
Journal of Global Optimization 11: 341–359, 1997. 341
c
 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous
Spaces

RAINER STORN
Siemens AG, ZFE T SN2, Otto-Hahn Ring 6, D-81739 Muenchen, Germany.
(e-mail:rainer.storn@mchp.siemens.de)

KENNETH PRICE
836 Owl Circle, Vacaville, CA 95687, U.S.A. (email: kprice@solano.community.net)

(Received: 20 March 1996; accepted: 19 November 1996)

Abstract. A new heuristic approach for minimizing possibly nonlinear and non-differentiable con-
tinuous space functions is presented. By means of an extensive testbed it is demonstrated that the
new method converges faster and with more certainty than many other acclaimed global optimization
methods. The new method requires few control variables, is robust, easy to use, and lends itself very
well to parallel computation.

Key words: Stochastic optimization, nonlinear optimization, global optimization, genetic algorithm,
evolution strategy.

1. Introduction

Problems which involve global optimization over continuous spaces are ubiqui-
tous throughout the scientific community. In general, the task is to optimize certain
properties of a system by pertinently choosing the system parameters. For con-
venience, a system’s parameters are usually represented as a vector. The standard
approach to an optimization problem begins by designing an objective function
that can model the problem’s objectives while incorporating any constraints. Espe-
cially in the circuit design community, methods are in use which do not need an
objective function but operate with so-called regions of acceptability: Brayton et
al. (1981), Lueder (1990), Storn (1995). Although these methods can make for-
mulating a problem simpler, they are usually inferior to techniques which make
use of an objective function. Consequently, we will only concern ourselves with
optimization methods that use an objective function. In most cases, the objective
function defines the optimization problem as a minimization task. To this end, the
following investigation is further restricted to minimization problems. For such
problems, the objective function is more accurately called a “cost” function.

When the cost function is nonlinear and non-differentiable, direct search ap-
proaches are the methods of choice. The best known of these are the algorithms

FIRSTPROOF; PIPS No.: 136368 MATHKAP
jogo386.tex; 20/11/1997; 15:00; v.6; p.1



342 RAINER STORN AND KENNETH PRICE

by Nelder and Mead: Bunday et al. (1987), by Hooke and Jeeves: Bunday et al.
(1987), genetic algorithms (GAs): Goldberg (1989), and evolution strategies (ESs):
Rechenberg (1973), Schwefel (1995). Central to every direct search method is a
strategy that generates variations of the parameter vectors. Once a variation is gen-
erated, a decision must then be made whether or not to accept the newly derived
parameters. Most standard direct search methods use the greedy criterion to make
this decision. Under the greedy criterion, a new parameter vector is accepted if and
only if it reduces the value of the cost function. Although the greedy decision pro-
cess converges fairly fast, it runs the risk of becoming trapped in a local minimum.
Inherently parallel search techniques like genetic algorithms and evolution strate-
gies have some built-in safeguards to forestall misconvergence. By running several
vectors simultaneously, superior parameter configurations can help other vectors
escape local minima. Another method which can extricate a parameter vector from
a local minimum is Simulated Annealing: Ingber (1992), Ingber (1993), Press et
al. (1992). Annealing relaxes the greedy criterion by occasionally permitting an
uphill move. Such moves potentially allow a parameter vector to climb out of a
local minimum. As the number of iterations increases, the probability of accepting
a large uphill move decreases. In the long run, this leads to the greedy criterion.
While all direct search methods lend themselves to annealing, it has primarily been
used just for the Random Walk, which itself is the simplest case of an evolutionary
algorithm: Rechenberg (1973). Nevertheless, attempts have been made to anneal
other direct searches like the method of Nelder and Mead: Press et al. (1992) and
genetic algorithms: Ingber (1993), Price (1994). Users generally demand that a
practical minimization technique should fulfill five requirements:

(1) Ability to handle non-differentiable, nonlinear and multimodal cost functions.

(2) Parallelizability to cope with computation intensive cost functions.

(3) Ease of use, i.e. few control variables to steer the minimization. These variables
should also be robust and easy to choose.

(4) Good convergence properties, i.e. consistent convergence to the global mini-
mum in consecutive independent trials.

As explained in the following the novel minimization method Differential Evolu-
tion (DE) was designed to fulfill all of the above requirements.

To fulfill requirement (1) DE was designed to be a stochastic direct search
method. Direct search methods also have the advantage of being easily applied
to experimental minimization where the cost value is derived from a physical
experiment rather than a computer simulation. Physical experiments were indeed
the motivation for the development of ESs by Rechenberg et al.

Requirement (2) is important for computationally demanding optimizations
where, for example, one evaluation of the cost function might take from minutes to
hours, as is often the case in integrated circuit design or finite element simulation.
In order to obtain usable results in a reasonable amount of time, the only viable
approach is to resort to a parallel computer or a network of computers. DE fulfills

jogo386.tex; 20/11/1997; 15:00; v.6; p.2



DIFFERENTIAL EVOLUTION 343

requirement (2) by using a vector population where the stochastic perturbation of
the population vectors can be done independently.

In order to satisfy requirement (3) it is advantageous if the minimization method
is self-organizing so that very little input is required from the user. The method
of Nelder and Mead: Bunday et al. (1987), is a good example of a self-organizing
minimizer. If the cost function at hand has D parameters Nelder and Mead’s
method uses a polyhedron with D+1 vertices to define the current search space.
Each vertex is represented by a D-dimensional parameter vector which samples
the cost function. New parameter vectors are generated by so-called reflections
of the vectors with highest cost and contractions around low cost vectors. The
new vectors replace their predecessors if they correspond to a function value
with reduced cost compared to their predecessors. This strategy allows the search
space, i.e. the polyhedron, to expand and contract without special control variable
settings by the user. Unfortunately, Nelder & Mead’s method is basically a local
minimization method, which, as our experiments suggest, is not powerful enough
for global minimization tasks, even if the concept of annealing is introduced. Yet
DE borrows the idea from Nelder & Mead of employing information from within
the vector population to alter the search space. DE’s self-organizing scheme takes
the difference vector of two randomly chosen population vectors to perturb an
existing vector. The perturbation is done for every population vector. This crucial
idea is in contrast to the method used by traditional ESs in which predetermined
probability distribution functions determine vector perturbations.

Last but not least, the good convergence properties demanded in requirement
(4) are mandatory for a good minimization algorithm. Although many approaches
exist to theoretically describe the convergence properties of a global minimization
method, only extensive testing under various conditions can show whether a mini-
mization method can fulfill its promises. DE scores very well in this regard as will
be explained in detail in Section 3.

2. Differential Evolution

Differential Evolution (DE) is a parallel direct search method which utilizes NP
D-dimensional parameter vectors

xi;G; i = 1; 2; . . . ; NP (1)

as a population for each generation G. NP does not change during the minimization
process. The initial vector populationis chosen randomly and should cover the entire
parameter space. As a rule, we will assume a uniform probability distribution for
all random decisions unless otherwise stated. In case a preliminary solution is
available, the initial population might be generated by adding normally distributed
random deviations to the nominal solution xnom;0. DE generates new parameter
vectors by adding the weighted difference between two population vectors to a
third vector. Let this operation be called mutation. The mutated vector’s parameters

jogo386.tex; 20/11/1997; 15:00; v.6; p.3



344 RAINER STORN AND KENNETH PRICE

Figure 1. An example of a two-dimensional cost function showing its contour lines and the
process for generating vi;G+1.

are then mixed with the parameters of another predetermined vector, the target
vector, to yield the so-called trial vector. Parameter mixing is often referred to as
“crossover” in the ES-community and will be explained later in more detail. If the
trial vector yields a lower cost function value than the target vector, the trial vector
replaces the target vector in the following generation. This last operation is called
selection. Each population vector has to serve once as the target vector so that NP
competitions take place in one generation.

More specifically DE’s basic strategy can be described as follows:

Mutation

For each target vector xi;G; i = 1; 2; 3; . . . ; NP, a mutant vector is generated
according to

vi;G+1 = xr1;G + F � (xr2;G � xr3;G) (2)

with random indexes r1; r2; r3 2 f1; 2; . . . ;NPg, integer, mutually different and
F > 0. The randomly chosen integers r1, r2 and r3 are also chosen to be different
from the running index i, so that NP must be greater or equal to four to allow for this
condition. F is a real and constant factor 2 [0, 2] which controls the amplification
of the differential variation (xr2;G � xr3;G). Figure 1 shows a two-dimensional
example that illustrates the different vectors which play a part in the generation of
vi;G+1.

Crossover

In order to increase the diversity of the perturbed parameter vectors, crossover is
introduced. To this end, the trial vector:

ui;G+1 = (u1i;G+1; u2i;G+1; . . . ; uDi;G+1) (3)

jogo386.tex; 20/11/1997; 15:00; v.6; p.4



DIFFERENTIAL EVOLUTION 345

Figure 2. Illustration of the crossover process for D = 7 parameters.

is formed, where

uji;G+1 =

�
vji;G+1 if (randb(j) � CR) or j = rnbr(i)

xji;G if (randb(j) > CR) and j 6= rnbr(i)
;

j = 1; 2; . . . ;D: (4)

In (4), randb(j) is the jth evaluation of a uniform random number generator with
outcome 2 [0; 1]. CR is the crossover constant 2 [0; 1] which has to be determined
by the user. rnbr(i) is a randomly chosen index 2 1; 2; :::;D which ensures that
ui;G+1 gets at least one parameter from vi;G+1. Figure 2 gives an example of the
crossover mechanism for 7-dimensional vectors.

Selection

To decide whether or not it should become a member of generation G+ 1, the trial
vector ui;G+1 is compared to the target vector xi;G using the greedy criterion. If
vector ui;G+1 yields a smaller cost function value than xi;G, then xi;G+1 is set to
ui;G+1; otherwise, the old value xi;G is retained.

Pseudocode

The simplicity of DE is best explained via some C-style pseudocode which is given
in Figure 3.

Other variants of DE

The above scheme is not the only variant of DE which has proven to be useful. In
order to classify the different variants, the notation:

DE=x=y=z

is introduced where

jogo386.tex; 20/11/1997; 15:00; v.6; p.5



346 RAINER STORN AND KENNETH PRICE

Figure 3. The DE search engine in 19 lines of C-style pseudocode.

x specifies the vector to be mutated which currently can be “rand” (a randomly
chosen population vector) or “best” (the vector of lowest cost from the current
population).

y is the number of difference vectors used.
z denotes the crossover scheme. The current variant is “bin” (Crossover due to

independent binomial experiments as explained in Section 2)
Using this notation, the basic DE-strategy described in the previous chapter can
be written as: DE/rand/1/bin. This is the DE-variant we used for all performance
comparisons later on. Nevertheless, one highly beneficial method that deserves
special mention is the method DE/best/2/bin: Price (1996), where

vi;G+1 = xbest;G + F � (xr1;G + xr2;G � xr3;G � xr4;G): (5)

jogo386.tex; 20/11/1997; 15:00; v.6; p.6



DIFFERENTIAL EVOLUTION 347

The usage of two difference vectors seems to improve the diversity of the population
if the number of population vectors NP is high enough.

3. Comparison with Other Minimization Methods

DE has already participated in the First International IEEE Competition on Evo-
lutionary Optimization, the 1st ICEO: Price, K. and Storn, R. (1996). Among
conference entries, DE proved to be the fastest evolutionary algorithm, although it
did place third in speed behind two deterministic methods of limited application.
Encouraged by these results, we looked for more minimization methods which
claim to work effectively on real functions. The number of different minimization
methods published is enormous: Schwefel (1995), so we confined ourselves to the
most prominent ones.

3.1. ANNEALING METHODS

Two annealing methods were chosen to compete with DE, the Annealed Nelder and
Mead strategy (ANM): Press (1992), and Adaptive Simulated Annealing (ASA):
Ingber (1993). We used readily available source code to test both annealing algo-
rithms on a testbed which we think is challenging for global optimization methods.

The first method, ANM, is appealing because of its adaptive scheme for gener-
ating random parameter deviations. When the annealing part is switched off, a fast
converging direct search method remains which is especially useful in cases where
local minimization suffices. The basic control variables in ANM are T, the starting
temperature, TF, the temperature reduction factor and NV, the number of random
variations at a given temperature level.

The second method, ASA, claims to converge very quickly and to outperform
GAs on the De Jong test suite: Ingber (1992). Although ASA provides more
than a dozen control variables, it turned out that just two of them, TEMPERA-
TURE RATIO SCALE (TRS) and TEMPERATURE ANNEAL SCALE (TAS),
had significant impact on the minimization process.

Testbed #1

Our function testbed contains the De Jong test functions in a slightly modified
fashion plus some additional functions which exhibit further distinctive difficulties
for a global minimization algorithm. For all functions an initial parameter range,
IPR, and a value to reach, VTR, were defined. At the beginning of the optimization
the initial parameter values are drawn randomly from the IPR. If a minimizer gets
below the VTR, the problem is assumed to be solved.
(1) First De Jong function (sphere)

f1(x) =
3X

j=1

x
2
j ; IPR:xj 2 [�5:12; 5:12] (6)

jogo386.tex; 20/11/1997; 15:00; v.6; p.7



348 RAINER STORN AND KENNETH PRICE

f1(x) is considered to be a very simple task for every serious minimization
method. The global minimum is f1(0) = 0 and the VTR was set to 1.e�6.

(2) Second De Jong function (Rosenbrock’s saddle)

f2(x) = 100 � (x2
1 � x2)

2 + (1 � x1)
2; IPR:xj 2 [�2:048; 2:048] (7)

Although f2(x) has just two parameters, it has the reputation of being a difficult
minimization problem. The global minimum is f2(1)=0 and VTR=1.e�6.

(3) Modified third De Jong function (step)

f3(x) =

(
30:+

P5
j=1bxjc 8xj 2 IPRQ

(xj 62IPR)^(xj<0) 30 � sgn(�xj � 5:12) ;

IPR:xj 2 [�5:12; 5:12] (8)

The global minimum is f3(�5 � ") = 0 where " 2 [0,0.12]. Again, the
VTR was chosen to be 1.e�6.The step function exhibits many plateaus which
pose a considerable problem for many minimization algorithms. The original
step function does not contain the product of signum functions which causes
the minimum to occur at minus infinity. In order to define a unique global
minimum, however, the signum functions were included.

(4) Modified fourth De Jong function (quartic)

f4(x) =
30X
j=1

(j � x4
j + �); IPR:xj 2 [�1:28; 1:28] (9)

This function is designed to test the behavior of a minimization algorithm in
the presence of noise. In the original De Jong function, � is a random variable
produced by Gaussian noise having the distribution N(0; 1). According to
Ingber (1992), this function appears to be flawed as no definite global minimum
exists. In response to the problem, we followed the suggestion given in Ingber
(1992) and chose � to be a random variable with uniform distribution and
bounded by [0,1). In contrast to the original version of De Jong’s quartic
function, we have also included � inside the summation instead of just adding
� to the summation result. This change makes f4(x) more difficult to minimize.
The functional minimum is f4(0) � 30E[�] = 15 = VTR, where E[�] is the
expectation of �.

(5) Fifth De Jong function (Shekel’s Foxholes)

f5(x) =
1

0:002 +
24X
i=0

1

i+
2X

j=1

(xj � aij)
6

;

IPR: xj 2 [�65:536; 65:536] (10)

with ai1 = f�32;�16; 0; 16; 32g for i = 0; 1; 2; 3; 4 and ai1 = aimod5;1 as
well as ai2 = f�32;�16; 0; 16; 32g for i = 0; 5; 10; 15; 20 and ai2 = ai+k;2,
k = 1; 2; 3; 4

jogo386.tex; 20/11/1997; 15:00; v.6; p.8



DIFFERENTIAL EVOLUTION 349

The global minimum for this function is f6(�32;�32) �= 0:998004, the VTR
was defined to be 0.998005.

(6) Corana’s parabola: Ingber (1993), Corana et al. (1987).

f6(x) =
4X

j=1

(
0:15 � (zj � 0:05 � sgn(zj))2 � dj if jxj � zjj < 0:05
dj � x2

j otherwise
;

IPR:xj 2 [�1000; 1000] (11)
with

zj =

����� xj0:2

����+ 0:49999
�
� sgn(xj) � 0:2

and
dj = f1; 1000; 10; 100g

f6(x) defines a paraboloid whose axes are parallel to the coordinate axes. It
is riddled with a set of holes that increase in depth the closer one approaches
the origin. Any minimization algorithm that goes strictly downhill will almost
always be captured by the holes. The global minimum here is f6(x) = 0, with
jxj j < 0:05, j = 1; 2; 3; 4. The VTR was defined to be 1.e�6.

(7) Griewangk’s function: Griewangk (1981).

f7(x) =
10X
j=1

x
2
j

4000
�

10Y
j=1

cos
�
xjp
j

�
+ 1; IPR:xj 2 [�400; 400] (12)

Like test function f6(x), f7(x) has many local minima so that it is very difficult
to find the true minimum f7(0) = 0. The VTR was defined to be 1.e�6.

(8) Zimmermann’s problem: Zimmermann (1990).
Let

h1(x) = 9 � x1 � x2; IPR: xj 2 [0; 100]; j = 1; 2 (13)
h2(x) = (x1 � 3)2 + (x2 � 2)2 � 16; (14)
h3(x) = x1 � x2 � 14 (15)

and
p(�) = 100 � (1 + �): (16)

Then
f8(x) = maxfh1(x); p(h2(x)) � sgn(h2(x)); p(h3(x)) � sgn(h3(x));

p(�x1) � sgn(�x1); p(�x2) � sgn(�x2)g: (17)
Finding the global minimum f8(7; 2) = 0 poses a special problem, because
the minimum is located at the corner of the constrained region defined by
(x1 � 3)2 + (x2 � 2)2 � 16 and x1 � x2 � 14. The VTR was defined to be
1.e�6.

(9) Polynomial fitting problem by Storn and Price.
Let

h4(x; z) =
2kX
j=0

xj+1 � zj; k integer and > 0; (18)

have the coefficients xj+1 such that
h4(x; z) 2 [�1; 1] for z 2 [�1; 1] (19)

jogo386.tex; 20/11/1997; 15:00; v.6; p.9



350 RAINER STORN AND KENNETH PRICE

and
h4(x; z) � T2k(1:2) for z = �1:2 (20)

with T2k(z) being a Chebychev Polynomial of degree 2k. The Chebychev Poly-
nomials are defined recursively according to the difference equationTn+1(z) =

2z � Tn(z)� Tn�1(z), n integer and > 0, with the initial conditions T0(z) = 1
and T1(z) = z. The solution to the polynomial fitting problem is, of course,
h4(x; z) = T2k(z), a polynomial which oscillates between �1 and 1 when
its argument z is between �1 and 1. Outside this “tube” the polynomial rises
steeply in direction of high positive ordinate values. The polynomial fitting
problem has its roots in electronic filter design: Rabiner and Gold (1975),
and challenges an optimization procedure by forcing it to find parameter val-
ues with grossly different magnitudes, something very common in technical
systems. In our test suite we employed

T8(z) = 1 � 32z2 + 160z4 � 256z6 + 128z8 (21)
with

T8(1:2) �= 72:661 = � (22)
as well as

T16(z) = 1 � 128z2 + 2688z4 � 21504z6 + 84480z8 �
�180224z10 + 212992z12 � 131072z14 + 32768z16 (23)

with
T16(1:2) �= 10558:145 = � (24)

and used the weighted sum of squared errors in order to transform the above
constraint satisfaction problem into a cost function

f9(x) =
NX
n=0

sgn

�
�1 + h4

�
x;

N

n

��
�
�
�1 + h4

�
x;

N

n

��2

+
NX
n=0

sgn

�
�1� h4

�
x;

N

n

��
�
�
�1 � h4

�
x;

N

n

��2

(25)

+sgn(�� h4(x; 1:2)) � (�� h4(x; 1:2))
2

+sgn(�� h4(x;�1:2)) � (�� h4(x;�1:2))2
:

The initial conditions for the T8 problem (k = 4) were N = 60 and IPR
[�100; 100], for the T16 problem (k = 8) they were N = 100 and IPR
[�1000; 1000]. The VTR was defined to be 1.e�6.

Test Results

We experimented with each of the four algorithms to find the control settings which
provided fastest and smoothest convergence. Table 1 contains our choice of control
variable settings for each minimization algorithm and each test function along with
the averaged number of function evaluations (nfe) which were required to find the
global minimum.

jogo386.tex; 20/11/1997; 15:00; v.6; p.10



DIFFERENTIAL EVOLUTION 351

Table 1. Averaged number of function evaluations (nfe) required for finding the global minimum.
A hyphen indicates misconvergence and n.a. parentheses indicate that not all test runs were able
to locate the global minimum.

fi(x) ANM ASA DE/rand/1/bin
i T TF NV nfe TRS TAS nfe NP F CR nfe

1 0 n.a. 1 95 10�5 10 397 5 0.9 0.1 406
2 0 n.a. 1 106 10�5 10000 11,275 10 0.9 0.9 654
3 300 0.99 20 90,258 10�7 100 354 10 0.9 0 849
4 300 0.98 30 - 10�5 100 4,812 10 0.9 0 859
5 3000 0.995 50 - 10�5 100 1,379 15 0.9 0 695
6 5�106 0.995 100 - 10�5 100 3,581 10 0.5 0 841
7 10 0.99 50 - 10�5 0.1 - 25 0.5 0.2 12,752
8 5 0.95 5 2,116 10�6 300 11,864 10 0.9 0.9 925

9(k = 4) 100 0.95 40 (391,373) 10�6 1000 - 60 0.6 1 15,771
9(k = 8) 5�104 0.995 150 - 10�8 700 - 100 0.6 1 93,650

If the corresponding field for the number of function evaluations contains a
hyphen, the global minimum could not be found. If the number is enclosed in
parentheses, not all of the test runs provided the global minimum. We executed 20
test runs with randomly chosen initial parameter vectors for each test function and
each minimization.

The results in Table 1 clearly show that DE was the only strategy that could find
all global minima of the test suite. Except for the test functions 1, 2 and 3 DE found
the minimum in the least number of function evaluations. It is also noteworthy that
for f9(x) DE found the global minimum even though the final parameters lie well
outside the IPR.

3.2. EVOLUTIONARY ALGORITHMS

Evolution Strategies (ESs) as well as Genetic Algorithms (GAs) belong to the
broad class of evolutionary algorithms: Schwefel (1995), which have achieved
impressive results in continuous parameter optimization problems: Voigt (1995).
Two particularly effective approaches are the Breeder Genetic Algorithm (BGA):
Muehlenbein (1993) and the Evolutionary Algorithm with Soft Genetic Operators
(EASY): Voigt (1995). Both algorithms have performed well on a testbed with
highly multimodal test functions of medium to high dimensionality. Unlike the
annealing algorithms, source code was not available so we had to rely on the
reported results and accept the settings of the testbed. In several instances, the
VTRs seem not to be challenging enough to test the local optimization capabilities
of the minimizers. As many symmetries are present, the main difficulty of these
test functions lies in their dimensionality.

jogo386.tex; 20/11/1997; 15:00; v.6; p.11



352 RAINER STORN AND KENNETH PRICE

Testbed #2

(1) Hyper-Ellipsoid

f11(x) =
DX
j=1

j
2 � x2

j ; IPR:xj 2 [�1; 1] (26)

The global minimum is f11(0) = 0 and the VTR was set to 1.e�10.
(2) Katsuura’s Function

f12(x) =
DY
j=1

0
@1 + j �

�X
k=0

����2k � xj � nint(2k � xj)
���� � 2�k

1
A ;

IPR: xj 2 [�1000; 1000] (27)
Here nint() denotes the function which finds the nearest integer and the constant
� is set to 32. The global minimum is f12(0) = 1 and the VTR was set to 1.05.

(3) Rastrigin’s Function

f13(x)=D � 10+
DX
j=1

(x2
j�10 � cos(2� � xj)); IPR:xj2 [�600; 600] (28)

The global minimum is f13(0) = 0 and the VTR was set to 0.9.
(4) Griewangk’s function

f14(x) =
DX
j=1

x
2
j

4000
�

DY
j=1

cos
�
xjp
j

�
+ 1; IPR: xj 2 [�600; 600] (29)

Eq. (29) is a generalization of (12) with the same global minimum f14(0) = 0.
The VTR here was defined to be 1.e�3.

(5) Ackley’s function

f15(x) = �20 � exp

0
B@�0:02 �

vuuutD�1 �
DX
j=1

x2
j

1
CA

� exp

0
@D�1 �

DX
j=1

cos(2� � xj)
1
A+ 20 + exp(1);

IPR:xj 2 [�30; 30] (30)
The global minimum is f15(0) = 0 and the VTR is set to 1.e�3.

As already reported in Price (1996), DE/best/2/bin performs very well on this
testbed. The results for BGA, EASY and DE/rand/bin/1 are summarized in Table 2.

Test Results

DE performed favorably against both BGA and EASY (EASY-1: Voigt (1992), to
be more precise) and needed the least number of function evaluations in 8 of 10
cases. This result is quite remarkable considering the simplicity of the DE-heuristic
compared to the intricacies of the two contenders. The DE-results were computed

jogo386.tex; 20/11/1997; 15:00; v.6; p.12



DIFFERENTIAL EVOLUTION 353

Table 2. Averaged number of function evaluations (nfe) required to find the
global minimum. NA stands for “not available”.

fi(x) D nfe DE-Settings
i BGA EASY DE/rand/1/bin NP F CR

11 30 NA 27,111 16,907 20 0.5 0.1
11 100 NA 104,520 56,145 20 0.5 0.1
12 10 NA 9,626 4,269 15 0.5 0.1
12 30 NA 39,333 12,859 15 0.5 0.1
13 20 3,608 6,098 12,971 25 0.5 0
13 100 25,040 45,118 73,620 25 0.5 0
14 20 66,000 26,700 8,691 20 0.5 0.1
14 100 361,722 77,250 31,796 20 0.5 0.1
15 30 19,420 13,997 12,481 20 0.5 0.1
15 100 53,860 57,628 36,801 20 0.5 0.1

by averaging 20 minimization runs for each test case. Each run found the global
minimum.

3.3. STOCHASTIC DIFFERENTIAL EQUATIONS

The method of stochastic differential equations (SDE): Aluffi-Pentini et al. (1985)
requires a cost function to be at least partially differentiable. This is a condition
which usually holds true for practical problems. The basic idea is to perturb a
gradient search by a stochastic process while the perturbation gradually decreases
over time. The method, which shares many similiarities with Simulated Annealing,
performs reasonably well on many problems, making it another contender for DE.
Again, no source code was available, so we used the testbed and the settings given
in Aluffi-Pentini et al. (1985). Unfortunately, neither IPR nor VTR is provided in
the above reference, so we had to make some assumptions regarding IPR and VTR.

Testbed #3

For most test functions, the VTR was defined to be the actual global minimum with
a relative accuracy of 1.e�6. For those functions which have a global minimum
value of 0, the VTR itself was set to 1.e�6. The IPR was always xj 2 [�10; 10]
except for f30(x) where the IPR was xj 2 [�e+4

; e
+4].

(1) Goldstein’s function
f16(x) = x

6 � 15x4 + 27x2 + 250: (31)
The global minimum is f16(+=� 3) = 7.

(2) Penalized Shubert Function
f17(x) = g1(x) + u(x; 10; 100; 2); (32)

jogo386.tex; 20/11/1997; 15:00; v.6; p.13



354 RAINER STORN AND KENNETH PRICE

where

g1(x) =
5X
i=1

i � cos((i+ 1) � x+ i) (33)

is the Shubert function and the penalization function u(z; a; k;m) is defined
by

u(z; a; k;m) =

8<
:
k(z � a)m; z > a

0; �a � z � a

k(�z � a)m; z < �a
: (34)

The global minimum is f17(�7:70831) = f17(�1:42513) = f17(�4:85805) =
�12:8708855:

(3) Two-dimensional Penalized Shubert Function
f18(x) = g1(x1) � g1(x2) + u(x1; 10; 100; 2) + u(x2; 10; 100; 2): (35)

There are 18 global minima with value �186:7309088 in the region bounded
by the IPR.

(4) Two-dimensional modified and penalized Shubert Function
f19(x) = f18(x) + � � [(x1 + 1:42513)2 + (x2 + 0:80032)2]: (36)

The global minimum is f19(�1:42513;�0:80032) = �186:7309088:
(5) Six-hump Camel Function

f20(x) =

�
4 � 2:1 � x2

1 +
1
3
� x4

1

�
+ x1 � x2

+(�4 + 4 � x2
2) � x2

2: (37)
The global minimum is f20(�0:0898; 0:7126) = f20(0:0898;�0:7126) =

�1:0316285:
(6) The next function is defined as

f21(x) = g2(x) +
DX
i=1

u(xi; 10; 100; 4) (38)

with

g2(x) =
�

D

�
10 � sin2

�
� +

�

4
� (x1 � 1)

�

+
D�1X
i=1

0:125 � (xi � 1)2 �
�
1 + 10 � sin2

�
� +

�

4
� (xi+1 � 1)

��

+0:125 � (xD � 1)2
o

; (39)

The global minimum is f21(1) = 0.
(7) The next function is defined as

f22(x) = g3(x) +
DX
i=1

u(xi; 10; 100; 4) (40)

with

g3(x) =
�

D

(
10 � sin2(� � x1) +

D�1X
i=1

(xi � 1)2�

jogo386.tex; 20/11/1997; 15:00; v.6; p.14



DIFFERENTIAL EVOLUTION 355

�[1 + 10 � sin2(� � xi+1)] + (xD � 1)2
o
: (41)

The global minimum is f22(1 ) = 0.
(8) The next function is defined as

f23(x) = g4(x) +
DX
i=1

u(xi; 10; 100; 4) (42)

with

g4(x) = 0:1
�

sin2(3� � x1) +
D�1X
i=1

(xi � 1)2 � [1 + sin2(3� � xi+1)]

+(xD � 1)2 � [1 + sin2(2� � xD)]
�
: (43)

The global minimum is f23(1 ) = 0.
(9) The next function is defined as

f24(x) = g4(x) +
DX
i=1

u(xi; 5; 100; 4) (44)

The global minimum is f24(1 ) = 0.
(10) The next function is defined as

f25(x) = 0:25 � x4 � 0:5 � x2 + 0:1 � x (45)
The global minimum is f25(�1:0466805696) = �0:3523861:

(11) The next function is defined as
f26(x) = 0:25 � x4

1 � 0:5 � x2
1 + 0:1 � x1 + 0:5 � x2

2 (46)
The global minimum is f26(�1:0466805696; 0) = �0:3523861.

(12) The next function is defined as
f27(x) = 0:5 � x2

1 + 0:5 � [1 � cos(2x1)] + x
2
2 (47)

The global minimum is f27(0 ) = 0.
(13) The next function is defined as

f28(x) = 10nx2
1 + x

2
2 � (x2

1 + x
2
2)

2 + 10m(x2
1 + x

2
2)

4;n > 0;m < 0:

(48)
The global minimum is

f28(0;+=� 1:38695228) = �0:4074616(n = �m = 1):

f28(0;+=� 2:60890651) = �18:0586967(n = �m = 2)

f28(0;+=� 4:70173979) = �227:7657500(n = �m = 3)

f28(0;+=� 8:39400578) = �2429:4147670(n= �m = 4)

f28(0;+=� 14:94511228) = �24776:5183423(n = �m = 5)

f28(0;+=� 26:58677673) = �249293:0182630(n= �m = 6)
(14) The next function is defined as

f29(x) =
4

vuut 5X
i=1

i � x2
i (49)

The global minimum is f29(0 ) = 0.

jogo386.tex; 20/11/1997; 15:00; v.6; p.15



356 RAINER STORN AND KENNETH PRICE

(15) The next function is defined as
f30(x) = �F (x) + u(x1; 104

; 100; 2) + u(x2; 104
; 100; 2);

IPR: xj 2 [�e+4
; e+4] (50)

with

F (x) =
14Y
i=1

�
�(zi � x1)

x2

�1��i
�
�
1� �(zi � x1)

x2

��i
(51)

and

�(z) = 0:5
�

1 + erf

�
zp
2

��
(52)

and erf(z) denoting the error function. The zi are taken from
f1219; 1371; 1377; 1144; 1201; 1225; 1244; 1254; 1304; 1328;

1351; 1356; 1370; 1390g
in natural order. Analogously the �i are taken from

f0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g:
The global minimum is f30(1523:2; 277:5) = �0:000888085.
The necessary number of function evaluations (nfe) for both SDE and DE are
shown in Table 3.

Test Results

Table 3 shows in all test cases that DE exhibits superior performance when com-
pared to SDE’s reported best results. DE’s mean number of required function
evaluations was computed by averaging the results of 1000 trial runs for each
function. None of the trial runs failed to find the global minimum. It is also note-
worthy that DE’s control variable settings could remain the same for most of the
functions, which is an indication of DE’s robustness. Only f19 and f30 called for a
different setting to achieve regular convergence. In testcase f28(x) with n = 5; 6
the optimum parameter values lie outside the IPR, yet DE had no difficulty finding
them.

4. Choice of DE’s Control Variables

It is interesting to note that DE’s control variables, NP, F and CR, are not difficult
to choose in order to obtain good results. According to our experience a reasonable
choice for NP is between 5�D and 10�D but NP must be at least 4 to ensure that
DE will have enough mutually different vectors with which to work. As for F, F =
0.5 is usually a good initial choice. If the population converges prematurely, then F
and/or NP should be increased. Values of F smaller than 0.4, like those greater than
1, are only occasionally effective. A good first choice for CR is 0.1, but since a
large CR often speeds convergence, to first try CR = 0.9 or CR = 1.0 is appropriate
in order to see if a quick solution is possible. For fastest convergence, it is best
to pick the IPR such that it covers the region of the suspected global optimum,
although this choice doesn’t seem to be mandatory. These rules of thumb for DE’s

jogo386.tex; 20/11/1997; 15:00; v.6; p.16



DIFFERENTIAL EVOLUTION 357

Table 3. Averaged number of function evaluations (nfe) required
to find the global minimum.

fi(x) nfe DE-Settings
i SDE DE/rand/1/bin NP F CR

16 3,184 503 20 0.5 0
17 26,893 499 20 0.5 0
18 241,215 3,137 20 0.5 0

19, �=0.5 8,755 4,854 40 1.0 0
19, �=1.0 97,761 4,428 40 1.0 0

20 5,393 927 20 0.5 0
21, D=2 84,782 722 20 0.5 0
21, D=3 19,041 1,073 20 0.5 0
21, D=4 18,942 1,424 20 0.5 0
22, D=5 18,433 2,084 20 0.5 0
22, D=8 136,061 3,347 20 0.5 0

22, D=10 49,701 4,165 20 0.5 0
23, D=2 9,492 715 20 0.5 0
23, D=3 19,114 1,093 20 0.5 0
23, D=4 35,139 1,499 20 0.5 0
24, D=5 53,398 1,882 20 0.5 0
24, D=6 15,534 2,295 20 0.5 0
24, D=7 16,542 2,701 20 0.5 0

25 6,751 273 20 0.5 0
26 3,402 650 20 0.5 0
27 10,286 621 20 0.5 0

28, n= �m=1 4,791 907 20 0.5 0
28, n= �m=2 3,037 812 20 0.5 0
28, n= �m=3 5,028 778 20 0.5 0
28, n= �m=4 14,710 754 20 0.5 0
28, n= �m=5 51,285 751 20 0.5 0
28, n= �m=6 17,610 761 20 0.5 0

29 15,102 7,053 20 0.5 0
30 48,802 1,266 30 0.5 1.0

control variables render DE fairly easy to work with which is one of DE’s major
assets.

5. Conclusion and Final Thoughts

The Differential Evolution method (DE) for minimizing continuous space func-
tions has been introduced and compared to Adaptive Simulated Annealing (ASA),
the Annealed Nelder and Mead approach (ANM), the Breeder Genetic Algorithm
(BGA), The EASY Evolution Strategy and the method of Stochastic Differential
Equations (SDE). In most instances, DE outperformed all of the above minimiza-

jogo386.tex; 20/11/1997; 15:00; v.6; p.17



358 RAINER STORN AND KENNETH PRICE

tions approaches in terms of required number of function evaluations necessary to
locate a global minimum of the test functions. This excellent result is especially
intriguing since DE is a very simple and straightforward strategy. Indeed DE’s
main search engine can be written in less than 30 lines of C-code. DE is also very
easy to use as it requires only a few robust control variables which can be drawn
from a well-defined numerical interval. Although DE has shown promising results,
it is still in its infancy and can most probably be improved. We think that DE’s
method of self-organization is remarkable and should be investigated more deeply.
Further research should include a mathematical convergence proof like the one that
exists for Simulated Annealing. Practical experience shows that DE’s vector gener-
ation scheme leads to a fast increase of population vector distances if the objective
function surface is flat. This “divergence property” prevents DE from advancing
too slowly in shallow regions of the objective function surface and allows for
quick progress after the population has traveled through a narrow valley. If the
vector population approaches the final minimum, the vector distances decrease due
to selection, allowing the population to converge reasonably fast. Despite these
insights derived from experimentation, a theoretically sound analysis to determine
why DE converges so well would be of great interest.

Little is known about DE’s scaling property and behavior in real-world appli-
cations. The most complex real-world applications solved with DE so far are the
design of a recursive digital filter with 18 parameters and with multiple constraints
and objectives: Storn (1996a), the design of a 60-parameter linear phase finite
impulse response filter: Storn (1996c), and a communications control problem
with 30 pararmeters: Ziny (1995). Many problems, however, are much larger in
scale and DE’s behavior in such cases is still unknown.

Whether or not the combination of DE with other optimization approaches is
of use, also has yet to be answered. Finally, it is important for quickly solving
practical applications that we gain more knowledge on how to choose the control
variables for DE for a particular type of problem.

References

1. Aluffi-Pentini, F., Parisi, V. and Zirilli, F. (1985), Global Optimization and Stochastic Differential
Equations, Journal of Optimization Theory and Applications 47 (1), 1–16.

2. Brayton, H., Hachtel, G. and Sangiovanni-Vincentelli, A. (1981), A Survey of Optimization
Techniques for Integrated Circuit Design, Proceedings of the IEEE 69, pp. 1334–1362.

3. Bunday, B.D. and Garside G.R. (1987), Optimisation Methods in Pascal, Edward Arnold Pub-
lishers.

4. Corana, A., Marchesi, M., Martini, C. and Ridella, S. (1987), Minimizing Multimodal Functions
of Continuous Variables with the “Simulated Annealing Algorithm”, ACM Transactions on
Mathematical Software, March 1987, pp. 272–280.

5. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization & Machine Learning,
Addison-Wesley.

6. Griewangk, A.O. (1981), Generalized Descent for Global Optimization, JOTA 34, 11–39.

jogo386.tex; 20/11/1997; 15:00; v.6; p.18



DIFFERENTIAL EVOLUTION 359

7. Ingber, L. and Rosen, B. (1992), Genetic Algorithms and Very Fast Simulated Reannealing: A
Comparison, J. of Mathematical and Computer Modeling 16 (11), 87–100.

8. Ingber, L. (1993), Simulated Annealing: Practice Versus Theory, J. of Mathematical and Com-
puter Modeling 18 (11), 29–57.

9. Lueder, E. (1990), Optimization of Circuits with a Large Number of Parameters, Archiv fuer
Elektronik und Uebertragungstechnik 44 (2), 131–138.

10. Muehlenbein, H. and Schlierkamp-Vosen (1993), Predictive Models for the Breeder Genetic
Algorithm, I. Continuous Parameter Optimizations, Evolutionary Computation 1 (1), 25–49.

11. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992), Numerical Recipes in
C, Cambridge University Press.

12. Price, K. (1994), Genetic Annealing, Dr. Dobb’s Journal, Oct. 1994, 127–132.
13. Price, K. and Storn, R. (1996), Minimizing the Real Functions of the ICEC’96 contest by

Differential Evolution, IEEE International Conference on Evolutionary Computation (ICEC’96),
may 1996, pp. 842–844 .

14. Price, K. (1996), Differential Evolution: A Fast and Simple Numerical Optimizer, NAFIPS’96,
pp. 524–527.

15. Rabiner, L.R. and Gold, B. (1975), Theory and Applications of Digital Signal Processing,
Prentice- Hall, Englewood Cliffs, N.J..

16. Rechenberg, I. (1973), Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. Frommann-Holzboog, Stuttgart.

17. Schwefel, H.P. (1995), Evolution and Optimum Seeking, John Wiley.
18. Storn, R. (1995), Constrained Optimization, Dr. Dobb’s Journal, May 1995, 119–123.
19. Storn, R. (1996a), Differential Evolution Design of an IIR-Filter, IEEE International Conference

on Evolutionary Computation (ICEC’96), May 1996, pp. 268–273.
20. Storn, R. (1996b), On the Usage of Differential Evolution for Function Optimization, NAFIPS’96,

pp. 519–523.
21. Storn, R. (1996c), Design of an FIR-filter with Differential Evolution, private communication,

1996.
22. Voigt, H.-M. (1995), Soft Genetic Operators in Evolutionary Computation, Evolution and Bio-

computation, Lecture Notes in Computer Science 899, Springer, Berlin, pp. 123–141.
23. Zimmermann, W. (1990), Operations Research, Oldenbourg.
24. Ziny, F., Optimization of routing control with Differential Evolution, private communication,

1995.

jogo386.tex; 20/11/1997; 15:00; v.6; p.19


