
© 2007 Matt Welsh – Harvard University 1

CS161: Operating Systems

Matt Welsh
mdw@eecs.harvard.edu

Lecture 6: Semaphores, Monitors, and Condition Variables
February 20, 2007

© 2007 Matt Welsh – Harvard University 2

Higher-level synchronization primitives
We have looked at one synchronization primitive: locks

Locks are useful for many things, but sometimes programs have
different requirements.

Examples?
● Say we had a shared variable where we wanted any number of threads to read

the variable, but only one thread to write it.
● How would you do this with locks?

What's wrong with this code?

Reader() {
 lock.acquire();
 mycopy = shared_var;
 lock.release();
 return mycopy;
}

Writer() {
 lock.acquire();
 shared_var = NEW_VALUE;
 lock.release();
}

© 2007 Matt Welsh – Harvard University 3

Semaphores
Higher-level synchronization

construct
● Designed by Edsger Dijkstra in the

1960's, part of the THE operating
system (classic stuff!)

Semaphore is a shared counter

Two operations on semaphores:

P() or wait() or down()
● From Dutch “proeberen”, meaning “test”
● Atomic action:

● Wait for semaphore value to become > 0, then decrement it

V() or signal() or up()
● From Dutch “verhogen”, meaning “increment”
● Atomic action:

● Increments semaphore value by 1.

Semaphore

© 2007 Matt Welsh – Harvard University 4

Semaphore Example
Semaphores can be used to implement locks:

A semaphore where the counter value is only 0 or 1 is
called a binary semaphore.

int withdraw(account, amount) {
 P(my_semaphore);
 balance = get_balance(account);
 balance -= amount;
 put_balance(account, balance);
 V(my_semaphore);
 return balance;
}

critical
section

Semaphore my_semaphore = 1; // Initialize to nonzero

© 2007 Matt Welsh – Harvard University 5

Simple Semaphore Implementation

What's wrong with this code???

struct semaphore {
int val;
thread_list waiting; // List of threads waiting for semaphore

}

P(semaphore Sem): // Wait until > 0 then decrement
while (Sem.val <= 0) {

add this thread to Sem.waiting;
block(this thread); // What does this do??

}
Sem.val = Sem.val -1;
return;

V(semaphore Sem): // Increment value and wake up next thread
Sem.val = Sem.val + 1;
if (Sem.waiting is nonempty) {

remove a thread T from Sem.waiting;
wakeup(T);

}

Why is this a while loop
and not just an if statement?

© 2007 Matt Welsh – Harvard University 6

Simple Semaphore Implementation

P() and V() must be
atomic actions!

struct semaphore {
int val;
thread_list waiting; // List of threads waiting for semaphore

}

P(semaphore Sem): // Wait until > 0 then decrement
while (Sem.val <= 0) {

add this thread to Sem.waiting;
block(this thread); // What does this do??

}
Sem.val = Sem.val -1;
return;

V(semaphore Sem): // Increment value and wake up next thread
Sem.val = Sem.val + 1;
if (Sem.waiting is nonempty) {

remove a thread T from Sem.waiting;
wakeup(T);

}

© 2007 Matt Welsh – Harvard University 7

Semaphore Implementation

How do we ensure that the semaphore implementation is atomic?

© 2007 Matt Welsh – Harvard University 8

Semaphore Implementation

How do we ensure that the semaphore implementation is atomic?

One approach: Make them system calls, and ensure only one P()
or V() operation can be executed by any process at a time.

● This effectively puts a lock around the P() and V() operations themselves!
● Easy to do by disabling interrupts in the P() and V() calls.

Another approach: Use hardware support
● Say your CPU had atomic P and V instructions
● That would be sweet.

© 2007 Matt Welsh – Harvard University 9

OK, but why are semaphores useful?

A binary semaphore (counter is always 0 or 1) is basically a lock.

The real value of semaphores becomes apparent when the
counter can be initialized to a value other than 0 or 1.

Say we initialize a semaphore's counter to 50.
● What does this mean about P() and V() operations?

© 2007 Matt Welsh – Harvard University 10

The Producer/Consumer Problem
Also called the Bounded Buffer problem.

Producer pushes items into the buffer.

Consumer pulls items from the buffer.

Producer needs to wait when buffer is full.

Consumer needs to wait when the buffer is empty.

Producer Consumer

Mmmm... donuts

© 2007 Matt Welsh – Harvard University 11

The Producer/Consumer Problem
Also called the Bounded Buffer problem.

Producer pushes items into the buffer.

Consumer pulls items from the buffer.

Producer needs to wait when buffer is full.

Consumer needs to wait when the buffer is empty.

Producer Consumer

zzzzz....

© 2007 Matt Welsh – Harvard University 12

One implementation...

Producer Consumer

int count = 0;

Producer() {
int item;
while (TRUE) {

item = bake();
if (count == N) sleep();
insert_item(item);
count = count + 1;
if (count == 1)

wakeup(consumer);
}

}

Consumer() {
int item;
while (TRUE) {

if (count == 0) sleep();
item = remove_item();
count = count – 1;
if (count == N-1)

wakeup(producer);
eat(item);

}
}

What's wrong with this code? What if we context switch right here??

© 2007 Matt Welsh – Harvard University 13

A fix using semaphores

Producer Consumer

Semaphore mutex = 1;
Semaphore empty = N;
Semaphore full = 0;

Producer() {
int item;
while (TRUE) {

item = bake();
P(empty);
P(mutex);
insert_item(item);
V(mutex);
V(full);

}
}

Consumer() {
int item;
while (TRUE) {

P(full);
P(mutex);
item = remove_item();
V(mutex);
V(empty);
eat(item);

}
}

© 2007 Matt Welsh – Harvard University 14

Reader/Writers
Let's go back to the problem at the beginning of lecture.

● Single shared object
● Want to allow any number of threads to read simultaneously
● But, only one thread should be able to write to the object at a time

● (And, not interfere with any readers...)

 Where's the race condition?

Semaphore wrt = 1;
int readcount = 0;

Writer() {
P(wrt);
do_write();
V(wrt);

}

Reader() {

readcount++;
if (readcount == 1) {

P(wrt);
}

do_read();

readcount--;
if (readcount == 0) {

V(wrt);
}

Why the test here??

© 2007 Matt Welsh – Harvard University 15

Reader/Writers fixed
Problem: Multiple readers are accessing 'readcount' !

Semaphore mutex = 1;
Semaphore wrt = 1;
int readcount = 0;

Writer() {
P(wrt);
do_write();
V(wrt);

}

Reader() {
P(mutex);
readcount++;
if (readcount == 1) {

P(wrt);
}
V(mutex);
do_read();
P(mutex);
readcount--;
if (readcount == 0) {

V(wrt);
}
V(mutex);

© 2007 Matt Welsh – Harvard University 16

Issues with Semaphores

Much of the power of semaphores derives from calls to
P() and V() that are unmatched

● See previous example!

Unlike locks, acquire() and release() are not always paired.

This means it is a lot easier to get into trouble with semaphores.
● Semaphores are a lot of rope to hang yourself with...

Would be nice if we had some clean, well-defined language
support for synchronization...

● Hey. Java does!

© 2007 Matt Welsh – Harvard University 17

Java Synchronization Support: Mutexes
Every Java object can be used as a mutex!

Compiler ensures that lock is released before leaving the
synchronized block

● Even if there is an exception!!

Object foo;
synchronized (foo) {
 /* Do some stuff with 'foo' locked... */
 foo.counter++;
}

try {
 synchronized(foo) {
 if (foo.doSomething() == false) {
 throw new Exception(“Bad!!”);
 }
 }
catch (Exception e) {
 /* Lock was released before getting here! */
 System.err.println(“Something bad happened!”);
}

© 2007 Matt Welsh – Harvard University 18

Java Condition Variables
All Java objects can also act as condition variables.

A condition variable represents some condition that a thread can:
● Wait on, until the condition occurs; or
● Notify other waiting threads that the condition has occurred

● Very useful primitive for signaling between threads.

Three operations on condition variables:
● wait() -- Block until another thread calls notify() or notifyAll() on the CV
● notify() -- Wake up one thread waiting on the CV
● notifyAll() -- Wake up all threads waiting on the CV

© 2007 Matt Welsh – Harvard University 19

Java CVs and Locks

All condition variable operations must be within a synchronized
block on the same object

Why is the “synchronized” necessary?

/* Thread A */
synchronized (foo) {
 while (foo.counter < 10) {
 foo.wait();
 }
}

/* Thread B */
synchronized (foo) {
 foo.counter++;
 if (foo.counter >= 10) {
 foo.notify();
 }
}

© 2007 Matt Welsh – Harvard University 20

Java CVs and Locks

All condition variable operations must be within a synchronized
block on the same object

Why is the “synchronized” necessary?

If no lock on Thread A...
● Thread might sleep just after another thread sets the counter value to 10!

If no lock on Thread B...
● No guarantee that increment and test of counter is atomic!

● Requiring CV operations to be done within a synchronized { } block prevents
a lot of common programming mistakes.

/* Thread A */
synchronized (foo) {
 while (foo.counter < 10) {
 foo.wait();
 }
}

/* Thread B */
synchronized (foo) {
 foo.counter++;
 if (foo.counter >= 10) {
 foo.notify();
 }
}

© 2007 Matt Welsh – Harvard University 21

Java CVs and Locks

All condition variable operations must be within a synchronized
block on the same object

What happens to the lock when you call wait() on the CV?

/* Thread A */
synchronized (foo) {
 while (foo.counter < 10) {
 foo.wait();
 }
}

/* Thread B */
synchronized (foo) {
 foo.counter++;
 if (foo.counter >= 10) {
 foo.notify();
 }
}

© 2007 Matt Welsh – Harvard University 22

Java CVs and Locks

All condition variable operations must be within a synchronized
block on the same object

What happens to the lock when you call wait() on the CV?
● Calling wait() releases the lock (atomically!) before blocking.

● Can't wait while holding the lock – Thread B could never run!
● And, the lock is automatically reclaimed just before Thread A starts running again!

/* Thread A */
synchronized (foo) {
 while (foo.counter < 10) {
 foo.wait();
 }
}

/* Thread B */
synchronized (foo) {
 foo.counter++;
 if (foo.counter >= 10) {
 foo.notify();
 }
}

© 2007 Matt Welsh – Harvard University 23

Bounded Buffer using CV's

int theArray[ARRAY_SIZE], size;
Object theLock;

void put(int val) {
synchronized(theLock) {

while (size == ARRAY_SIZE) {
theLock.wait();

}
addItemToArray(val);
size++;
if (size == 1)

theLock.notify();
}

}

int get() {
int item;
synchronized(theLock) {

while (size == 0) {
theLock.wait();

}
item = getItemFromArray()
size--;
if (size == ARRAY_SIZE-1)

theLock.notify();
}
return item;

}

Problems with this code??

© 2007 Matt Welsh – Harvard University 24

Bounded Buffer using CV's

int theArray[ARRAY_SIZE], size;
Object theLock;

void put(int val) {
synchronized(theLock) {

while (size == ARRAY_SIZE) {
theLock.wait();

}
addItemToArray(val);
size++;
if (size == 1)

theLock.notify();
}

}

int get() {
int item;
synchronized(theLock) {

while (size == 0) {
theLock.wait();

}
item = getItemFromArray()
size--;
if (size == ARRAY_SIZE-1)

theLock.notify();
}
return item;

}

Assumes only a single thread calling put() or get() at a time!
If two threads call get(), then two threads call put(), only one
will be woken up!!

© 2007 Matt Welsh – Harvard University 25

How to fix this problem?

Using notifyAll() will cause all threads to wake up and
re-check the condition variable.

● Of course, only one thread at a time can get the lock when it wakes up.
● Could be inefficient if a lot of threads are involved!

int theArray[ARRAY_SIZE], size;
Object theLock;

void put(int val) {
synchronized(theLock) {

while (size == ARRAY_SIZE) {
theLock.wait();

}
addItemToArray(val);
size++;
if (size == 1)

theLock.notifyAll();
}

}

int get() {
int item;
synchronized(theLock) {

while (size == 0) {
theLock.wait();

}
item = getItemFromArray()
size--;
if (size == ARRAY_SIZE-1)

theLock.notifyAll();
}
return item;

}

© 2007 Matt Welsh – Harvard University 26

Monitors
This style of using locks and CV's to protect access to a shared

object is often called a monitor
● Think of a monitor as a lock protecting an object, a series of methods, and

associated condition variables.

Shared data

put()

get()

Methods accessing
shared data

Mutex queue

At most one thread in
the monitor at a time

Lock

condvar

Condition variables

© 2007 Matt Welsh – Harvard University 27

Monitors

Shared data

put()

get()

Unlocked

condvar

1) Thread enters monitor
 (grabs lock)

© 2007 Matt Welsh – Harvard University 28

Monitors

Shared data

put()

get()

Locked

condvar

1) Thread enters monitor
 (grabs lock)

2) Other threads queue up

© 2007 Matt Welsh – Harvard University 29

Monitors

Shared data

put()

get()

Locked

condvar

1) Thread enters monitor
 (grabs lock)

2) Other threads queue up

3) Blue thread waits() on CV

© 2007 Matt Welsh – Harvard University 30

Monitors

Shared data

put()

get()

Unlocked

condvar

1) Thread enters monitor
 (grabs lock)

2) Other threads queue up

3) Blue thread waits() on CV

4) Next thread enters monitor

© 2007 Matt Welsh – Harvard University 31

Monitors

Shared data

put()

get()

Locked

condvar

1) Thread enters monitor
 (grabs lock)

2) Other threads queue up

3) Blue thread waits() on CV

4) Next thread enters monitor

© 2007 Matt Welsh – Harvard University 32

Monitors

Shared data

put()

get()

Locked

condvar

5) Thread in monitor calls
 notify() on CV

© 2007 Matt Welsh – Harvard University 33

Monitors

Shared data

put()

get()

Locked

condvar

5) Thread in monitor calls
 notify() on CV

6) Next thread enters monitor
 (order depends on lock
 implementation!)

© 2007 Matt Welsh – Harvard University 34

Hoare vs. Mesa Monitor Semantics
The monitor notify() operation can have two different meanings:

Hoare monitors (1974)
● notify(CV) means to run the waiting thread immediately
● Causes notifying thread to block

Mesa monitors (Xerox PARC, 1980)
● notify(CV) puts waiting thread back onto the “ready queue” for the monitor
● But, notifying thread keeps running

© 2007 Matt Welsh – Harvard University 35

Hoare vs. Mesa Monitor Semantics
The monitor notify() operation can have two different meanings:

Hoare monitors (1974)
● notify(CV) means to run the waiting thread immediately
● Causes notifying thread to block

Mesa monitors (Xerox PARC, 1980)
● notify(CV) puts waiting thread back onto the “ready queue” for the monitor
● But, notifying thread keeps running

What's the practical difference?
● In Hoare-style semantics, the “condition” that triggered the notify()

will always be true when the awoken thread runs
● For example, that the buffer is now no longer empty

● In Mesa-style semantics, awoken thread has to recheck the condition
● Since another thread might have beaten it to the punch

We almost always use Mesa-style semantics.
● But the textbook discusses Hoare semantics.

© 2007 Matt Welsh – Harvard University 36

The Big Picture
The point here is that getting synchronization right is hard

● Even some of your esteemed faculty members (ahem) have been
known to get it wrong.

How to pick between locks, semaphores, condvars, monitors???

Locks are very simple for many cases.
● Issues: Maybe not the most efficient solution
● For example, can't allow multiple readers but one writer inside a standard lock.

Condition variables allow threads to sleep while holding a lock
● Just be sure you understand whether they use Mesa or Hoare semantics!

Semaphores provide pretty general functionality
● But also make it really easy to botch things up.

Java captures a lot of useful common operations with its use of
monitors (compiler checking is nice too)

● But, not possible to implement everything directly with Java's primitives.

© 2007 Matt Welsh – Harvard University 37

Next Lecture
Famous problems in synchronization

Race conditions, deadlock, and priority inversion

The THERAC-25 disaster
● A radiation machine used to treat cancer
● Had a software bug that actually killed several people.
● Came down to a race condition!

What happened to the Mars Pathfinder?
● Very subtle synchronization bug plagued its software

