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A Fast and Elitist Multiobjective Genetic Algorithm:
NSGA-II
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Abstract—Multiobjective evolutionary algorithms  (EAs)  [20], [26]. The primary reason for this is their ability to find
that use nondominated sorting and sharing have been criti- multiple Pareto-optimal solutions in one single simulation run.
cized mainly for their: 1) O(MN°”) computational complexity  gince evolutionary algorithms (EAs) work with a population of
(where M is the number of objectives andV is the population uti imole EA b tended t intai di
size); 2) nonelitism approach; and 3) the need for specifying a solutions, a S|mpe_ can be ex enae O_ maintain a diverse
Sharing parameter_ In this paper, we Suggest a nondominated set Of SOIUUO”S. W|th an emphaSIS fOI’ m0V|ng tOWard the true
sorting-based multiobjective EA (MOEA), called nondominated Pareto-optimal region, an EA can be used to find multiple
sorting genetic algorithm Il (NSGA-II), which alleviates all  pareto-optimal solutions in one single simulation run.
the above three difficulties. Sgecmcally, a fast nondominated The nondominated sorting genetic algorithm (NSGA) pro-
sorting approach with O(M N?) computational complexity is . '
presented. Also, a selection operator is presented that creates aP0S€d in [20] was one of the first such EAs. Over the years, the
mating pool by combining the parent and offspring populations main criticisms of the NSGA approach have been as follows.
and selecting the best (with respect to fitness and spreadV 1) High computational complexity of nondominated sorting:

solutions. Simulation results on difficult test problems show that . . .
the proposed NSGA-II, in most problems, is able to find much The currently-used nondominated sorting algorithm has a

better spread of solutions and better convergence near the true computational complexity o (A N?) (where M is the
Pareto-optimal front compared to Pareto-archived evolution number of objectives and is the population size). This
strategy and strength-Pareto EA—two other elitist MOEAs that makes NSGA computationally expensive for large popu-

pay special attention to creating a diverse Pareto-optimal front.
Moreover, we modify the definition of dominance in order to
solve constrained multiobjective problems efficiently. Simulation

lation sizes. This large complexity arises because of the
complexity involved in the nondominated sorting proce-

results of the constrained NSGA-II on a number of test problems, dure in every generation.

including a five-objective seven-constraint nonlinear problem, are 2) Lack of elitismRecent results [25], [18] show that elitism

compared with another constrained multiobjective optimizer and can speed up the performance of the GA significantly,

much better performance of NSGA-Il is observed. which also can help preventing the loss of good solutions
Index Terms—Constraint handling, elitism, genetic algorithms, once they are found.

multicriterion decision making, multiobjective optimization, 3)

Pareto-optimal solutions. Need for specifying the sharing parametgy,,..: Tradi-

tional mechanisms of ensuring diversity in a population so
as to get a wide variety of equivalent solutions have relied
|. INTRODUCTION mostly on the concept of sharing. The main problem with
sharing is that it requires the specification of a sharing

HE PRESENCE of multiple objectives in a problem, in
parameterd;yare). Though there has been some work on

principle, gives rise to a set of optimal solutions (largely TS .
known as Pareto-optimal solutions), instead of a single optimal ~dynamic sizing of the sharing parameter [10], a param-
solution. In the absence of any further information, one of these elter-less diversity-preservation mGFha”'Sm is desirable.
Pareto-optimal solutions cannot be said to be better than thd this paper, we address all of these issues and propose an
other. This demands a user to find as many Pareto-optimal sdfiProved version of NSGA, which we call NSGA-II. From the
tions as possible. Classical optimization methods (including tRinulation results on a number of difficult test problems, we find

multicriterion decision-making methods) suggest converting tifg@t NSGA-II outperforms two other contemporary MOEASs:

multiobjective optimization problem to a single-objective optiP@réto-archived evolution strategy (PAES) [14] and strength-

mization problem by emphasizing one particular Pareto-optimfaf"€t0 EA (SPEA) [24] in terms of finding a diverse set of so-

solution at a time. When such a method is to be used for findiH§ions and in converging near the true Pareto-optimal set.

finding a different solution at each simulation run. point of view of practical problem solving, but not much attention
Over the past decade, a number of multiobjective evolhas been paid so far in this respect among the EA researchers.

tionary algorithms (MOEASs) have been suggested [1], [7], [13W this paper, we suggest a simple constraint-handling strategy
with NSGA-II that suits well for any EA. On four problems

. . _ chosen from the literature, NSGA-II has been compared with
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we describe the proposed NSGA-II algorithm in details. Sethe iteration continues. On the other hand, if the parent dom-
tion IV presents simulation results of NSGA-Il and compardsates the offspring, the offspring is discarded and a hew mu-
them with two other elitist MOEAs (PAES and SPEA). In Sectated solution (a new offspring) is found. However, if the off-
tion V, we highlight the issue of parameter interactions, a mattgpring and the parent do not dominate each other, the choice be-
that is important in evolutionary computation research. The nebteen the offspring and the parent is made by comparing them
section extends NSGA-II for handling constraints and companegth an archive of best solutions found so far. The offspring is
the results with another recently proposed constraint-handliogmpared with the archive to check if it dominates any member
method. Finally, we outline the conclusions of this paper.  of the archive. If it does, the offspring is accepted as the new
parent and all the dominated solutions are eliminated from the
archive. If the offspring does not dominate any member of the
archive, both parent and offspring are checked for thear-
During 1993-1995, a number of different EAs were sugtesswith the solutions of the archive. If the offspring resides in
gested to solve multiobjective optimization problems. Of therd, least crowded region in the objective space among the mem-
Fonseca and Fleming’s MOGA [7], Srinivas and Deb’s NSGAers of the archive, itis accepted as a parent and a copy of added
[20], and Hornet al’s NPGA [13] enjoyed more attention.to the archive. Crowding is maintained by dividing the entire
These algorithms demonstrated the necessary additional og&arch space deterministically dft subspaces, whexéis the
ators for converting a simple EA to a MOEA. Two commorsiepth parameter andis the number of decision variables, and
features on all three operators were the following: i) assignify updating the subspaces dynamically. Investigators have cal-
fitness to population members based on nondominated sortiygated the worst case complexity of PAES f§revaluations
and ii) preserving diversity among solutions of the samas O(aM N), wherea is the archive length. Since the archive
nondominated front. Although they have been shown to firgize is usually chosen proportional to the population 8iz¢he
multiple nondominated solutions on many test problems andserall complexity of the algorithm i©(AM N?).
number of engineering design problems, researchers realizeRudolph [18] suggested, but did not simulate, a simple elitist
the need of introducing more useful operators (which hal4OEA based on a systematic comparison of individuals from
been found useful in single-objective EA's) so as to solvearent and offspring populations. The nondominated solutions
multiobjective optimization problems better. Particularlypf the offspring population are compared with that of parent so-
the interest has been to introduce elitism to enhance tilions to form an overall nondominated set of solutions, which
convergence properties of a MOEA. Reference [25] show&gcomes the parent population of the next iteration. If the size
that elitism helps in achieving better convergence in MOEAST this set is not greater than the desired population size, other
Among the existing elitist MOEAs, Zitzler and Thiele’s SPEANdividuals from the offspring population are included. With
[26], Knowles and Corne’s Pareto-archived PAES [14], arfbis strategy, he proved the convergence of this algorithm to the
Rudolph’s elitist GA [18] are well studied. We describe thesgareto-optimal front. Although this is an important achievement
approaches in brief. For details, readers are encouraged to réfdts own right, the algorithm lacks motivation for the second
to the original studies. task of maintaining diversity of Pareto-optimal solutions. An ex-
Zitzler and Thiele [26] suggested an elitist multicriterion EAlicit diversity-preserving mechanism must be added to make it
with the concept of nondomination in their SPEA. They sugnore practical. Since the determinism of the first nondominated
gested maintaining an external population at every generati@nt is O(AMN?), the overall complexity of Rudolph’s algo-
storing all nondominated solutions discovered so far beginnifighm is alsoO(M N?).
from the initial population. This external population partici- In the following, we present the proposed nondominated
pates in all genetic operations. At each generation, a combirigdting GA approach, which uses a fast nondominated sorting
population with the external and the current population is firfrocedure, an elitist-preserving approach, and a parameterless
constructed. All nondominated solutions in the combined popiching operator.
ulation are assigned a fitness based on the number of solutions
they dominate and dominated solutions are assigned fitnems_ ELITIST NONDOMINATED SORTING GENETIC ALGORITHM
worse than the worst fitness of any nondominated solution.
This assignment of fitness makes sure that the search is directe
toward the nondominated solutions. A deterministic clustering For the sake of clarity, we first describe a naive and slow
technigue is used to ensure diversity among nondominatgacedure of sorting a population into different nondomination
solutions. Although the implementation suggested in [26] lIevels. Thereafter, we describe a fast approach.
O(MN?®), with proper bookkeeping the complexity of SPEA In a naive approach, in order to identify solutions of the first
can be reduced tO(M N?). nondominated front in a population of siZé, each solution
Knowles and Corne [14] suggested a simple MOEA usirmgan be compared with every other solution in the population to
a single-parent single-offspring EA similar to41)-evolution find if it is dominated. This require®(M N) comparisons for
strategy. Instead of using real parameters, binary strings weaeh solution, wheré/ is the number of objectives. When this
used and bitwise mutations were employed to create offspringsocess is continued to find all members of the first nondomi-
In their PAES, with one parent and one offspring, the offspringated level in the population, the total complexitydgA N?).
is compared with respect to the parent. If the offspring domit this stage, all individuals in the first nondominated front are
nates the parent, the offspring is accepted as the next parentfauehd. In order to find the individuals in the next nondominated

II. ELITIST MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

Jast Nondominated Sorting Approach
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front, the solutions of the first front are discounted temporarilylexity is O(N?). Thus, the overall complexity of the procedure
and the above procedure is repeated. In the worst case, the tagk(M N?). Another way to calculate this complexity is to re-
of finding the second front also requiré¥ M N?) computa- alize that the body of the first inner loop (for eaghe F;) is
tions, particularly wherO(N) number of solutions belong to executed exactlyv times as each individual can be the member
the second and higher nondominated levels. This argumenbfsit most one front and the second inner loop (for eaehs,,)
true for finding third and higher levels of nondomination. Thus;an be executed at maximuiy — 1) times for each individual
the worst case is when there a¥efronts and there exists only [each individual dominatgsV —1) individuals at maximum and
one solution in each front. This requires an ovetllM N3) each domination check requires at mbstomparisons] results
computations. Note tha®(NV) storage is required for this pro-in the overallO(M N?) computations. It is important to note
cedure. In the following paragraph and equation shown at ttieat although the time complexity has reduce®td N?2), the
bottom of the page, we describe a fast nondominated sortistgrage requirement has increased{av?).
approach which will requir€® (A N?) computations. . ) )
First, for each solution we calculate two entities: 1) domP- Diversity Preservation
nation countr,, the number of solutions which dominate the We mentioned earlier that, along with convergence to the
solutionp, and 2)S,,, a set of solutions that the solutiprdom-  Pareto-optimal set, it is also desired that an EA maintains a good
inates. This require®(M N?) comparisons. spread of solutions in the obtained set of solutions. The original
All solutions in the first nondominated front will have theirNSGA used the well-known sharing function approach, which
domination count as zero. Now, for each solutioith n,, = 0, has been found to maintain sustainable diversity in a popula-
we visit each membej of its setS, and reduce its domina- tion with appropriate setting of its associated parameters. The
tion count by one. In doing so, if for any memhgthe domi- sharing function method involves a sharing parametg;.,
nation count becomes zero, we put it in a separatélisthese which sets the extent of sharing desired in a problem. This pa-
members belong to the second nondominated front. Now, tineter is related to the distance metric chosen to calculate the
above procedure is continued with each membeR afnd the Proximity measure between two population members. The pa-
third front is identified. This process continues until all front§ameters,.;. denotes the largest value of that distance metric
are identified. within which any two solutions share each other’s fitness. This
For each solutiop in the second or higher level of nondom{arameter is usually set by the user, although there exist some
ination, the domination count,, can be at mosN — 1. Thus, guidelines [4]. There are two difficulties with this sharing func-
each solutiorp will be visited at mostV — 1 times before its tion approach.
domination count becomes zero. At this point, the solution is 1) The performance of the sharing function method in
assigned a nondomination level and will never be visited again.  maintaining a spread of solutions depends largely on the
Since there are at mo®{ — 1 such solutions, the total com- chosenog,.re Value.

fast-non-dominated-sort(P)
foreachp € P

S,=0
np =10
foreachq € P
if (p < ¢)then If p dominatesy
Sy =5, U{q} Add q to the set of solutions dominated py
else if(¢ < p) then
Ny =np+1 Increment the domination counter of
if n, = 0then p belongs to the first front
DPrank = 1
Fi1=FU{p}
i=1 Initialize the front counter
while F; # 0
Q=10 Used to store the members of the next front

for eachp € F;
for eachg € 5,
Ng=ng—1

if ng = 0then g belongs to the next front
Grank = ¢+ 1
Q=QU{g}

t=1+1
Fi=Q
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Here,Z[:].m refers to thenth objective function value of the
b 0. ith individual in the sef and the parametey&’** and f* are
o the maximum and minimum values of theth objective func-
¢ tion. The complexity of this procedure is governed by the sorting
i-l4------n~ ¢ algorithm. SinceM independent sortings of at moat solu-

Lo te 4 | tions (when all population members are in one frohare in-

i+1 ® volved, the above algorithm h&s(A N log V) computational

complexity.

After all population members in the sgt are assigned a
Fig. 1. Crowding-distance calculation. Points marked in filled circles arcéIStanC_e r_nem(_:’ we can compare two soll,_ltlons_for their extent
solutions of the same nondominated front. of proximity with other solutions. A solution with a smaller
value of this distance measure is, in some sense, more crowded

2) Since each solution must be compared with all other sBY Other solutions. This is exactly what we compare in the
lutions in the population, the overall complexity of the?roPosed crowded-comparison operator, described below.
sharing function approach &(N?). Although Fig. 1 illustrates the crowding-distance computation

In the proposed NSGA-II, we replace the sharing functiofrﬁ’r two objectives, the procedure is applicable to more than two

approach with a crowded-comparison approach that eliminaffyectives as well.

both the above difficulties to some extent. The new approach?) Crowded-Comparison OperatorThe crowded-compar-
does not requirany user-defined parameter for maintainingSn OPerator €,,) guides the selection process at the various

diversity among population members. Also, the suggested ages of the algorithm toward a uniformly spread-out Pareto-

proach has a better computational complexity. To describe tﬁgtimal front. Assume that every individuain the population

approach, we first define a density-estimation metric and thBaS Wo attributes:
present the crowded-comparison operator. 1) nondomination rankifanx);

1) Density Estimation:To get an estimate of the density of 2) crowding distanceifistance)-
solutions surrounding a particular solution in the population, we We now define a partial ordex,, as
calculate the average distance of two points on either side of
this point along each of the objectives. This quantify;ance
serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices (call thisrtiveding
distance. In Fig. 1, the crowding distance of thith solution in That is, between two solutions with differing nondomination
its front (marked with solid circles) is the average side length &&nks, we prefer the solution with the lower (better) rank. Other-
the cuboid (shown with a dashed box). wise, if both solutions belong to the same front, then we prefer

The crowding-distance computation requires sorting the pdie solution that is located in a lesser crowded region.
ulation according to each objective function value in ascendingWith these three new innovations—a fast nondominated
order of magnitude. Thereafter, for each objective function, ti@rting procedure, a fast crowded distance estimation proce-
boundary solutions (solutions with smallest and largest functiéire, and a simple crowded comparison operator, we are now
values) are assigned an infinite distance value. All other intégady to describe the NSGA-II algorithm.
mediate solutions are assigned a distance value equal to the ab-
solute normalized difference in the function values of two adj&: Main Loop
cent solutions. This calculation is continued with other objective Initially, a random parent populatiah, is created. The pop-
functions. The overall crowding-distance value is calculated akation is sorted based on the nhondomination. Each solution is
the sum of individual distance values corresponding to each @ssigned a fithess (or rank) equal to its nondomination level (1
jective. Each objective function is normalized before calculatirig the best level, 2 is the next-best level, and so on). Thus, mini-
the crowding distance. The algorithm as shown at the bottomrafzation of fitness is assumed. At first, the usual binary tourna-
the page outlines the crowding-distance computation procedunent selection, recombination, and mutation operators are used
of all solutions in an nondominated s&t to create a offspring populatiof, of size V. Since elitism

1 <n J |f (irank < jrank)
or ((irank = jrank) -
and(idistance > jdistance))

crowding-distance-assignment(Z7)

=17 number of solutions ifT

for eacht, setZ[i]aistance = 0 initialize distance

for each objectiven
7 =sor(Z, m) sort using each objective value
T[] aistance = Z[{]distance = o0 so that boundary points are always selected
fori =2to(l—1) for all other points

Ti]aistance = Z[i]distance + (Z[¢ + 1].m — Z[i — 1].m)/(f* — ;:;in)
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is introduced by comparing current population with previously Non;%?:fgiif;lated gigzgigg
found best nondominated solutions, the procedure is different g
after the initial generation. We first describe ik generation
of the proposed algorithm as shown at the bottom of the page.
The step-by-step procedure shows that NSGA-Il algorithmis  ©
simple and straightforward. First, a combined populafiyr= E:> F
P, U Q, is formed. The populatiof; is of size2N. Then, the N Ve
populationR; is sorted according to nondomination. Since all
previous and current population members are include&;in
elitism is ensured. Now, solutions belonging to the best non-
dominated sef; are of best solutions in the combined popu- R
lation and must be emphasized more than any other solution in
the combined population. If the size & is smaller thenV, Fig. 2. NSGA-II procedure.
we definitely choose all members of the g&tfor the new pop-

ulation P11 The remaining members of the populatibi.,  performed carefully, the complete population of 226 need
are chosen from subsequent nondominated fronts in the ordefgf he sorted according to nondomination. As soon as the sorting

]Ehﬁir ra(rjllgng. 'Il'h_us, sfolutiorr:s from thz SEi areT;:]_hosen ”SXt' procedure has found enough number of fronts to Mavaem-
followed by solutions from the sé;, and so on. This proceduréyes inp, ;| there is no reason to continue with the sorting pro-
is continued until no more sets can be accommodated. Say ure.

the set7; is the last nondominated set beyond which no other th giversity among nondominated solutions is introduced

set can be accommodated. In general, the count of S_Olu“f)n%if‘using the crowding comparison procedure, which is used in
all sets from*, to ; would be larger than the population sizeyhe toumament selection and during the population reduction
To choose exactlyv population members, we sortthe solutiongase. Since solutions compete with their crowding-distance (a
of thelastfront 7; using the crowded-comparison operati  measure of density of solutions in the neighborhood), no extra
in descending order and choose the best solutions needed t%wning parameter (such asi... needed in the NSGA) is re-

all population slots. The NSGA-II procedure is also shown igireq. Although the crowding distance is calculated in the ob-

Fig. 2. The new populatiof;.,, of size [V is now used for se- jative function space, it can also be implemented in the param-
lection, crossover, and mutation to create anew populé}ion  ‘eter space, if so desired [3]. However, in all simulations per-

ofsize/N. Itisimportant to note that we use a binary tournamed e in this study, we have used the objective-function space
selection operator but the selection criterion is now based on Vﬂ@hing.

crowded-comparison operater,. Since this operator requires

both the rank and crowded distance of each solution in the pop-

ulation, we calculate these quantities while forming the popula-

tion P;;;, as shown in the above algorithm. IV. SIMULATION RESULTS
Consider the complexity of one iteration of the entire algo-

rithm. The basic operations and their worst-case complexities| this section, we first describe the test problems used to

t

I:’—__! } fRe(;ected
1

are as follows: compare the performance of NSGA-II with PAES and SPEA.
1) nondominated sorting I9(M (2V)?); For PAES and SPEA, we have identical parameter settings
2) crowding-distance assignmenti§AM (2V)log(2/NV));  as suggested in the original studies. For NSGA-II, we have
3) sorting on<,, is O(2N log(2N)). chosen a reasonable set of values and have not made any effort

The overall complexity of the algorithm i8(M N?), which is in finding the best parameter setting. We leave this task for a
governed by the nondominated sorting part of the algorithm.fliture study.

R, =P U@, combine parent and offspring population

F = fast-non-dominated-sort(R;) F = (F1, Fo, ...), all nondominated fronts aR;

Py =0andi=1

until | Py | + | F| £ N until the parent population is filled
crowding-distance-assignment(JF;) calculate crowding-distance if;
P =PF1UF includesth nondominated front in the parent pop
i=i4+1 check the next front for inclusion

Sort(F;, <x) sort in descending order using,,

Piy1 =Py UFR[L (N —|Piga])] choose the firstN — |P.y1|) elements ofF;

QQ¢41 = make-new-pop(Fi11) use selection, crossover and mutation to create

a new population); 41
t=t+1 increment the generation counter
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TABLE |
TEST PROBLEMS USED IN THIS STUDY

187

Problem | n Variable Objective Optimal Comments
bounds functions solutions

SCH 1 | [-10%,10%] | fi(z) =27 z €[0,2] convex

fo(2) = (x - 2)°
2
FON 3 [—4,4] fixy=1—exp|— Z?zl (a:, - %) T1 = Ty = T3 nonconvex
2

hx)=1-exp (- T8, (o + %) € [-1/v3,1/V3]

POL 2 [-m, 7] fi(x) = [1+ (A1 — B1)? + (42 ~ By)?] (refer [1]) nonconvex,
fa®x) = [(@1 +3)? + (22 + 1)?] disconnected
A; =0.58inl—2cosl+sin2—1.5cos2
Ay =1.5s8inl1 —cosl+ 2sin2 —0.5¢cos2
B, =0.5sinz; — 2cosxy +sinxzy — 1.5cosz2
By =1.5s8inz; — coszy + 2sinxzs — 0.5cos z2

KUR 3 [-5,5] filx) =0} (—10 exp (—0.2, jz? + 23, ) (refer [1]) nonconvex
fa(x) = Tizy (l2i]® + 5sina})

ZDT1 30 [0,1] fi(x) =21 z € [0,1] convex
£:%) = 9(x) [1 = /1 /900) 7 =0,
9(x) =14 9(Xis, =) /(n = 1) i=2,...,n

ZDT2 30 [0,1] filx) = z1 € [0,1} nonconvex
£(x) = g(x) [ = (21/9(x))’] 7 =0,
gx)=1+9( " ,x:)/(n—-1) i=2,...,n

ZDT3 30 [0,1] fx)=z z1 € [0,1] convex,
fa(x) = g(x) [1 — 1 /g(x) - el sin(lOm;l)] z; =0, disconnected
9(x) =1+9(FTi, i) /(n—1) i=2,...,n

ZDT4 10 z1€[0,1] | ax)=m z; € [0,1] noNConvex

2 €[=5,5), | hX) = 9(x) [1 - Va1 ]90)| 2 =0,
i=2,...,n | gx)=1+10(n—1)+ >, [z? - 10cos(4nz;)] i=2,...,n

ZDT6 10 [0,1] f1(x) = 1 — exp(—4z,) sin®(67z,) z1 € [0,1] nonconvex,
Fo(x) = g(x) [1 — (A(x) /g(x))z] @i =0, nonuniformly
g(x) =1+ 9[(F0, z) /(n — 1)]** i=2...,n | spaced

All objective functions are to be minimized.

A. Test Problems mutation for binary-coded GAs and the simulated binary

crossover (SBX) operator and polynomial mutation [6] for

We first describe the test problems used to compare differg@gtil-coded GAs. The crossover probability of = 0.9 and
MOEAs. Test problems are chosen from a number of signitr mutation probability of,, = 1/ or 1/£ (wheren is the
cant past studies in this area. Veldhuizen [22] cited a numh@imber of decision variables for real-coded GAs drid the
of test problems that have been used in the past. Of them, ®fing length for binary-coded GAs) are used. For real-coded
choose four problems: Schaffer’s study (SCH) [19], Fonses&SGA-II, we use distribution indexes [6] for crossover and
and Fleming’s study (FON) [10], Poloni’s study (POL) [16], angnutation operators ag, = 20 and7,, = 20, respectively.
Kursawe’s study (KUR) [15]. In 1999, the first author suggesteThe population obtained at the end of 250 generations (the
a systematic way of developing test problems for multiobjegopulation after elite-preserving operator is applied) is used to
tive optimization [3]. Zitzleret al. [25] followed those guide- calculate a couple of performance metrics, which we discuss
lines and suggested six test problems. We choose five of thisehe next section. For PAES, we use a depth valuegual
six problems here and call them ZDT1, ZDT2, ZDT3, ZDT4to four and an archive size of 100. We use all population
and ZDT6. All problems have two objective functions. Nonenembers of the archive obtained at the end of 25 000 iterations
of these problems have any constraint. We describe these prigbealculate the performance metrics. For SPEA, we use a
lems in Table I. The table also shows the number of variablggpulation of size 80 and an external population of size 20 (this
their bounds, the Pareto-optimal solutions, and the nature of thel ratio is suggested by the developers of SPEA to maintain
Pareto-optimal front for each problem. an adequate selection pressure for the elite solutions), so that

All approaches are run for a maximum of 25000 functiooverall population size becomes 100. SPEA is also run until
evaluations. We use the single-point crossover and bitwigB 000 function evaluations are done. For SPEA, we use the
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Extreme
£ solution
fz 2 : .
ZPareto—opt:'u'nal £ R _
front Chosen Obtained . '/—Extreme
points solutions 0% solution
fl £
Fig. 3. Distance metri@ . Fig. 4. Diversity metricA.

nondominated solutions of the combined GA and externgin provide some information about the spread in obtained so-
populations at the final generation to calculate the performanggions, we define an different metric to measure the spread in
metrics used in this study. For PAES, SPEA, and binary-codgg|utions obtained by an algorithm directly. The second metric
NSGA-II, we have used 30 bits to code each decision Variablg. measures the extent of Spread achieved among the obtained
solutions. Here, we are interested in getting a set of solutions
that spans the entire Pareto-optimal region. We calculate the
Unlike in single-objective optimization, there are two goals iEuclidean distancé; between consecutive solutions in the ob-
a multiobjective optimization: 1) convergence to the Pareto-ofained nondominated set of solutions. We calculate the average
timal set and 2) maintenance of diversity in solutions of the of these distances. Thereafter, from the obtained set of non-
Pareto-optimal set. These two tasks cannot be measured altgninated solutions, we first calculate #ngremesolutions (in
quately with one performance metric. Many performance mehe objective space) by fitting a curve parallel to that of the true
rics have been suggested [1], [8], [24]. Here, we define two pdPareto-optimal front. Then, we use the following metric to cal-
formance metrics that are more direct in evaluating each of thalate the nonuniformity in the distribution:
above two goals in a solution set obtained by a multiobjective
optimization algorithm. Nt -
The first metricT measures the extent of convergence to a dy +dv+ El |di B d|
known set of Pareto-optimal solutions. Since multiobjective al- A= df+di+(N-1)d (1)
gorithms would be tested on problems having a known set of
Pareto-optimal solutions, the calculation of this metric is postere, the parametets andd; are the Euclidean distances be-
sible. We realize, however, that such a metric cannot be ugeaen the extreme solutions and the boundary solutions of the
for any arbitrary problem. First, we find a set Bf = 500 uni- obtained nondominated set, as depicted in Fig. 4. The figure il-
formly spaced solutions from the true Pareto-optimal front ilustrates all distances mentioned in the above equation. The pa-
the objective space. For each solution obtained with an algameterd is the average of all distancédsi = 1, 2, ..., (N —
rithm, we compute the minimum Euclidean distance of it fror), assuming that there arg solutions on the best nondomi-
H chosen solutions on the Pareto-optimal front. The averagated front. With/V solutions, there aréN — 1) consecutive
of these distances is used as the first meifi¢the conver- distances. The denominator is the value of the numerator for the
gence metric). Fig. 3 shows the calculation procedure of thiase when allV solutions lie on one solution. Itis interesting to
metric. The shaded region is the feasible search region and tin¢e that this is not the worst case spread of solutions possible.
solid curved lines specify the Pareto-optimal solutions. SolMve can have a scenario in which there is a large variandge in
tions with open circles are chosen solutions on the Pareto-oph such scenarios, the metric may be greater than one. Thus, the
timal front for the calculation of the convergence metric and smaximum value of the above metric can be greater than one.
lutions marked with dark circles are solutions obtained by dfowever, a good distribution would make all distandgsqual
algorithm. The smaller the value of this metric, the better the d and would makel; = d; = 0 (with existence of extreme
convergence toward the Pareto-optimal front. When all obtainsdiutions in the nondominated set). Thus, for the most widely
solutions lie exactly orif chosen solutions, this metric takes and uniformly spreadout set of nondominated solutions, the nu-
value of zero. In all simulations performed here, we present theerator ofA would be zero, making the metric to take a value
averag€l and variance of this metric calculated for solution zero. For any other distribution, the value of the metric would be
sets obtained in multiple runs. greater than zero. For two distributions having identical values
Even when all solutions converge to the Pareto-optimal fromf d ; andd;, the metricA takes a higher value with worse distri-
the above convergence metric does not have a value of zero. Bh#ons of solutions within the extreme solutions. Note that the
metric will yield zero only when each obtained solution lies exabove diversity metric can be used on any nondominated set of
actly on each of the chosen solutions. Although this metric aloselutions, including one that is not the Pareto-optimal set. Using

B. Performance Measures
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TABLE I
MEAN (FIRST Rows) AND VARIANCE (SECOND RowsS) OF THE CONVERGENCEMETRIC T
Algorithm SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
NSGA-I1 0.003391 | 0.001931 | 0.015553 | 0.028964 | 0.033482 | 0.072391 | 0.114500 | 0.513053 | 0.296564
Real-coded 0 0] 0.000001| 0.000018] 0.004750] 0.031689] 0.007940] 0.118460] 0.013135
NSGA-II 0.002833 | 0.002571 | 0.017029 | 0.028951 | 0.000894 | 0.000824 | 0.043411 | 3.227636 | 7.806798
Binary-coded | 0.000001 0] 0.000003| 0.000016 0 0] 0.000042| 7.30763] 0.001667
SPEA 0.003403 | 0.125692 | 0.037812 | 0.045617 | 0.001799 | 0.001339 | 0.047517 | 7.340299 | 0.221138
0] 0.000038] 0.000083| 0.00005] 0.000001 0 0.000047| 6.572516] 0.000449
PAES 0.001313 | 0.151263 | 0.030864 | 0.057323 | 0.082085 | 0.126276 | 0.023872 | 0.854816 | 0.085469
0.000003| 0.000905| 0.000431| 0.011989| 0.008679| 0.036877| 0.00001| 0.527238] 0.006664
TABLE Il
MEAN (FIRST ROWS) AND VARIANCE (SECOND ROWS) OF THE DIVERSITY METRIC A
Algorithm SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
NSGA2R 0.477899 | 0.378065 | 0.452150 | 0.411477 | 0.390307 | 0.430776 | 0.738540 | 0.702612 | 0.668025
Real-coded 0.003471| 0.000639( 0.002868{ 0.000992| 0.001876| 0.004721{ 0.019706| 0.064648| 0.009923
NSGA-II 0.449265 | 0.395131 | 0.503721 | 0.442195 | 0.463292 | 0.435112 | 0.575606 | 0.479475 | 0.644477

Binary-coded | 0.002062| 0.001314| 0.004656 [ 0.001498| 0.041622| 0.024607; 0.005078| 0.009841| 0.035042
1.021110 | 0.792352 | 0.972783 | 0.852990 | 0.784525 { 0.755148 | 0.672938 | 0.798463 | 0.849389

SPEA 0.004372] 0.005546] 0.008475| 0.002619 0.004440] 0.004521| 0.003587| 0.014616| 0.002713
PAES 1.063288 | 1.162528 | 1.020007 | 1.079838 | 1.229794 | 1.165942 | 0.789920 | 0.870458 | 1.153052
0.002868] 0.008945 0| 0.013772] 0.004839] 0.007682 0.001653| 0.101399] 0.003916
a triangularization technique or a Voronoi diagram approach [ 49
to calculated;, the above procedure can be extended to estim: 35 %
the spread of solutions in higher dimensions. s %g
4e
k)
C. Discussion of the Results 35k B,
Table Il shows the mean and variance of the convergen 3 % oo
metricT obtained using four algorithms NSGA-II (real-coded) ,%3% 150 @
NSGA-II (binary-coded), SPEA, and PAES. Wk %o
NSGA-II (real coded or binary coded) is able to converg, * Q%ﬁ% .
better in all problems except in ZDT3 and ZDT6, where PAE 15 % -l PAES P e
found better convergence. In all cases with NSGA-II, the var | | %%q%o T T s s as
ance in ten runs is also small, except in ZDT4 with NSGA-I o £1
(binary coded). The fixed archive strategy of PAES allows bett | wsca-1z S,
convergence to be achieved in two out of nine problems. TN °°‘t§° =0 soacoch
Table 11l shows the mean and variance of the diversity metr £.1

A obtained using all three algorithms.
NSGA-II (real or binary coded) performs the best in all nin&ig- 5. NSGA-II finds better spread of solutions than PAES on SCH.
test problems. The worst performance is observed with PAES.

For illustration, we show one of the ten runs of PAES with an ar- ? ' ' NSGAl_H ‘ |

bitrary run of NSGA-II (real-coded) on problem SCH in Fig. 5. 0% .
On most problems, real-coded NSGA-II is able to find a

better spread of solutions than any other algorithm, including -2 | T

binary-coded NSGA-II.
In order to demonstrate the working of these algorithms, . ~4[

we also show typical simulation results of PAES, SPEA, and ' ;M

NSGA-II on the test problems KUR, ZDT2, ZDT4, and ZDT6.

The problem KUR has three discontinuous regions in the el

Pareto-optimal front. Fig. 6 shows all nondominated solutions

obtained after 250 generations with NSGA-II (real-coded). The -10

Pareto-optimal region is also shown in the figure. This figure

demonstrates the abilities of NSGA-II in converging to the true —12_20 19 18 -17
front and in finding diverse solutions in the front. Fig. 7 shows £ 1
the obtained nondominated solutions with SPEA, which is the B

next-best algorithm for this problem (refer to Tables Il and Ill)fig. 6. Nondominated solutions with NSGA-II (real-coded) on KUR.
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Fig. 7. Nondominated solutions with SPEA on KUR. Fig. 9. Nondominated solutions with SPEA on ZDT2.
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Fig. 8. Nondominated solutions with NSGA-II (binary-coded) on ZDT2. £l
Fig. 10. NSGA-II finds better convergence and spread of solutions than PAES

In both aspects of convergence and distribution of solutiorf¥, ZDT4-
NSGA-II performed better than SPEA in this problem. Since
SPEA could not maintain enough nondominated solutions ¢ar the global Pareto-optimal front, a matter that is also been
the final GA population, the overall number of nondominate@bserved in previous single-objective studies [5]. On a similar
solutions is much less compared to that obtained in the firf@n-variable Rastrigin's function [the functiop(x) here],
population of NSGA-II. that study clearly showed that a population of size of about

Next, we show the nondominated solutions on the problet least 500 is needed for single-objective binary-coded GAs
ZDT2in Figs. 8 and 9. This problem has a nonconvex Pareto-dpith tournament selection, single-point crossover and bitwise
timal front. We show the performance of binary-coded NSGA-mutation) to find the global optimum solution in more than
and SPEA on this function. Although the convergence is nbP% of the simulation runs. Since we have used a population of
a difficulty here with both of these algorithms, both real- angize 100, itis not expected that a multiobjective GA would find
binary-coded NSGA-II have found a better spread and mdiRe global Pareto-optimal solution, but NSGA-Il is able to find
solutions in the entire Pareto-optimal region than SPEA (ttfegood spread of solutions even at a local Pareto-optimal front.
next-best algorithm observed for this problem). Since SPEA converges poorly on this problem (see Table i),

The problem ZDT4 has 21or 7.94(10') different local We do not show SPEA results on this figure.
Pareto-optimal fronts in the search space, of which only oneFinally, Fig. 11 shows that SPEA finds a better converged
corresponds to the global Pareto-optimal front. The Euclide&t of nondominated solutions in ZDT6 compared to any other
distance in the decision space between solutions of two cagorithm. However, the distribution in solutions is better with
secutive local Pareto-optimal sets is 0.25. Fig. 10 shows ttiggl-coded NSGA-II.
both real-coded NSGA-Il and PAES get stuck at different )
local Pareto-optimal sets, but the convergence and abill;, Different Parameter Settings
to find a diverse set of solutions are definitely better with In this study, we do not make any serious attempt to find the
NSGA-II. Binary-coded GAs have difficulties in convergingbest parameter setting for NSGA-II. But in this section, we per-
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Fig. 11. Real-coded NSGA-II finds better spread of solutions than SPEA @iy, 12.  Obtained nondominated solutions with NSGA-Il on problem ZDT4.
ZDT6, but SPEA has a better convergence.

TABLE IV These results are much better than PAES and SPEA, as shown

MEAN AND VARIANCE OF THE CONVERGENCE ANDDIVERSITY METRICS in Table Il. To demonstrate the convergence and spread of so-
UP TO500 GENERATIONS lutions, we plot the nondominated solutions of one of the runs
Convergence metric, T gfter 250 ggneratlons in Fig. 12. The figure shovx{s that NSGA-II
BOL KUR SDT3 | ZDTa 7DT6 is able to find solutions on the true Pareto-optimal front with
Mean 0.015882 [ 0.026544 | 0.018510 | 0.090692 | 0.276609 g(x) = 1.0.
Variance | 0.000001 | 0.000017 | 0.000227 | 0.053460 | 0.015843
Diversity metric, A
POL KUR ZDT3 ZDT4 ZDT6 V. ROTATED PROBLEMS
Mean 0.467022 | 0.418889 | 0.688218 | 0.440022 | 0.655896 It has been discussed in an earlier study [3] that interactions
Variance | 0.002186 | 0.000530 | 0.000610 | 0.026729 | 0.003302 among decision variables can introduce another level of dif-

ficulty to any multiobjective optimization algorithm including

form additional experiments to show the effect of a couple &As. In this section, we create one such problem and investi-

different parameter settings on the performance of NSGA-I1.9ate the working of previously three MOEAs on the following
First, we keep all other parameters as before, but increase @fstatic problem:

number of maximum generations to 500 (instead of 250 used minimize £(y)

before). Table IV shows the convergence and diversity metrics . . .

for problems POL, KUR, ZDT3, ZDT4, and ZDT6. Now, we Minimize  f>(y) = g(y) exp(~y1/9(y))

achieve a convergence very close to the true Pareto-optimal frontwhere aly)=1+10(n—1)

and with a much better distribution. The table shows that in all

=i

these difficult problems, the real-coded NSGA-II has converged +Z [y? — 10 cos(4my;)] @
very close to the true optimal front, exceptin ZDT6, which prob- i=2

ably requires a different parameter setting with NSGA-II. Par- and y = Rx

ticularly, the results on ZDT3 and ZDT4 improve with genera- —03<;<03, fori=1,2 ....n.

tion number. -t Ty

The prob|em ZDT4 has a number of local Pareto-optimé{ﬂ EA works with the decision variable vectar but the above
fronts, each Corresponding to particu|ar Va|u@()f). A |arge objective functions are defined in terms of the variable vegtor
change in the decision vector is needed to get out of a loddnich is calculated by transforming the decision variable vector
optimum. Unless mutation or crossover operators are capallgy a fixed rotation matrisk. This way, the objective functions
of creating solutions in the basin of another better attracté¥€ functloqs Of a linear combmau_on of decision varlables: In
the improvement in the convergence toward the true Pareto-@pder to maintain a spread of solutions over the Pareto-optimal
timal front is not possible. We use NSGA-II (real-coded) with &9ion or even converge to any particular solution requires an
smaller distribution index;,,, = 10 for mutation, which has an EA to update all decision variables in a particular fashion. With
effect of creating solutions with more spread than before. Résgeneric search operator, such as the variablewise SBX operator
of the parameter settings are identical as before. The convsed here, this becomes a difficult task for an EA. However,
gence metricl’ and diversity measura on problem ZDT4 at here, we are interested in evaluating the overall behavior of three

the end of 250 generations are as follows: elitist MOEAs.
We use a population size of 100 and run each algorithm until
T =0.029544 o% = 0.002145 500 generations. For SBX, we ugg = 10 and we use),,, =
A =0.498409 o3 = 0.003852. 50 for mutation. To restrict the Pareto-optimal solutions to lie
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Pareto-optimal Front — A case.
NSGA-II o ] Case 1) Choose the solution with better objective function

PAES & ] value.
SPEA O

100

Case 2) Choose the feasible solution.
Case 3) Choose the solution with smaller overall constraint
violation.

. Since in no case constraints and objective function values are

] compared with each other, there is no need of having any penalty

Ba g ] parameter, a matter that makes the proposed constraint-handling

approach useful and attractive.

I ] In the context of multiobjective optimization, the latter two

N cases can be used as they are and the first case can be resolved by

1 ‘ * . using the crowded-comparison operator as before. To maintain

the modularity in the procedures of NSGA-II, we simply modify

the definition ofdominationbetween two solutionsandj.

Fig. 13. Obtained nondominated solutions with NSGA-II, PAES, and SPEA De.ﬁmt,lo.n 1: A solutions IS. said to .Cantr.amed_dommate a

on the rotated problem. solutiony, if any of the following conditions is true.

1) Solutioni is feasible and solutiog is not.

2) Solutions: andj are both infeasible, but solutiarhas a
smaller overall constraint violation.

3) Solutionsi andj are feasible and solutiohdominates
solutionj.

The effect of using this constrained-domination principle

that any feasible solution has a better nondomination rank

N ‘ ’ ' For single objective optimization, we used a simple rule for each
E

g

i

i3]

10 b

[ O

£1

within the prescribed variable bounds, we discourage solutions
with |f1| > 0.3 by adding a fixed large penalty to both objec-
tives. Fig. 13 shows the obtained solutions at the end of 500
generations using NSGA-II, PAES, and SPEA. It is observed
that NSGA-II solutions are closer to the true front compareld
to solutions obtained by PAES and SPEA. The correlated p{% ’ ) : ) .
than any infeasible solution. All feasible solutions are ranked
rameter updates needed to progress toward the Pareto-optimal_ . ) L o
S e ,_according to their nondomination level based on the objective
front makes this kind of problems difficult to solve. NSGA-II's . . ) )

. . . function values. However, among two infeasible solutions, the
elite-preserving operator along with the real-coded CrOSSONE ) ution with a smaller constraint violation has a better rank
and mutation operators is able to find some solutions close to ﬁ]%reover this modification in the nondomination princi Ie'
Pareto-optimal front [withy(y) = 1 resultingfz = exp(— f1)]. k ) . P P

. es not change the computational complexity of NSGA-II.
This example problem demonstrates that one of the known djf-

ficulties (thelinkageproblem [11], [12]) of single-objective op- ugs dr(;sst S;Jg? NSGA-II procedure as described earlier can be

timization algorithm can also cause difficulties in a multiobjec- . L T
. : . The above constrained-domination definition is similar to that
tive problem. However, more systematic studies are needed to

: . . o .. suggested by Fonseca and Fleming [9]. The only difference is
amply address the linkage issue in multiobjective optlmlzat|0|ﬁn. the way domination is defined for the infeasible solutions.

In the above definition, an infeasible solution having a larger

overall constraint-violation are classified as members of a larger

VI. CONSTRAINT HANDLING nondomination level. On the other hand, in [9], infeasible solu-

] ) i tions violating different constraints are classified as members

In the past, the first author and his students implementeq,fthe same nondominated front. Thus, one infeasible solution
penalty-parameterless constraint-handling approach for singlgsiating a constraint marginally will be placed in the same
objective optimization. Those studies [2], [6] have shown hoyongominated level with another solution violating a different

a tournament selection based algorithm can be used to handigstraint to a large extent. This may cause an algorithm to

constraints in a population approach much better than a nUMBer der in the infeasible search region for more generations be-

of other existing constraint-handling approaches. A similar asye reaching the feasible region through constraint boundaries.

proach can be introduced with the above NSGA-II for solvingyoreover, since Fonseca—Fleming’s approach requires domina-

constrained multiobjective optimization problems. tion checks with the constraint-violation values, the proposed
approach of this paper is computationally less expensive and is

A. Proposed Constraint-Handling Approach (Constrained simpler.

NSGA-II)

This constraint-handling method uses the binary tournameBrit Ray-Tai-Seow's Constraint-Handling Approach

selection, where two solutions are picked from the populationRay et al. [17] suggested a more elaborate constraint-han-
and the better solution is chosen. In the presence of constraigiif)g technique, where constraint violations of all constraints
each solution can be either feasible or infeasible. Thus, the@ not simply summed together. Instead, a nondomination
may be at most three situations: 1) both solutions are feasibdbgeck of constraint violations is also made. We give an outline
2) one is feasible and other is not; and 3) both are infeasibt#.this procedure here.
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TABLE V

193

CONSTRAINED TEST PROBLEMS USED IN THIS STUDY

Problem n Variable Objective Constraints
bounds functions
CONSTR | 2 z1 € [0.1,1.0] flx)=z g1(x) =22 +92; > 6
zy € [0,5] fo(x) = (14 m@)/x1 g2(x) = —29 + 921 > 1
SRN 20 3 €[=20,200 | AAx) = (21 - 22+ (22 - 1)2 +2 g1(x) =2 + 23 <225
i=1,2 fa(x) = 9z — (22 ~ 1)? go(x) =x1 — 332 < —10
TNK 2 z; € [0,7] filx) =2, a1 (x) = -l - 22 + 1 +
0.1cos(16 arctan{z;/xs)) <0
i=1,2 fa(x) = z2 g2(x) = (1 — 0.5)% + (29 - 0.5)2 <05
WATER | 3| 001 <xy €045 ¢ fi(x) = 106780.37(zo +x3) +61704.67 | g1(x) = 0.00139/(x172) + 4.9423 —
0.08 <1
0.01 <xzs <0.10 | fa(x) = 3000z, g2(x) = 0.000306/(z122) + 1.082a5 —
0.0986 < 1
0.0l <23 <010 | fa(x) = (305700)2289z-/(0.06 x | g3{x) = 12.307/(x172) + 49408.2dx5 +
2289)0-65 4051.02 < 50000
fa(x) = (250)2289exp(—39.75x> + | ga{x) = 2.098/(z1x2) + 8046.33z3 —
9.9z3 + 2.74) 696.71 < 16000
f;(x) = 25(139/(1’11‘2) + 4940”03 - 80) g;(X) = 2138/(L].1_7) - H88339L5 -
705.04 < 10000
ge(x) = 0417(x1as) + 1721.20604 —
136.54 < 2000
gr(x) = 0.164/(xyxy) + 631.1323 —
54.48 < 550

All objective functions are to be minimized.

Three different nondominated rankings of the population apeoblems, particularly from the point of view of computational
first performed. The first ranking is performed usihfjobjec- burden associated with the method.
tive function values and the resulting ranking is storeddi- In the following section, we choose a set of four prob-
mensional vectoR,,,;. The second rankin®..,, is performed lems and compare the simple constrained NSGA-II with the
using only the constraint violation values of all ¢f them) con- Ray-Tai-Seow’s method.
straints and no objective function information is used. Thus,
constraint violation of each constraint is used a criterion afg Simulation Results

a nondomination classification of the population is performed \we choose four constrained test problems (see Table V) that
with the constraint violation values. Notice that for a feasiblgave been used in earlier studies. In the first problem, a part of
solution all constraint violations are zero. Thus, all feasible sghe unconstrained Pareto-optimal region is not feasible. Thus,
lutions have a rank 1 if.,. The third ranking is performed the resulting constrained Pareto-optimal region is a concatena-
on a combination of objective functions and constraint—violationibn of the first constraint boundary and some part of the uncon-
values [a total of M + J) values]. This produces the rankingstrained Pareto-optimal region. The second problem SRN was
R.om. Although objective function values and constraint violaused in the original study of NSGA [20]. Here, the constrained
tions are used together, one nice aspect of this algorithm is thefreto-optimal set is a subset of the unconstrained Pareto-op-
there is no need for any penalty parameter. In the dominatigmal set. The third problem TNK was suggested by Taretka
check, criteria are compared individually, thereby eliminatingl. [21] and has a discontinuous Pareto-optimal region, falling
the need of any penalty parameter. Once these rankings are aygfirely on the first constraint boundary. In the next section,
all feasiblesolutions having the best rank R..., are chosen we show the constrained Pareto-optimal region for each of the
for the new population. If more population slots are availablabove problems. The fourth problem WATER is a five-objec-
they are created from the remaining solutions systematically. Bye and seven-constraint problem, attempted to solve in [17].
giving importance to the ranking i®.; in the selection op- With five objectives, it is difficult to discuss the effect of the
erator and by giving importance to the rankingf., in the constraints on the unconstrained Pareto-optimal region. In the
crossover operator, the investigators laid out a systematic muitext section, we show a(lg) or ten pairwise plots of obtained
objective GA, which also includes a niche-preserving operat@iondominated solutions. We apply real-coded NSGA-II here.
For details, readers may refer to [17]. Although the investiga- In all problems, we use a population size of 100, distribu-
tors did not compare their algorithm with any other methodion indexes for real-coded crossover and mutation operators
they showed the working of this constraint-handling methasf 20 and 100, respectively, and run NSGA-II (real coded)
on a number of engineering design problems. However, sineéh the proposed constraint-handling technique and with
nondominated sorting of three different sets of criteria are rRay—Tai—-Seow’s constraint-handling algorithm [17] for a
quired and the algorithm introduces many different operatorsaximum of 500 generations. We choose this rather large
it remains to be investigated how it performs on more compleximber of generations to investigate if the spread in solutions



194 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002

=200

=250 b

_300 1 i [ | 1
0 50 100 150 200 250 300

£1

Fig. 14. Obtained nondominated solutions with NSGA-II on the constraingly 16,  Obtained nondominated solutions with NSGA-II on the constrained
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10

150 T T T T T

100 b

50

2 -50
“ Nl
4 S -100
~150
2 -200
~250 1
_300 { ! ] i 1
0 50 100 150 200 250 300
£1

Fig. 15. Obtained nondominated solutions with Ray-Tai-Seow’s algorithm on

the constrained problem CONSTR. Fig.17. Obtained nondominated solutions with Ray—Tai—Seow’s algorithm on
the constrained problem SRN.

can be maintained for a large number of generations. However,
in each case, we obtain a reasonably good spread of solution$1ag figure shows how NSGA-II can bring a random population
early as 200 generations. Crossover and mutation probabilittesthe Pareto-optimal front. Ray—Tai—Seow’s algorithm is also
are the same as before. able to come close to the front on this test problem (Fig. 17).
Fig. 14 shows the obtained set of 100 nondominated solu-Figs. 18 and 19 show the feasible objective space and
tions after 500 generations using NSGA-Il. The figure showke obtained nondominated solutions with NSGA-Il and
that NSGA-II is able to uniformly maintain solutions in bothRay-Tai—Seow’s algorithm. Here, the Pareto-optimal region
Pareto-optimal region. It is important to note that in order s discontinuous and NSGA-II does not have any difficulty in
maintain a spread of solutions on the constraint boundary, tiiveding a wide spread of solutions over the true Pareto-optimal
solutions must have to be modified in a particular manner diregion. Although Ray-Tai—Seow’s algorithm found a number
tated by the constraint function. This becomes a difficult task of solutions on the Pareto-optimal front, there exist many
any search operator. Fig. 15 shows the obtained solutions usimigasible solutions even after 500 generations. In order to
Ray-Tai-Seow’s algorithm after 500 generations. It is clear thdemonstrate the working of Fonseca—Fleming’s constraint-han-
NSGA-II performs better than Ray—Tai—Seow’s algorithm idling strategy, we implement it with NSGA-Il and apply on
terms of converging to the true Pareto-optimal front and alJdNK. Fig. 20 shows 100 population members at the end of
in terms of maintaining a diverse population of nondominatesDO generations and with identical parameter setting as used in
solutions. Fig. 18. Both these figures demonstrate that the proposed and
Next, we consider the test problem SRN. Fig. 16 shows tl®nseca—Fleming’s constraint-handling strategies work well
nondominated solutions after 500 generations using NSGA-Nith NSGA-II.
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Fig. 18. Obtained nondominated solutions with NSGA-II on the constrained . ) ) ) )
problem TNK. Fig. 20. Obtained nondominated solutions with Fonseca—Fleming’s

constraint-handling strategy with NSGA-II on the constrained problem TNK.

1.4 T
plot is obtained using NSGA-II. In order to compare this plot
with a similar plot using Ray—Tai—Seow’s approach, we look
for the plot in the third row and first column. For this figure, the
vertical axis is plotted ag; and the horizontal axis is plotted

_ as f1. To get a better comparison between these two plots, we

1.2

1

~, 08 observe Ray-Tai—-Seow’s plot as it is, but turn the padei®0
H 06 — the clockwise direction for NSGA-II results. This would make
the labeling and ranges of the axes same in both cases.
0.4 7 We observe that NSGA-II plots have better formed patterns
, | than in Ray-Tai—-Seow’s plots. For example, figurfsfs,
02 fi-f4, and f3-f4 interactions are very clear from NSGA-II
0 results. Although similar patterns exist in the results obtained
0 02 04 06 08 1 12 14 using Ray—Tai—-Seow’s algorithm, the convergence to the true
£ 1 fronts is not adequate.
Fig.19. Obtained nondominated solutions with Ray—Tai-Seow’s algorithm on VIl. CONCLUSION

the constrained problem TNK. . .
We have proposed a computationally fast and elitist MOEA

Ray et al. [17] have used the problem WATER in theirbased on a nondominated sorting approach. On nine different

study. They normalized the objective functions in the followin ifficult test problems borrowed_ from the literature, the pro-
manner: osed NSGA-II was able to maintain a better spread of solu-

tions and converge better in the obtained nondominated front
f1/8(10%),  fo/1500, f3/3(10%), f./6(10°), f5/8000. compared to two other elitist MOEAs—PAES and SPEA. How-

. . L . . ever, one problem, PAES, was able to converge closer to the true
Since there are five objective functions in the problem WATER 5 e16-optimal front. PAES maintains diversity among solutions

we observe the range of the normalized objective functiqf}, controlling crowding of solutions in a deterministic and pre-
values of the obtained nondominated solutions. Table VI ShO\élﬁeCiﬁed number of equal-sized cells in the search space. In
the comparison with Ray-Tai-Seow's algorithm. In mMOshat problem, it is suspected that such a deterministic crowding
objective functions, NSGA-II has found a better spread @pupled with the effect of mutation-based approach has been
solutions than Ray—Tai-Seow’s approach. In order to show thgneficial in converging near the true front compared to the dy-
pairWise interaCtionS' among these five normalized ObjeCtiY%miC and parameteﬂess Crowding approach used in NSGA-II
functions, we plot al(;) or ten interactions in Fig. 21 for both and SPEA. However, the diversity preserving mechanism used
algorithms. NSGA-II results are shown in the upper diagong| NSGA-II is found to be the best among the three approaches
portion of the figure and the Ray—Tai—Seow’s results are showtudied here.

in the lower diagonal portion. The axes of any plot can be On a problem having strong parameter interactions, NSGA-I|
obtained by looking at the corresponding diagonal boxes ahds been able to come closer to the true front than the other
their ranges. For example, the plot at the first row and thittvo approaches, but the important matter is that all three
column has its vertical axis af and horizontal axis ags. approaches faced difficulties in solving this so-called highly
Since this plot belongs in the upper side of the diagonal, thepistatic problem. Although this has been a matter of ongoing
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TABLE VI
LOWER AND UPPERBOUNDS OF THEOBJECTIVE FUNCTION VALUES OBSERVED IN THE OBTAINED NONDOMINATED SOLUTIONS
Algorithm f1 f2 f3 f1 15
NSGA-II | 0.798 — 0.920 | 0.027 - 0.900 | 0.095 - 0.951 | 0.031 - 1.110 | 0.001 - 3.124
Ray-Tai-Seow | 0.810 - 0.956 | 0.046 — 0.834 | 0.967 — 0.934 | 0.036 — 1.561 | 0.211 — 3.116
®, 2
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Fig. 21. Upper diagonal plots are for NSGA-II and lower diagonal plots are for Ray—Tai—Seow's algorithm. Cémparplot (Ray—Tai—Seow's algorithm
with i > j) with (j, ¢) plot (NSGA-II). Label and ranges used for each axis are shown in the diagonal boxes.

research in single-objective EA studies, this paper shows
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