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Foreword
Motivation

Genetic and evolutionary computation (GEC) popular.
Toy problems great, but difficulties in practice.
Must design new representations, operators, tune, …

This talk
Discuss a promising direction in GEC.
Combine machine learning and GEC.
Create practical and powerful optimizers.
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Overview
Introduction

Black-box optimization via probabilistic modeling.
Probabilistic Model-Building GAs

Discrete representation
Continuous representation
Computer programs (PMBGP)
Permutations

Conclusions
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Problem Formulation

Input
How do potential solutions look like?
How to evaluate quality of potential solutions?

Output
Best solution (the optimum).

Important
No additional knowledge about the problem.
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Why View Problem as Black Box?

Advantages
Separate problem definition from optimizer.
Easy to solve new problems.
Economy argument.

Difficulties
Almost no prior problem knowledge.
Problem specifics must be learned automatically.
Noise, multiple objectives, interactive evaluation.
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Representations Considered Here

Start with
Solutions are n-bit binary strings.

Later
Real-valued vectors.
Program trees.
Permutations
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Typical Situation

Previously visited solutions + their evaluation:

Question: What solution to generate next?

# Solution Evaluation
1 00100 1
2 11011 4
3 01101 0
4 10111 3
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Many Answers
Hill climber

Start with a random solution.
Flip bit that improves the solution most.
Finish when no more improvement possible.

Simulated annealing
Introduce Metropolis.

Probabilistic model-building GAs
Inspiration from GAs and machine learning (ML).
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Probabilistic Model-Building GAs
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Other Names for PMBGAs

Estimation of distribution algorithms (EDAs)
(Mühlenbein & Paass, 1996)

Iterated density estimation algorithms (IDEA)
(Bosman & Thierens, 2000)
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What Models to Use?

Start with a simple example
Probability vector for binary strings.

Later
Dependency tree models (COMIT).
Bayesian networks (BOA).
Bayesian networks with local structures (hBOA).
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Probability Vector

Assume n-bit binary strings.
Model: Probability vector p=(p1, …, pn)

pi = probability of 1 in position i
Learn p: Compute proportion of 1 in each position.
Sample p: Sample 1 in position i with prob. pi
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Example: Probability Vector

(Mühlenbein, Paass, 1996), (Baluja, 1994)
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Probability Vector PMBGAs
PBIL (Baluja, 1995)

Incremental updates to the prob. vector.
Compact GA (Harik, Lobo, Goldberg, 1998)

Also incremental updates but better analogy with 
populations.

UMDA (Mühlenbein, Paass, 1996)
What we showed here.

DEUM (Shakya et al., 2004)
All variants perform similarly.
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Probability Vector Dynamics

Bits that perform better get more copies.
And are combined in new ways.
But context of each bit is ignored.

Example problem 1: Onemax
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Probability Vector on Onemax
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Probability Vector: Ideal Scale-up

O(n log n) evaluations until convergence
(Harik, Cantú-Paz, Goldberg, & Miller, 1997)
(Mühlenbein, Schlierkamp-Vosen, 1993)

Other algorithms
Hill climber: O(n log n) (Mühlenbein, 1992)
GA with uniform: approx. O(n log n)
GA with one-point: slightly slower
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When Does Prob. Vector Fail?

Example problem 2: Concatenated traps
Partition input string into disjoint groups of 5 bits.
Groups contribute via trap (ones=number of ones):

Concatenated trap = sum of single traps
Optimum: String 111…1
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Probability Vector on Traps
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Why Failure?

Onemax: 
Optimum in 111…1
1 outperforms 0 on average.

Traps: optimum in 11111, but
f(0****) = 2
f(1****) = 1.375

So single bits are misleading.
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How to Fix It?

Consider 5-bit statistics instead 1-bit ones.
Then, 11111 would outperform 00000.
Learn model

Compute p(00000), p(00001), …, p(11111)

Sample model
Sample 5 bits at a time
Generate 00000 with p(00000), 
00001 with p(00001), …
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Good News: Good Stats Work Great!

Optimum in O(n log n) evaluations.
Same performance as on onemax!
Others

Hill climber: O(n5 log n) = much worse.
GA with uniform: O(2n) = intractable.
GA with k-point xover: O(2n) (w/o tight linkage).
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Challenge

If we could learn and use relevant context for 
each position

Find non-misleading statistics.
Use those statistics as in probability vector.

Then we could solve problems decomposable 
into statistics of order at most k with at most 
O(n2) evaluations!

And there are many such problems (Simon, 1968).
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What’s Next?
COMIT

Use tree models

Extended compact GA
Cluster bits into groups.

Bayesian optimization algorithm (BOA)
Use Bayesian networks (more general).
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Beyond single bits: COMIT

String

Model

X P(Y=1|X)
0 30 %
1 25 %

P(X=1)
75 %

X P(Z=1|X)
0 86 %
1 75 %

(Baluja, Davies, 1997)
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How to Learn a Tree Model?
Mutual information:

Goal
Find tree that maximizes mutual information
between connected nodes.
Will minimize Kullback-Leibler divergence.

Algorithm
Prim’s algorithm for maximum spanning trees.
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Prim’s Algorithm

Start with a graph with no edges.
Add arbitrary node to the tree.
Iterate

Hang a new node to the current tree.
Prefer addition of edges with large mutual 
information (greedy approach).

Complexity: O(n2)
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Variants of PMBGAs with Tree Models

COMIT (Baluja, Davies, 1997)
Tree models.

MIMIC (DeBonet, 1996)
Chain distributions.

BMDA (Pelikan, Mühlenbein, 1998)
Forest distribution (independent trees or tree)
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Beyond Pairwise Dependencies: ECGA

Extended Compact GA (ECGA) (Harik, 1999).
Consider groups of string positions.

0 86 %
1 14 %

String Model

000 17 %
001 2 %

· · ·
111 24 %

00 16 %
01 45 %
10 35 %
11 4 %
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Learning the Model in ECGA

Start with each bit in a separate group.
Each iteration merges two groups for best 
improvement. 
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How to Compute Model Quality?

ECGA uses minimum description length.
Minimize number of bits to store model+data:

Each frequency needs (0.5 log N) bits:

Each solution X needs -log p(X) bits:

  MDL(M,D) = DModel + DData

DModel = 2|g |−1 log N
g∈G
∑

  
DData = −N p( X ) log p( X )

X
∑
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Sampling Model in ECGA

Sample groups of bits at a time.

Based on observed probabilities/proportions.

But can also apply population-based crossover 
similar to uniform but w.r.t. model.
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Building-Block-Wise Mutation in ECGA

Sastry, Goldberg (2004); Lima et al. (2005)
Basic idea

Use ECGA model builder to identify decomposition
Use the best solution for BB-wise mutation
For each k-bit partition (building block)

Evaluate the remaining 2k-1 instantiations of this BB
Use the best instantiation of this BB

Result (for order-k separable problems)
BB-wise mutation is                   times faster than ECGA!
But only for separable problems (and similar ones).

( )nkO log
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What’s Next?

We saw
Probability vector (no edges).
Tree models (some edges).
Marginal product models (groups of variables).

Next: Bayesian networks
Can represent all above and more.
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Bayesian Optimization Algorithm (BOA)

Pelikan, Goldberg, & Cantú-Paz (1998)
Use a Bayesian network (BN) as a model.
Bayesian network

Acyclic directed graph.
Nodes are variables (string positions).
Conditional dependencies (edges).
Conditional independencies (implicit).
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Example: Bayesian Network (BN)

Conditional dependencies.
Conditional independencies.
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BOA

Current 
population
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network
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Learning BNs

Two things again:
Scoring metric (as MDL in ECGA).
Search procedure (in ECGA done by merging).
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Learning BNs: Scoring Metrics

Bayesian metrics
Bayesian-Dirichlet with likelihood equivallence

Minimum description length metrics
Bayesian information criterion (BIC)

  
BD(B) = p(B)

Γ(m'(π i ))
Γ(m'(π i )+m(π i ))

Γ(m'(xi ,π i )+m(xi ,π i ))
Γ(m'(xi ,π i ))xi

∏
π

i

∏
i=1

n

∏

  
BIC(B) = −H ( Xi |Πi )N − 2Πi

log2 N
2

⎛

⎝⎜
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n
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Learning BNs: Search Procedure

Start with empty network (like ECGA).
Execute primitive operator that improves the 
metric the most (greedy).
Until no more improvement possible.
Primitive operators

Edge addition (most important).
Edge removal.
Edge reversal.
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Learning BNs: Example
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BOA and Problem Decomposition

Conditions for factoring problem 
decomposition into a product of prior and 
conditional probabilities of small order in 
Mühlenbein, Mahnig, & Rodriguez (1999).
In practice, approximate factorization sufficient 
that can be learned automatically.
Learning makes complete theory intractable.
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BOA Theory: Population Sizing
Initial supply (Goldberg et al., 2001)

Have enough stuff to combine.

Decision making (Harik et al, 1997)
Decide well between competing partial sols.

Drift (Thierens, Goldberg, Pereira, 1998)
Don’t lose less salient stuff prematurely.

Model building (Pelikan et al., 2000, 2002)
Find a good model.

O n( )

O n1.05( )

O n log n( )

O 2k( )
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BOA Theory: Num. of Generations

Two extreme cases, everything in the middle.
Uniform scaling

Onemax model (Muehlenbein & Schlierkamp-Voosen, 1993)

Exponential scaling
Domino convergence (Thierens, Goldberg, Pereira, 1998)

( )nO

( )nO
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Good News: Challenge Met!
Theory

Population sizing (Pelikan et al., 2000, 2002)
Initial supply.
Decision making.
Drift.
Model building.

Number of iterations (Pelikan et al., 2000, 2002)
Uniform scaling.
Exponential scaling.

BOA solves order-k decomposable problems in O(n1.55) to 
O(n2) evaluations!

O(n) to O(n1.05)

O(n0.5) to O(n)
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Theory vs. Experiment (5-bit Traps)
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BOA Siblings

Estimation of Bayesian Networks Algorithm 
(EBNA) (Etxeberria, Larrañaga, 1999).

Learning Factorized Distribution Algorithm 
(LFDA) (Mühlenbein, Mahnig, Rodriguez, 1999).
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Another Option: Markov Networks

MN-FDA, MN-EDA (Santana; 2003, 2005)
Similar to Bayes nets but with undirected edges.
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Yet Another Option: Dependency Networks

Estimation of dependency networks algorithm (EDNA)
Gamez, Mateo, Puerta (2007).
Use dependency network as a model.
Dependency network learned from pairwise interactions.
Use Gibbs sampling to generate new solutions.

Dependency network
Parents of a variable= all variables influencing this variable.
Dependency network can contain cycles.
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Model Comparison

BMDA ECGA BOA

Model Expressiveness Increases
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From single level to hierarchy

Single-level decomposition powerful.
But what if single-level decomposition is not 
enough?
Learn from humans and nature

Decompose problem over multiple levels.
Use solutions from lower level as basic building 
blocks.
Solve problem hierarchically.
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Hierarchical Decomposition

Car

Engine Braking system Electrical system

Fuel system Valves Ignition system
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Three Keys to Hierarchy Success

Proper decomposition
Must decompose problem on each level properly.

Chunking
Must represent & manipulate large order solutions.

Preservation of alternative solutions
Must preserve alternative partial solutions (chunks).
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Hierarchical BOA (hBOA)

Pelikan & Goldberg (2000, 2001)
Proper decomposition

Use Bayesian networks like BOA.

Chunking
Use local structures in Bayesian networks.

Preservation of alternative solutions.
Use restricted tournament replacement (RTR).
Can use other niching methods.
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Local Structures in BNs

Look at one conditional dependency.
2k probabilities for k parents.

Why not use more powerful representations
for conditional probabilities?

X1

X3X2

X2X3 P(X1=0|X2X3)
00 26 %
01 44 %
10 15 %
11 15 %
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Local Structures in BNs

Look at one conditional dependency.
2k probabilities for k parents.

Why not use more powerful representations
for conditional probabilities?

X2

X3

0 1

0 1

26% 44%

15%

X1

X3X2
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Restricted Tournament Replacement

Used in hBOA for niching.
Insert each new candidate solution x like this:

Pick random subset of original population.
Find solution y most similar to x in the subset.
Replace y by x if x is better than y.
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Hierarchical Traps: The Ultimate Test

Combine traps on more levels.
Each level contributes to fitness.
Groups of bits map to next level.
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hBOA on Hierarchical Traps
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PMBGAs Are Not Just Optimizers

PMBGAs provide us with two things
Optimum or its approximation.
Sequence of probabilistic models.

Probabilistic models
Encode populations of increasing quality.
Tell us a lot about the problem at hand.
Can we use this information?
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Efficiency Enhancement for PMBGAs

Sometimes O(n2) is not enough
High-dimensional problems (1000s of variables)
Expensive evaluation (fitness) function

Solution
Efficiency enhancement techniques
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Efficiency Enhancement Types

7 efficiency enhancement types for PMBGAs
Parallelization
Hybridization
Time continuation
Fitness evaluation relaxation
Prior knowledge utilization
Incremental and sporadic model building
Learning from experience
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Multi-objective PMBGAs
Methods for multi-objective GAs adopted

Multi-objective hBOA (from NSGA-II and hBOA)
(Khan, Goldberg, & Pelikan, 2002)
(Pelikan, Sastry, & Goldberg, 2005)

Another multi-objective BOA (from SPEA2)
(Laumanns, & Ocenasek, 2002) 

Multi-objective mixture-based IDEAs
(Thierens, & Bosman, 2001)

Regularity Model Based Multiobjective EDA (RM-MEDA)
(Zhang, Zhou, Jin, 2008)
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Promising Results with Discrete PMBGAs

Artificial classes of problems
Physics
Bioinformatics
Computational complexity and AI
Others
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Results: Artificial Problems
Decomposition

Concatenated traps (Pelikan et al., 1998).

Hierarchical decomposition
Hierarchical traps (Pelikan, Goldberg, 2001).

Other sources of difficulty
Exponential scaling, noise (Pelikan, 2002).
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BOA on Concatenated 5-bit Traps
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hBOA on Hierarchical Traps
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Results: Physics
Spin glasses (Pelikan et al., 2002, 2006, 2008) 
(Hoens, 2005) (Santana, 2005) (Shakya et al., 
2006)

±J and Gaussian couplings
2D and 3D spin glass
Sherrington-Kirkpatrick (SK) spin glass

Silicon clusters (Sastry, 2001)
Gong potential (3-body)
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hBOA on Ising Spin Glasses (2D)
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Results on 2D Spin Glasses

Number of evaluations is O(n 1.51).
Overall time is O(n 3.51).
Compare O(n3.51) to O(n3.5) for best method
(Galluccio & Loebl, 1999)
Great also on Gaussians.



Martin Pelikan, Probabilistic Model-Building GAs 73

hBOA on Ising Spin Glasses (3D)
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hBOA on SK Spin Glass
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Results: Computational Complexity, AI

MAXSAT, SAT (Pelikan, 2002)
Random 3CNF from phase transition.
Morphed graph coloring.
Conversion from spin glass.

Feature subset selection (Inza et al., 2001) 
(Cantu-Paz, 2004)
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Results: Some Others
Military antenna design (Santarelli et al., 2004)
Groundwater remediation design (Arst et al., 2004)
Forest management (Ducheyne et al., 2003)
Nurse scheduling (Li, Aickelin, 2004)
Telecommunication network design (Rothlauf, 2002)
Graph partitioning (Ocenasek, Schwarz, 1999; Muehlenbein, Mahnig, 
2002; Baluja, 2004)
Portfolio management (Lipinski, 2005, 2007)
Quantum excitation chemistry (Sastry et al., 2005) 
Maximum clique (Zhang et al., 2005)
Cancer chemotherapy optimization (Petrovski et al., 2006)
Minimum vertex cover (Pelikan et al., 2007)
Protein folding (Santana et al., 2007)
Side chain placement (Santana et al., 2007)
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Discrete PMBGAs: Summary
No interactions

Univariate models; PBIL, UMDA, cGA.
Some pairwise interactions

Tree models; COMIT, MIMIC, BMDA.
Multivariate interactions

Multivariate models: BOA, EBNA, LFDA.
Hierarchical decomposition

hBOA
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Discrete PMBGAs: Recommendations

Easy problems
Use univariate models; PBIL, UMDA, cGA.

Somewhat difficult problems
Use bivariate models; MIMIC, COMIT, BMDA.

Difficult problems
Use multivariate models; BOA, EBNA, LFDA.

Most difficult problems
Use hierarchical decomposition; hBOA.
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Real-Valued PMBGAs

New challenge
Infinite domain for each variable.
How to model?

2 approaches
Discretize and apply discrete model/PMBGA
Create model for real-valued variables

Estimate pdf.
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PBIL Extensions: First Step
SHCwL: Stochastic hill climbing with learning 
(Rudlof, Köppen, 1996).
Model

Single-peak Gaussian for each variable.
Means evolve based on parents (promising solutions).
Deviations equal, decreasing over time.

Problems
No interactions.
Single Gaussians=can model only one attractor.
Same deviations for each variable.
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Use Different Deviations

Sebag, Ducoulombier (1998)
Some variables have higher variance.
Use special standard deviation for each 
variable.
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Use Covariance

Covariance allows rotation of 1-peak Gaussians.
EGNA (Larrañaga et al., 2000)
IDEA (Bosman, Thierens, 2000)
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How Many Peaks?

One Gaussian vs. kernel around each point.
Kernel distribution similar to ES.
IDEA (Bosman, Thierens, 2000)
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Mixtures: Between One and Many
Mixture distributions provide transition between one 
Gaussian and Gaussian kernels.
Mixture types

Over one variable.
Gallagher, Frean, & Downs (1999).

Over all variables.
Pelikan & Goldberg (2000).
Bosman & Thierens (2000).

Over partitions of variables.
Bosman & Thierens (2000).
Ahn, Ramakrishna, and Goldberg (2004).
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Mixed BOA (mBOA)
Mixed BOA (Ocenasek, Schwarz, 2002)
Local distributions 

A decision tree (DT) for every variable.
Internal DT nodes encode tests on other variables

Discrete: Equal to a constant
Continuous: Less than a constant

Discrete variables: 
DT leaves represent probabilities.
Continuous variables: 
DT leaves contain a normal kernel distribution.
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Real-Coded BOA (rBOA)

Ahn, Ramakrishna, Goldberg (2003)
Probabilistic Model

Underlying structure: Bayesian network
Local distributions: Mixtures of Gaussians

Also extended to multiobjective problems
(Ahn, 2005)
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Aggregation Pheromone System (APS)

Tsutsui (2004)
Inspired by aggregation pheromones
Basic idea

Good solutions emit aggregation pheromones
New candidate solutions based on the density of 
aggregation pheromones
Aggregation pheromone density encodes a mixture 
distribution
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Adaptive Variance Scaling

Adaptive variance in mBOA
Ocenasek et al. (2004)

Normal IDEAs
Bosman et al. (2006, 2007)
Correlation-triggered adaptive variance scaling
Standard-deviation ratio (SDR) triggered variance 
scaling
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Real-Valued PMBGAs: Discretization

Idea: Transform into discrete domain.
Fixed models

2k equal-width bins with k-bit binary string.
Goldberg (1989).
Bosman & Thierens (2000); Pelikan et al. (2003).

Adaptive models
Equal-height histograms of 2k bins.
k-means clustering on each variable.
Pelikan, Goldberg, & Tsutsui (2003); Cantu-Paz (2001).
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Real-Valued PMBGAs: Summary
Discretization

Fixed
Adaptive

Real-valued models
Single or multiple peaks?
Same variance or different variance?
Covariance or no covariance?
Mixtures? 
Treat entire vectors, subsets of variables, or single 
variables?
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Real-Valued PMBGAs: Recommendations

Multimodality?
Use multiple peaks.

Decomposability?
All variables, subsets, or single variables.

Strong linear dependencies?
Covariance.

Partial differentiability?
Combine with gradient search.
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PMBGP (Genetic Programming)
New challenge

Structured, variable length representation.
Possibly infinitely many values.
Position independence (or not).
Low correlation between solution quality and 
solution structure (Looks, 2006).

Approaches
Use explicit probabilistic models for trees.
Use models based on grammars.
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PIPE
Probabilistic incremental 
program evolution 
(Salustowicz & 
Schmidhuber, 1997)
Store frequencies of 
operators/terminals in 
nodes of a maximum tree.
Sampling generates tree 
from top to bottom

X P(X)
sin 0.15
+ 0.35
- 0.35
X 0.15
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eCGP

Sastry & Goldberg (2003)
ECGA adapted to program trees.
Maximum tree as in PIPE.
But nodes partitioned into groups.
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BOA for GP

Looks, Goertzel, & Pennachin (2004)
Combinatory logic + BOA

Trees translated into uniform structures.
Labels only in leaves.
BOA builds model over symbols in different nodes.

Complexity build-up
Modeling limited to max. sized structure seen.
Complexity builds up by special operator.
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MOSES

Looks (2006).
Evolve demes of programs.
Each deme represents similar structures.
Apply PMBGA to each deme (e.g. hBOA). 
Introduce new demes/delete old ones.
Use normal forms to reduce complexity.
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PMBGP with Grammars
Use grammars/stochastic grammars as models.
Grammars restrict the class of programs.

Some representatives
Program evolution with explicit learning (Shan et al., 2003)
Grammar-based EDA for GP (Bosman, de Jong, 2004)
Stochastic grammar GP (Tanev, 2004)
Adaptive constrained GP (Janikow, 2004)
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PMBGP: Summary

Interesting starting points available.
But still lot of work to be done.
Much to learn from discrete domain, but some 
completely new challenges. 
Research in progress
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PMBGAs for Permutations

New challenges
Relative order 
Absolute order
Permutation constraints

Two basic approaches
Random-key and real-valued PMBGAs
Explicit probabilistic models for permutations
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Random Keys and PMBGAs
Bengoetxea et al. (2000); Bosman et al. (2001)
Random keys (Bean, 1997)

Candidate solution = vector of real values
Ascending ordering gives a permutation

Can use any real-valued PMBGA (or GEA)
IDEAs (Bosman, Thierens, 2002)
EGNA (Larranaga et al., 2001)

Strengths and weaknesses
Good: Can use any real-valued PMBGA. 
Bad: Redundancy of the encoding.
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Direct Modeling of Permutations

Edge-histogram based sampling algorithm 
(EHBSA) (Tsutsui, Pelikan, Goldberg, 2003)

Permutations of n elements
Model is a matrix A=(ai,j)i,j=1, 2, …, n

ai,j represents the probability of edge (i, j)
Uses template to reduce exploration
Applicable also to scheduling
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ICE: Modify Crossover from Model

ICE
Bosman, Thierens (2001).
Represent permutations with random keys.
Learn multivariate model to factorize the problem.
Use the learned model to modify crossover.

Performance
Typically outperforms IDEAs and other PMBGAs
that learn and sample random keys.
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Multivariate Permutation Models
Basic approach

Use any standard multivariate discrete model.
Restrict sampling to permutations in some way.
Bengoetxea et al. (2000), Pelikan et al. (2007).

Strengths and weaknesses
Use explicit multivariate models to find regularities.
High-order alphabet requires big samples for good models. 
Sampling can introduce unwanted bias.
Inefficient encoding for only relative ordering constraints, 
which can be encoded simpler.
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Conclusions
Competent PMBGAs exist

Scalable solution to broad classes of problems.
Solution to previously intractable problems.
Algorithms ready for new applications.

PMBGAs do more than just solve the problem
They provide us with sequences of probabilistic models.
The probabilistic models tell us a lot about the problem.

Consequences for practitioners
Robust methods with few or no parameters.
Capable of learning how to solve problem.
But can incorporate prior knowledge as well.
Can solve previously intractable problems.
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Starting Points
World wide web
Books and surveys

Larrañaga & Lozano (eds.) (2001). Estimation of distribution 
algorithms: A new tool for evolutionary computation. Kluwer.
Pelikan et al. (2002). A survey to optimization by building and 
using probabilistic models. Computational optimization and 
applications, 21(1), pp. 5-20.
Pelikan (2005). Hierarchical BOA: Towards a New Generation of 
Evolutionary Algorithms. Springer.
Lozano, Larrañaga, Inza, Bengoetxea (2007). Towards a New 
Evolutionary Computation: Advances on Estimation of Distribution
Algorithms, Springer.
Pelikan, Sastry, Cantu-Paz (eds.) (2007). Scalable Optimization via 
Probabilistic Modeling: From Algorithms to Applications, Springer.
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Online Code (1/2)
BOA, BOA with decision graphs, dependency-tree EDA
http://medal.cs.umsl.edu/

ECGA, xi-ary ECGA, BOA, and BOA with decision trees/graphs
http://www-illigal.ge.uiuc.edu/

mBOA
http://jiri.ocenasek.com/

PIPE
http://www.idsia.ch/~rafal/

Real-coded BOA
http://www.evolution.re.kr/

http://medal.cs.umsl.edu/
http://www-illigal.ge.uiuc.edu/
http://jiri.ocenasek.com/
http://www.idsia.ch/~rafal/
http://www.evolution.re.kr/
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Online Code (2/2)
Demos of APS and EHBSA
http://www.hannan-u.ac.jp/~tsutsui/research-e.html

RM-MEDA: A Regularity Model Based Multiobjective EDA
Differential Evolution + EDA hybrid
http://cswww.essex.ac.uk/staff/qzhang/mypublication.htm

Naive Multi-objective Mixture-based IDEA (MIDEA)
Normal IDEA-Induced Chromosome Elements Exchanger (ICE)
Normal Iterated Density-Estimation Evolutionary Algorithm (IDEA)
http://homepages.cwi.nl/~bosman/code.html

http://www.hannan-u.ac.jp/~tsutsui/research-e.html
http://cswww.essex.ac.uk/staff/qzhang/mypublication.htm
http://homepages.cwi.nl/~bosman/code.html
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