased. Th&-axis for both graphs shows the value for fhgparameter. Thg-axis displays final best-ever
fitness results. The points are mean values of 50 trialsevihéd wings are 95% confidence intervals.

Statistically speaking, there is no doubt that the paranvalee has an effect on CCEA performance, much
as it did in the previous section with theAM OFTWOQUADRATICS problem. However, with this visualization
it is nearly impossible to see what exactly is happening imgeof gradient loss. To see this, | tracked the
standard deviation in fitness values for each of the two @djmis. The resulting standard deviations from
the final generation of the two populations can be visualezed scatter plot of the 50 order pairs considered.
The result (shown in Figure 5.15 on page 96) shows that;aacreases, the it becomes harder and harder for
the algorithm to maintain a consistent standard deviat&twéen the two populations. To help see this effect,
I've provided a linear regression of the scatter plot. This I'tips” as the landscape becomes more skewed,
showing a greater tendency for the populations to attaferdifit levels of diversity. Points begin to line up in
the scatter plots, suggesting that when the CCEA termindteds typical for one population to be much more
diverse than the other.

These graphs indicate loss of gradient. Adding asymmetnges population diversity between the two
populations to become increasingly more asymmetric, thaltref which is shown in Figure 5.14. Further, the
convergence problems (as illustrated by the ratio grapdthseven more disparate between the EA and CCEA
than they did in the MX OFTWOQUADRATICS case. Indeed, loss of gradient can be among the most serious
stumbling blocks for cooperative coevolution.
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Figure 5.15: These four graphs show co-plotted standarititavs of population fitness at the end of the run.
The line is a linear regression fit of the scatter plot. Theaugsoshown appear left to right, top to bottom as
sa =4, 16, 64, and 256, respectively.



Chapter 6

New Views of CCEAS

In the previous chapter, | showed that the cooperative dogwpary algorithm may not be particularly well-
suited (in general) to static optimization problems thatsdraightforwardly encoded. In some sense, this can be
seen as the main message of this dissertation. It addréss@smtlamental question posed in the introduction:
“What does this tootlo?”. Put more specifically, | asked “Do CCEAs optimize?”. Tins\aer here is: the tool

is not a static optimizer of ideal collaboration (i.e., the spedillaboration that results in the optimal fitness),
but rather it seems to be an adaptive optimizer of the joistritution of rewards described by collaboration
space.

| believe this knowledge is helpful and useful to practidom The general contribution of this is to illustrate
plainly to those studying cooperative coevolutionary athms that anew viewof what CCEAs do, and how
they work is imperative if we are to make progress in applyirem successfully. This chapter attempts to make
my main message clearer by offering several specific highl yggestions of such new views. These views
stem from answers to the question, “If one should not apmystimple CCEAs described here to straightforward
static optimization problems, what is to be done with them?”

There are several things this thesis doessay. First, it does not suggest that CCExasinotbe applied to
static optimization problems, nor does it even suggestdhelt applications will never be successful. Second,
it does not really directly answer the most basic form of tlnedmental question since it is not at all clear
what the application-oriented meaning of an “adaptiverojer of the joint distribution of rewards described
by collaboration space” is. These are fair observationd,lavill respond to both of these points at the end of
the chapter.

This chapter provides the community with some high level@afor the direction that future researchers
might take, given the message established here. | take tiyesiraple tack that if the CCEA should not
necessarily be expected to perform static optimizatiokstasomething should be done to either change the
existing algorithms or how, and to what, one applies themthWiis view in mind, the chapter offers three
simple high level suggestions for how one might improve #®ults of the algorithm by either altering the
algorithm itself or by applying it more appropriately. Thesfisection addresses the difficulties caused by
the algorithms’ propensity towards robust resting baldmgelescribing a simple, but extensible method for
biasing the algorithm toward a preference for ideal coltabions. Maintenance of the adaptive evolutionary
balance is the subject of the second section, which descaibattempt reduce the problems of gradient loss by
augmenting a CCEA with a means of balancing the rates of teokry change in the respective populations.
The third section provides a short philosophical discussibout the kinds of problems for which traditional
cooperative coevolutionary algorithms may be more apjmtgar In the final section | will provide a brief
conclusion about the main theme of the dissertation.

6.1 Biasing Towards Static Optimization
Part of the difficulty the CCEAs I've discussed thus far fadeew applied to static optimization problem is the

fact that an individual’s fitness is commonly assessed only $ubset of the potential interaction space. That s,
it is assessed (typically) based on how well it performs witmediate individuals from the other populations.
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In a very literal sense, this is takingpaojectionof the total interaction space. Such a projection, geneiaye
sampling the space using the collaborating populationy, enanay not provide the search with adequate or
appropriate information to lead it towards the ideal cadiabion.

This difficulty speaks to the first form of balance discussartier, the one most stressed by this dissertation:
the tendency towarmbbust resting balanceThat is CCEASs tend toward the resting balance of Nash dumiaili
associated with high joint distribution values in the pdyoétrix, not toward optimal collaboration. Since for
many very realistic problems such equilibria may be highffpoptimal, this tendency can lead to one of the
pathologies discussed in the previous section: relatieeg@mneralization.

To find optimal collaborations, the search process may nedxttmore aggressive than this: assessing
fithess based more on th@hest-rewardnteractions between an individual and various memberkebther
population. Indeed, this is part of the spirit of the em@iticleas discussed in Chapter 4 with respect to the use
of the optimistic credit assignment collaboration methetich tended to yield better results than when using
the mean or minimum performance. This has the advantageirg beore opportunistic, forming a projection
that considers the basic intent of the optimization alganit find the ideal. But it is still a projection—and the
information used to construct this projection is still lted to the current context.

The idea presented here is similar to this opportunistic@aah, and bears a slight resemblance to the “Hall
of Fame” concept introduced by Rosin and Belew (1997) formetitive coevolution. An individual's fitness
might be based on a combination of its immediate reward whikracting with individuals in the population
and an estimate for the reward it would have received haddtacted with its “ideal collaborators”. Moreover,
the fraction of reward due to the immediate (as opposed tadtéad) interaction might be adjusted during the
course of the run. In this way, the projection that is formadrty one part of the search is one that considers a
wider context that allows for more exploration of unseertgaf the space, or it may consider a more narrow
scope at other times during the search.

This idea of an optimization biased CCEA can be justified nfthlowing way. Recall that if an individual's
fithess is based on its immediate interaction with individdeom the other population, theh= Ay andw =
AT%, as described in equations 5.3 and 5.4. Now, let us consigiction maxA) that returns a column vector
corresponding to the maximum value of each row in ma&ixNow, if an individual’s fitness is based on its
maximum possible performance in conjunction with any ifdiial from the other population, then one may
modify equations 5.3 and 5.4 to bie= max(A)" andw = max(AT)T.

In this modified system, the tendency to optimize performeasclear since the new fitness measure will
result in populations that converge to basis vectors astmatiwith any unique maximal value in the payoff
matrix. At each iteration of the model, the fithess of eachtsty will be its best possible fithess. If there is a
unigue maximum, that result will have the highest fitness, smthe proportion of the corresponding strategy
will increase in the next step. The reason for this should libgonis: the problem has lost the dimension-
ality added due to the nature of the interactions betweerptipeilations and has been reduced to a simple
evolutionary algorithm. Regardless of the content of theosing population, the fithess measure for a given
strategy is the same. As shown in Reeves and Rowe (2002, ¥888)( an infinite population model of this
reduced evolutionary algorithm will converge to a uniquebgll maximum. In fact, the algorithm is no longer
coevolutionary in any real way.

Of course, this idyllic discussion has a major flaw: a real @@&#gorithm would not know the maximum
possible reward for a given individualpriori. To make use of any bias, this knowledge will have to estithate
using some kind of learning mechanism. One approach is tdhisserical information during the run to
approximate the maximum possible collaborative fitnessafomdividual. However, if the approximation is
too large (or has too strong an effect on the overall fithess],if it appears too early in the evolutionary run,
then it can deform the search space to drive search tragstoito suboptimal parts of the space from which
they cannot escape. On the other hand, if the approximatieots the fithess measurement very weakly, and
too late in the run, then it may not be of much help, and theesystill still gravitate towards balance. To better
see this tradeoff, equations 5.3 and 5.4 may be again altereld that a bias weight parametdy,is added
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(shown below). Varying between 0 and 1 will control the degree to which the model malke of the bias.

0 = (1-3)-Ay+5-max(A)’ (6.1)
W = (1-03)-ATX+5-max(AT)" (6.2)

Even in this formal setting there are challenges. The thieatenodel itself is enough to see how sensitive
the algorithm can be to thé@ parameter. To help see this, let's again return to the teclenof measuring
the basins of attraction discussed in the last chapter.oAgh this time | will keep track of only the ratio of
trajectories that eventually map to the global maximum,itlea is the same: select initial points at random
from the product simplex, iterate the model until it has @rged to a fixed point, then record whether or not the
resting point corresponds with the global maximum. | againstder the M\x OFTWOQUADRATICS problem
class as an 8 8 payoff matrix and use the specific problems giverspy- {2,8,32}. Figure 6.1 below shows
what happens to the expectation of global convergence atetteevalue is increased.
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Figure 6.1: Measures of the basin of attraction of the glpieak for Max OFTWOQUADRATICS with varying
values ofs; in terms of thed bias parameter.

Notice from this figure that as the peak shape is narrowed;(aiscreases), the sensitivity of the delta
parameter is increased. While it is clear that even if we hezhaonably accurate way of estimating the ideal
collaborator from historical information, the proper sgjtfor the delta parameter may be quite difficult to
attain. For some problems there may be a reasonable rangéuetvfor which good results are possible (as is
the case with MX OFTWOQUADRATICS whens; = 2), while for other problems settingmay be quite tricky
(as is the case with Mx OFTWOQUADRATICS whens; = 32).

This sensitivity notwithstanding, it is clear that somedkisf biasing method may help address the inherent
tendency of CCEAs to seek balance rather than optimalityorAesvhat more realistic example application of
this approach can be found in Panait, Wiegand, and Luke {§2088re it is shown that for a relatively naive
mechanism that uses historical information to estimatedbal collaborator, it is possible to improve upon
results produced to an unaltered CCEA. Moreover, recenk wocompetitive domains show a similar idea
with respect to retaining and using historically found Nasjuilibria to keep the search on track (Ficici and
Pollack 2003).
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There are, of course, many open questions about how to apply & method in a more realistic way;
however, given the right estimation methods and parameténgs, biasing coevolution towards optimality
might be one effective way of altering the basic cooperatiwevolutionary algorithm to more more geared
towards the task of static optimization. For these readbosrtainly merits further study.

6.2 Balancing Evolutionary Change

Like the previous section, this section attempts to restilggroblem with CCEAS by correcting the algorithm.
Indeed, both sections consider the ideas of balance, thdiffgihently. In the previous section, the idea was
to thwart the natural tendency of the CCEA toward robustimggbalance by biasing the algorithm toward
optimal collaboration. This section, however, attemptaddress the issue of dynamic balance by attempting
to preserve that balance.

As | described in Chapter 5, coevolutionary algorithms gpess” while remaining in a type of adaptive
balance. To lose that balance means that one or more pamdatiill collapse to near homogeneity, and the
remaining populations will lose some, or all, of their gextti for search. In the context of the application
of these symmetric CCEAs on static optimization probleniss iclear that if one can keep the algorithm
progressing in terms of increased payoff values, the optimill be reached (eventually). So how can this be
done?

Recall that the effects of variation (and possibly evenlsdstic selection) can exacerbate asymmetries in
the initial conditions and the problem itself, which candea the destabilization in the balance the the search.
The result is often some form of loss of gradient. Is there atwarotect the dynamic balance of the search by
dampening these effects?

One possible approach might be to localize the operatorgysime kind of spatial embedding (Sarma
1998). For example, a two-population CCEA might be disteduwon two, matched-up grids such that each grid
point corresponds to an individual (e.g., see Figure 6.8)e@ion is performed locally within some pre-defined
neighborhood, and collaboration is similarly constrainedhe corresponding neighborhood in the matched
grid. Indeed, such coevolutionary algorithms have beewsho work better than corresponding non-spatial
CEAs for some, very specific problems (Pagie 1999). The réagdehind their advantage has, until now, not
been explained.

Figure 6.2: Example spatial distribution grids for a twgptation CCEA

One reason might be that, transmission of information wighpopulation is not only slowed and localized,
but it is in some senseapped That is, there is a maximum computable rate at which inféionacan diffuse
across the population, given the relationship of the loeggimborhoods to the population itself (Sarma 1998).
This means that the two populations might be way “lockedétbgr in terms of their rate of change. Moreover,



101

asymmetries in the problem can be in some way counteredefifahe known or suspectedriori) by adjusting
the neighborhoods for collaborations relative to one agroth

To test this idea, the following experiments were performadwo-population CCEA was applied to the
ASYMMETRICTWOQUADRATICS static optimization problem class, save that the domainegivere scaled
between 1.0 and 8.0, as with the experiments discussed ahthef the previous chapter. The parameters to
instantiate the problems used here are shown in Table 6.2.

Table 6.1: Parameters for theAM OFTWOQUADRATICS problem used in the spatial embedding experiments.

Parameter Value

k1 150
ko 140
S {2,4,8,16,32,64,128,256
S 1
Sy1 4
Sp 1

(X1, y1) 81)

(%2,¥2) (1,8)

| compare the CCEA results on thesAMMETRICTWOQUADRATICS problem from the previous chapter
to a spatial model where 49 members of each population ateoldiin 7x 7 toroidal grids. A given grid
position refers, then, to two individuals: one in the firsppation and one in the second. Collaboration
consisted of using the 33 Moore neighborhood in the alternate population centetédeasame position as
the individual being evaluated. The mean of these 9 valusuuaed as the fithess value for the individual being
evaluated. Proportionate selection likewise useda@3aMoore neighborhood around the present individual in
the populations. This meant that the 9 individuals assediatith a given position were used to construct a
weighted distribution, a draw was taken from that distidnut and the winner was substituted into the given
position in the next round. The positions were processedmmaom order (without replacement). Again,
crossover was applied as it was befope € 1.0 andps = 0.5). The update mechanism was parallel.

Each group was run 50 times and the best result found duringdhrch was preserved in each trial. The
best-ever results, as well as the ratio of final generatish\@ues exceeding 140, are shown in Figure 6.3. The
values for every group are far improved over the non-spatisliits shown on page 95. The best-ever results
are statistically significant for all values sf;. Looking again at the scatter plots of the standard deviatio
of the final generation of the runs (Figure 6.4 on page 103Yiges with some clue as to why. Though at
first it may appear that all of the regression lines are tigpetlis case, there are two important things to note.
First, the overall standard deviations are much lower thasd shown on page 96. Second, the differences
between the relationships of standard deviations are mess$ pronounced between different values,@f
This suggests that increasing the valuesgf in effect skewing the problem more and more, had little iatpa
on the relationship of the final generation’s populatioredsities.

Again, it is obvious that there are more questions about lmogotabout applying this method than there is
advice provided here. The point was not to demonstrate a&pkant method, but to underscore the idea that by
preserving the dynamic balance of the CCEA, better resuljbtbe obtained by reducing the risks associated
with the problem of loss of gradient. Many other methodsterisaccomplishing something similar.
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Figure 6.3: Spatial CCEA empirical results ors WIMETRICTWOQUADRATICS with crossover asy is in-
creased. The-axis for both graphs shows the value for #ye parameter. Thg-axis displays final best-ever
fitness results. The points are mean values of 50 trialsevihéd wings are 95% confidence intervals.

6.3 Optimizing for Robustness

To the last two sections, one might respond with questides fWhy change the algorithm? Why not apply
the existing algorithm to more appropriate problems?” Utnfioately it is not altogether clear what “more
appropriate” problems are. Returning to some of the ing@hantic discussion may help shed some light on
the question, though. Recall that in Chapter 3 | defined time $ingle objective, static optimization problem
such a way as to direct our discussions throughout the réiseéafissertation. Directing it in this way stipulated
that “optimal” meant “ideal collaboration” in the simpleating | chose for the CCEA in this work. Suppose
now that the problem being solved is not one in which the idedibboration is desired at all, but rather we
wantto find a reasonably good solution that works well across @&wnaege of alternative collaborations?
Indeed, according to the analysis in the last chapter, thexactly what CCEAs are constructed to do:
find the pure Nash equilibrium with the highest cumulativefjaistribution in the payoff matrix. Since the
solution is a Nash point, if one strategy in the collaboraii® fixed, no alteration in the other strategies will
produce a higher reward (such is the definition of a Nash ibquiin). In this sense, the fixed point might
be considered “relatively good”. Moreover, Nash pointswitgher joint distributions have greater attracting
power, the attracting fixed point is likely to be one in whidkeang one of the non-fixed strategies will be
less damaging than some other Nash point with a lower jositidution. In this way, we might consider our
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Figure 6.4: These four graphs show co-plotted standardchtiens of population fitness at the end of the run.
The line is a linear regression fit of the scatter plot. Theugsoshown appear left to right, top to bottom as
sa =4, 16, 64, and 256, respectively.

solutionrobust it is relatively good and is susceptible to harm by minorades in the alternate strategies than
other such points. Suppose, then, one is interested in @ptigrfor robustness, rather than ideal collaboration?

It is reasonable to consider such a viewpoint. Take, for gtenthe problem of learning behaviors for
multiple, collaborating agents in some kind of stochastmédin. Presumably one is, on the one hand, less
interested in the best possible solution than a satisfactoe and, on the other hand, more interested in solutions
that are reasonably stable in the face of minor fluctuatiorthé team behaviors. In other words, it is usually
better to have a team that will still perform relatively wethen one or more members behaves differently than
one expects, than it is to have one which performs very wéyl ibevery member does exactly what it should.

Consider the MX OFTWOQUADRATICS, 51 = 32 problem example again. For the sake of argument, let’s
suppose that this landscape describes the performandes @fdwo, cooperating agents. If the object is to learn
good, but robust behaviors, which peak is the “better” pe@k@ global peak has the disadvantage that any
change by either partner in their strategy could bring alaowatther dramatic loss of performance. In realistic
multi-agent settings, this could happen for a variety ofoew (e.g., a servo on the robot fails for some reason).
The second, suboptimal peak offers a much more stable result
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6.4 Conclusions

The main message of this dissertation is a response to tharental question posed at its start: one should
not expect CCEAs (in general) to perform well on single otjeg static optimization problems because dy-
namically they are predisposed to achieving states of talesting balance over those of ideal collaboration.
Recall, though, that there are at least two important cavexntioned above: | do not suggest that CCEAs
cannot be successfully applied to static optimization f@wis, nor do | offer a great deal of detailed advice
clarifying how they should be applied.

I will now look at these two issues in turn, suggesting futtesearch opportunities as | do so, as well as
underscoring the research contributions of this work. #feed, | will suggest the less tangible methodological
contribution of this work.

6.4.1 Applying CCEAs to Static Optimization

Can CCEAs be applied successfully to static optimizatiablams, despite their internal dynamic tendencies?
Of course they can be. In Chapter 4 | show clearly that CCEAgeaform competitively with more traditional
EAs on some kinds of problems. Moreover, the No Free Luncbréme tells us that all algorithms perform (on
average) the same against any problem set that is closed pedeutation (Schumacher, Vose, and Whitley
2001). Onecanapply CCEAs to such problems, and aren expect it to perform reasonably well at times.

Nevertheless, in the more specific situations where piatits are interested in a subset of problems that
have certain, very reasonable and common properties, éhef SCEAS should be reconsidered. | have shown
that for very simple problems that contain some kinds of ©@gpulation nonlinearities, the CCEA can have
some very pathological difficulties. Moreover, whatever timderlying relevant property that creates challenges
for these methods, it is something more complex than sintgekistence of such epistatic connections. There
are clearly certairkinds of nonlinear relationships between populations that eréificulties, and there are
clearly other relationships at play as well. The existerfa@ass-population epistasis is neither a necessary nor
sufficient condition to raise the red flag of warning.

However, in spite of the challenges presented by theseitilgwm, there’'s some hope that they can be
modified to be more suited for static optimization procedurésuggested two such ways. In the first, the
algorithm might be explicitly biased toward ideal collahtbon by considering historical information regarding
the interaction search space. In the second, | offered orleaghdor how adaptive balance in the algorithm
might be preserved by harnessing the constraining effé&satial embedding as a means of tying changes in
two populations together. Both ideas are only one of manysviaaddress their respective issues. | presented
them as conceptual examples, not as specific rigid dictumisdw to solve these cooperative coevolutionary
difficulties.

At this level of abstraction, these ideas contribute adticthe future of the study of cooperative coevo-
lutionary algorithms in a very real way: researchers shéatdis on similar kinds of modifications to address
these challenges, if they wish to continue to use theseitligms in such settings.

6.4.2 Adaptive optimization of robustness

So what do CCEAs really do? My answer is that they are adapfitiemizers of robustness or, more explicitly,
they attempt to adaptively discover places in the searchespath maximal joint distribution of rewards as
described by the collaboration space. It might be intimgtatithis is only an indirect answer to the fundamental
guestion since it is not necessarily clear exactly whatdtagement means. Moreover, while it is important to
know what CCEAglo notdo, it is also important to know what thelp.

Research into the field of coevolutionary computation hanlkstracted by several misconceptions about
the algorithms themselves, and particularly about how thagtion. To some extent, we must revisit investi-
gations of CEAs in a more focussed light. The contributiors/igled here are more than simple disputation
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because they inform researchers that we must step back lkemé taew look at the algorithms from a more
informed perspective with respect to their function. Wisatéeded is a new view of the CCEA in terms of the
problems it solves.

While the clarity of what the real-world implications of “agtive optimization of robustness” may be in
doubt, researchers who view CCEAs through this lens will beensuccessful at determining how CCEAs can
be best applied. If nothing else, future researchers ofatoBenary computation should consider this before
beginning their research: make certain that the algorithsoiving the problem that is being encoded, and not
something quite different than one might have expected.

6.4.3 A Methodological Framework

Perhaps a far less tangible contribution of this dissertatan be found in its methodological approach. There
are two points in this matter that | would like to underscore.

On a general level, there is at least one classical methgidallodecision made by this research that is
worth pointing out. | began with a question and addressedrallysis and experimentation to that question,
or subordinate instantiations of that question. Specificalbegan with a very broad question, and refined
it in different ways based on context. These refinementsymed more specific questions that were more
researchable. The process of starting broadly and refinisgécific question is a framework that offers great
deal in focussing research that has many angles,.

As an example, the “fundamental question” was just such adbgoiestion. | outlined this at the start of the
document and continually refined it in each context of mysial Moreover, | kept the question as simple as
possible. Indeed, | offer this suggestion for future restean coevolutionary computation: continuehegin
research with that fundamental question: “What do theserititgns really do?”

However, beyond the more obvious and classical methodmbgbservations, | want to say a few words
about the analytical tools used in my research. There isa geal of controversy and tension in the evolu-
tionary computation field about the utility and informatiess of various theoretical ideas. Some believe that
dynamical systems approaches tell us very little about wdstalgorithms will do in terms of how long we
can expect to wait for “good” solutions, while others bedidhat they help us model and understand algorithm
limiting behaviors as they are in their most abstract ancpkat form. Some believe that run time analysis
is unhelpful because it can only answer questions aboutsiergle, unrealistic algorithms on very contrived
problems, while others believe that they provide very dpeaind precise information about real algorithms
(rather than models of algorithms). Even more extremelyiesbelieve that no theoretical approach has so far
proved helpful to practitioners, while others hold praetiers as irresponsible for poor empiricism born out of
a lack of fundamental understanding of the algorithms ttssy u

What is the truth? The truth is that one needn’t discard ariiiede tools, but recognizing their advantages
and limitations, one can apply many them in different walygany of these methods can help ansveeme
types questions, as long as the questions are properly ptisedy be difficult to understand how dynamical
systems methods can be used to inform us of how long userswmaitsfor solutions, but it is not difficult to
understand how they can inform us about whether not theitligts are even attracted to those solutions in the
first place. It may be that run time analysis is nearly impaedior the complicated algorithms that are actually
employed in real-world environments, but it is also trug #reowing something about the run time behaviors
of simpler algorithms on well constructed problems withfukproperties is more than knowing nothing at all
in terms of what kind of performance we can expect from sinttlas. Moreover, to fill the gaps left by various
formal methods, there is always empiricism. The key to ustdading these algorithms is to take a multi-lateral
approach in terms of formalism, to use the results from awaof formal methods to pose real and informative
hypotheses for testing, then validate and confirm (or rejeese hypotheses by empirical investigation.

In particular, | believe that formal methods help in the gsx of refining questions. Transforming broad
guestions into particular, researchable questions fromhwiypotheses can be generated is difficult. Here is
one place for formalism. Which theory is used says more abowutone wishes to refine the question than
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it does about their theoretical philosophy in general. Ftbese more specific questions and hypotheses, one
can design and implement experiments that are very compacfazussed. The key message here is that
analysis should begin with formalism and end with empintgisind in both cases researchers should not limit
themselves by ascribing to, or omitting, any particular mdtmerely on the basis of its inability to answer
other questions that one has. They each have their use, apgliéd carefully in the context of a particular
guestion, can be informative in their own way.

6.5 Future Research

There are three areas of research extensions of this wdrkridoremost on my list of items to pursue in the
near future. First, | am interested in continuing the thécakrun time analytic work. | also continue to have
an interest in working on biasing methods to improve CCEAmization applications. Finally, | would like
to turn game-theoretic tools toward the task of understandpecialization in multi-agent systems in which
behaviors are learned via CCEA methods.

| continue to believe that run time analysis can provide pfwvand decisive answers to particular questions
with respect to the performance of CCEAs on optimizatiorbfmms. | am interested in extending the analysis
already accomplished in two, very different ways. Firsg tiext step in analysis would seem to be moving to
providing theoretical complexity results for a CC«{ 1) EA. Such an algorithm is a good next-step, since it is
similar to a steady-state GA and constitutes a relativelyoals augmentation of the (1+1) versions discussed
in the current work. Second, | would like to study the effettat different collaboration mechanisms can
have on run time performance. This can be done even withowpalation by using an external source to
provide collaborators (they can be provided randomly, figstdnce). Such methods would not be identical to
true collaboration, but may still provide useful results.

Finding a biasing mechanism that will help focus the CCEAenamn static optimization will be of great
value to the community of practitioners. The key lies in deping a realistic and tractable method for learning
increasingly more optimal collaborations during the runtled algorithm. Even if such methods could be
determined, some problems will make them more suitable thiaers. Understanding what properties of the
problem make this a tenable method and what properties rmakeasible continues to interest me.

As I've already said, | am convinced that the native CCEA®tpotential will be found by applying it to
problems in which our interest is finding robust solutions] &hat one such problem domain might be that of
learning multi-agent behaviors. One of the challenges anieg such behaviors is that of determining what
kinds of specialization of behaviors is needed within annageam, as well as what kinds of specialization
are even possible. | believe that the game-theoretic andrdigal systems tools established here will provide
a good foundation for answering such questions. It is myniite to continue the research started in my
dissertation by extending the analytical and empiricalhoes used here to the domain of multi-agent learning
via cooperative coevolution.
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